| // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef _SYMBOL_TABLE_INCLUDED_ |
| #define _SYMBOL_TABLE_INCLUDED_ |
| |
| // |
| // Symbol table for parsing. Has these design characteristics: |
| // |
| // * Same symbol table can be used to compile many shaders, to preserve |
| // effort of creating and loading with the large numbers of built-in |
| // symbols. |
| // |
| // * Name mangling will be used to give each function a unique name |
| // so that symbol table lookups are never ambiguous. This allows |
| // a simpler symbol table structure. |
| // |
| // * Pushing and popping of scope, so symbol table will really be a stack |
| // of symbol tables. Searched from the top, with new inserts going into |
| // the top. |
| // |
| // * Constants: Compile time constant symbols will keep their values |
| // in the symbol table. The parser can substitute constants at parse |
| // time, including doing constant folding and constant propagation. |
| // |
| // * No temporaries: Temporaries made from operations (+, --, .xy, etc.) |
| // are tracked in the intermediate representation, not the symbol table. |
| // |
| |
| #ifndef __ANDROID__ |
| #include <assert.h> |
| #else |
| #include "../../Common/DebugAndroid.hpp" |
| #endif |
| |
| #include "InfoSink.h" |
| #include "intermediate.h" |
| #include <set> |
| |
| // |
| // Symbol base class. (Can build functions or variables out of these...) |
| // |
| class TSymbol |
| { |
| public: |
| POOL_ALLOCATOR_NEW_DELETE(); |
| TSymbol(const TString *n) : name(n) { } |
| virtual ~TSymbol() { /* don't delete name, it's from the pool */ } |
| |
| const TString& getName() const { return *name; } |
| virtual const TString& getMangledName() const { return getName(); } |
| virtual bool isFunction() const { return false; } |
| virtual bool isVariable() const { return false; } |
| void setUniqueId(int id) { uniqueId = id; } |
| int getUniqueId() const { return uniqueId; } |
| TSymbol(const TSymbol&); |
| |
| protected: |
| const TString *name; |
| unsigned int uniqueId; // For real comparing during code generation |
| }; |
| |
| // |
| // Variable class, meaning a symbol that's not a function. |
| // |
| // There could be a separate class heirarchy for Constant variables; |
| // Only one of int, bool, or float, (or none) is correct for |
| // any particular use, but it's easy to do this way, and doesn't |
| // seem worth having separate classes, and "getConst" can't simply return |
| // different values for different types polymorphically, so this is |
| // just simple and pragmatic. |
| // |
| class TVariable : public TSymbol |
| { |
| public: |
| TVariable(const TString *name, const TType& t, bool uT = false ) : TSymbol(name), type(t), userType(uT), unionArray(0), arrayInformationType(0) { } |
| virtual ~TVariable() { } |
| virtual bool isVariable() const { return true; } |
| TType& getType() { return type; } |
| const TType& getType() const { return type; } |
| bool isUserType() const { return userType; } |
| void setQualifier(TQualifier qualifier) { type.setQualifier(qualifier); } |
| void updateArrayInformationType(TType *t) { arrayInformationType = t; } |
| TType* getArrayInformationType() { return arrayInformationType; } |
| |
| ConstantUnion* getConstPointer() |
| { |
| if (!unionArray) |
| unionArray = new ConstantUnion[type.getObjectSize()]; |
| |
| return unionArray; |
| } |
| |
| ConstantUnion* getConstPointer() const { return unionArray; } |
| bool isConstant() const { return unionArray != nullptr; } |
| |
| void shareConstPointer( ConstantUnion *constArray) |
| { |
| if (unionArray == constArray) |
| return; |
| |
| delete[] unionArray; |
| unionArray = constArray; |
| } |
| |
| protected: |
| TType type; |
| bool userType; |
| // we are assuming that Pool Allocator will free the memory allocated to unionArray |
| // when this object is destroyed |
| ConstantUnion *unionArray; |
| TType *arrayInformationType; // this is used for updating maxArraySize in all the references to a given symbol |
| }; |
| |
| // |
| // The function sub-class of symbols and the parser will need to |
| // share this definition of a function parameter. |
| // |
| struct TParameter |
| { |
| TString *name; |
| TType *type; |
| }; |
| |
| // |
| // The function sub-class of a symbol. |
| // |
| class TFunction : public TSymbol |
| { |
| public: |
| TFunction(TOperator o) : |
| TSymbol(0), |
| returnType(TType(EbtVoid, EbpUndefined)), |
| op(o), |
| defined(false), |
| prototypeDeclaration(false) { } |
| TFunction(const TString *name, const TType& retType, TOperator tOp = EOpNull, const char *ext = "") : |
| TSymbol(name), |
| returnType(retType), |
| mangledName(TFunction::mangleName(*name)), |
| op(tOp), |
| extension(ext), |
| defined(false), |
| prototypeDeclaration(false) { } |
| virtual ~TFunction(); |
| virtual bool isFunction() const { return true; } |
| |
| static TString mangleName(const TString& name) { return name + '('; } |
| static TString unmangleName(const TString& mangledName) |
| { |
| return TString(mangledName.c_str(), mangledName.find_first_of('(')); |
| } |
| |
| void addParameter(TParameter& p) |
| { |
| parameters.push_back(p); |
| mangledName = mangledName + p.type->getMangledName(); |
| } |
| |
| const TString& getMangledName() const { return mangledName; } |
| const TType& getReturnType() const { return returnType; } |
| |
| TOperator getBuiltInOp() const { return op; } |
| const TString& getExtension() const { return extension; } |
| |
| void setDefined() { defined = true; } |
| bool isDefined() { return defined; } |
| void setHasPrototypeDeclaration() { prototypeDeclaration = true; } |
| bool hasPrototypeDeclaration() const { return prototypeDeclaration; } |
| |
| size_t getParamCount() const { return parameters.size(); } |
| const TParameter& getParam(int i) const { return parameters[i]; } |
| |
| protected: |
| typedef TVector<TParameter> TParamList; |
| TParamList parameters; |
| TType returnType; |
| TString mangledName; |
| TOperator op; |
| TString extension; |
| bool defined; |
| bool prototypeDeclaration; |
| }; |
| |
| |
| class TSymbolTableLevel |
| { |
| public: |
| typedef TMap<TString, TSymbol*> tLevel; |
| typedef tLevel::const_iterator const_iterator; |
| typedef const tLevel::value_type tLevelPair; |
| typedef std::pair<tLevel::iterator, bool> tInsertResult; |
| |
| POOL_ALLOCATOR_NEW_DELETE(); |
| TSymbolTableLevel() { } |
| ~TSymbolTableLevel(); |
| |
| bool insert(TSymbol &symbol) |
| { |
| symbol.setUniqueId(nextUniqueId()); |
| |
| // |
| // returning true means symbol was added to the table |
| // |
| tInsertResult result; |
| result = level.insert(tLevelPair(symbol.getMangledName(), &symbol)); |
| |
| return result.second; |
| } |
| |
| TSymbol* find(const TString& name) const |
| { |
| tLevel::const_iterator it = level.find(name); |
| if (it == level.end()) |
| return 0; |
| else |
| return (*it).second; |
| } |
| |
| static int nextUniqueId() |
| { |
| return ++uniqueId; |
| } |
| |
| protected: |
| tLevel level; |
| static int uniqueId; // for unique identification in code generation |
| }; |
| |
| enum ESymbolLevel |
| { |
| COMMON_BUILTINS, |
| ESSL1_BUILTINS, |
| ESSL3_BUILTINS, |
| LAST_BUILTIN_LEVEL = ESSL3_BUILTINS, |
| GLOBAL_LEVEL |
| }; |
| |
| inline bool IsGenType(const TType *type) |
| { |
| if(type) |
| { |
| TBasicType basicType = type->getBasicType(); |
| return basicType == EbtGenType || basicType == EbtGenIType || basicType == EbtGenUType || basicType == EbtGenBType; |
| } |
| |
| return false; |
| } |
| |
| inline bool IsVecType(const TType *type) |
| { |
| if(type) |
| { |
| TBasicType basicType = type->getBasicType(); |
| return basicType == EbtVec || basicType == EbtIVec || basicType == EbtUVec || basicType == EbtBVec; |
| } |
| |
| return false; |
| } |
| |
| inline TType *GenType(TType *type, int size) |
| { |
| ASSERT(size >= 1 && size <= 4); |
| |
| if(!type) |
| { |
| return nullptr; |
| } |
| |
| ASSERT(!IsVecType(type)); |
| |
| switch(type->getBasicType()) |
| { |
| case EbtGenType: return new TType(EbtFloat, size); |
| case EbtGenIType: return new TType(EbtInt, size); |
| case EbtGenUType: return new TType(EbtUInt, size); |
| case EbtGenBType: return new TType(EbtBool, size); |
| default: return type; |
| } |
| } |
| |
| inline TType *VecType(TType *type, int size) |
| { |
| ASSERT(size >= 2 && size <= 4); |
| |
| if(!type) |
| { |
| return nullptr; |
| } |
| |
| ASSERT(!IsGenType(type)); |
| |
| switch(type->getBasicType()) |
| { |
| case EbtVec: return new TType(EbtFloat, size); |
| case EbtIVec: return new TType(EbtInt, size); |
| case EbtUVec: return new TType(EbtUInt, size); |
| case EbtBVec: return new TType(EbtBool, size); |
| default: return type; |
| } |
| } |
| |
| class TSymbolTable |
| { |
| public: |
| TSymbolTable() |
| : mGlobalInvariant(false) |
| { |
| // |
| // The symbol table cannot be used until push() is called, but |
| // the lack of an initial call to push() can be used to detect |
| // that the symbol table has not been preloaded with built-ins. |
| // |
| } |
| |
| ~TSymbolTable() |
| { |
| while(currentLevel() > LAST_BUILTIN_LEVEL) |
| { |
| pop(); |
| } |
| } |
| |
| bool isEmpty() { return table.empty(); } |
| bool atBuiltInLevel() { return currentLevel() <= LAST_BUILTIN_LEVEL; } |
| bool atGlobalLevel() { return currentLevel() <= GLOBAL_LEVEL; } |
| void push() |
| { |
| table.push_back(new TSymbolTableLevel); |
| precisionStack.push_back( PrecisionStackLevel() ); |
| } |
| |
| void pop() |
| { |
| delete table[currentLevel()]; |
| table.pop_back(); |
| precisionStack.pop_back(); |
| } |
| |
| bool declare(TSymbol &symbol) |
| { |
| return insert(currentLevel(), symbol); |
| } |
| |
| bool insert(ESymbolLevel level, TSymbol &symbol) |
| { |
| return table[level]->insert(symbol); |
| } |
| |
| bool insertConstInt(ESymbolLevel level, const char *name, int value) |
| { |
| TVariable *constant = new TVariable(NewPoolTString(name), TType(EbtInt, EbpUndefined, EvqConstExpr, 1)); |
| constant->getConstPointer()->setIConst(value); |
| return insert(level, *constant); |
| } |
| |
| void insertBuiltIn(ESymbolLevel level, TOperator op, const char *ext, TType *rvalue, const char *name, TType *ptype1, TType *ptype2 = 0, TType *ptype3 = 0, TType *ptype4 = 0, TType *ptype5 = 0) |
| { |
| if(ptype1->getBasicType() == EbtGSampler2D) |
| { |
| bool gvec4 = (rvalue->getBasicType() == EbtGVec4); |
| insertBuiltIn(level, gvec4 ? new TType(EbtFloat, 4) : rvalue, name, new TType(EbtSampler2D), ptype2, ptype3, ptype4, ptype5); |
| insertBuiltIn(level, gvec4 ? new TType(EbtInt, 4) : rvalue, name, new TType(EbtISampler2D), ptype2, ptype3, ptype4, ptype5); |
| insertBuiltIn(level, gvec4 ? new TType(EbtUInt, 4) : rvalue, name, new TType(EbtUSampler2D), ptype2, ptype3, ptype4, ptype5); |
| } |
| else if(ptype1->getBasicType() == EbtGSampler3D) |
| { |
| bool gvec4 = (rvalue->getBasicType() == EbtGVec4); |
| insertBuiltIn(level, gvec4 ? new TType(EbtFloat, 4) : rvalue, name, new TType(EbtSampler3D), ptype2, ptype3, ptype4, ptype5); |
| insertBuiltIn(level, gvec4 ? new TType(EbtInt, 4) : rvalue, name, new TType(EbtISampler3D), ptype2, ptype3, ptype4, ptype5); |
| insertBuiltIn(level, gvec4 ? new TType(EbtUInt, 4) : rvalue, name, new TType(EbtUSampler3D), ptype2, ptype3, ptype4, ptype5); |
| } |
| else if(ptype1->getBasicType() == EbtGSamplerCube) |
| { |
| bool gvec4 = (rvalue->getBasicType() == EbtGVec4); |
| insertBuiltIn(level, gvec4 ? new TType(EbtFloat, 4) : rvalue, name, new TType(EbtSamplerCube), ptype2, ptype3, ptype4, ptype5); |
| insertBuiltIn(level, gvec4 ? new TType(EbtInt, 4) : rvalue, name, new TType(EbtISamplerCube), ptype2, ptype3, ptype4, ptype5); |
| insertBuiltIn(level, gvec4 ? new TType(EbtUInt, 4) : rvalue, name, new TType(EbtUSamplerCube), ptype2, ptype3, ptype4, ptype5); |
| } |
| else if(ptype1->getBasicType() == EbtGSampler2DArray) |
| { |
| bool gvec4 = (rvalue->getBasicType() == EbtGVec4); |
| insertBuiltIn(level, gvec4 ? new TType(EbtFloat, 4) : rvalue, name, new TType(EbtSampler2DArray), ptype2, ptype3, ptype4, ptype5); |
| insertBuiltIn(level, gvec4 ? new TType(EbtInt, 4) : rvalue, name, new TType(EbtISampler2DArray), ptype2, ptype3, ptype4, ptype5); |
| insertBuiltIn(level, gvec4 ? new TType(EbtUInt, 4) : rvalue, name, new TType(EbtUSampler2DArray), ptype2, ptype3, ptype4, ptype5); |
| } |
| else if(IsGenType(rvalue) || IsGenType(ptype1) || IsGenType(ptype2) || IsGenType(ptype3)) |
| { |
| ASSERT(!ptype4); |
| insertBuiltIn(level, op, ext, GenType(rvalue, 1), name, GenType(ptype1, 1), GenType(ptype2, 1), GenType(ptype3, 1)); |
| insertBuiltIn(level, op, ext, GenType(rvalue, 2), name, GenType(ptype1, 2), GenType(ptype2, 2), GenType(ptype3, 2)); |
| insertBuiltIn(level, op, ext, GenType(rvalue, 3), name, GenType(ptype1, 3), GenType(ptype2, 3), GenType(ptype3, 3)); |
| insertBuiltIn(level, op, ext, GenType(rvalue, 4), name, GenType(ptype1, 4), GenType(ptype2, 4), GenType(ptype3, 4)); |
| } |
| else if(IsVecType(rvalue) || IsVecType(ptype1) || IsVecType(ptype2) || IsVecType(ptype3)) |
| { |
| ASSERT(!ptype4); |
| insertBuiltIn(level, op, ext, VecType(rvalue, 2), name, VecType(ptype1, 2), VecType(ptype2, 2), VecType(ptype3, 2)); |
| insertBuiltIn(level, op, ext, VecType(rvalue, 3), name, VecType(ptype1, 3), VecType(ptype2, 3), VecType(ptype3, 3)); |
| insertBuiltIn(level, op, ext, VecType(rvalue, 4), name, VecType(ptype1, 4), VecType(ptype2, 4), VecType(ptype3, 4)); |
| } |
| else |
| { |
| TFunction *function = new TFunction(NewPoolTString(name), *rvalue, op, ext); |
| |
| TParameter param1 = {0, ptype1}; |
| function->addParameter(param1); |
| |
| if(ptype2) |
| { |
| TParameter param2 = {0, ptype2}; |
| function->addParameter(param2); |
| } |
| |
| if(ptype3) |
| { |
| TParameter param3 = {0, ptype3}; |
| function->addParameter(param3); |
| } |
| |
| if(ptype4) |
| { |
| TParameter param4 = {0, ptype4}; |
| function->addParameter(param4); |
| } |
| |
| if(ptype5) |
| { |
| TParameter param5 = {0, ptype5}; |
| function->addParameter(param5); |
| } |
| |
| insert(level, *function); |
| } |
| } |
| |
| void insertBuiltIn(ESymbolLevel level, TOperator op, TType *rvalue, const char *name, TType *ptype1, TType *ptype2 = 0, TType *ptype3 = 0, TType *ptype4 = 0, TType *ptype5 = 0) |
| { |
| insertBuiltIn(level, op, "", rvalue, name, ptype1, ptype2, ptype3, ptype4, ptype5); |
| } |
| |
| void insertBuiltIn(ESymbolLevel level, TType *rvalue, const char *name, TType *ptype1, TType *ptype2 = 0, TType *ptype3 = 0, TType *ptype4 = 0, TType *ptype5 = 0) |
| { |
| insertBuiltIn(level, EOpNull, rvalue, name, ptype1, ptype2, ptype3, ptype4, ptype5); |
| } |
| |
| TSymbol *find(const TString &name, int shaderVersion, bool *builtIn = nullptr, bool *sameScope = nullptr) const; |
| TSymbol *findBuiltIn(const TString &name, int shaderVersion) const; |
| |
| TSymbolTableLevel *getOuterLevel() const |
| { |
| assert(currentLevel() >= 1); |
| return table[currentLevel() - 1]; |
| } |
| |
| bool setDefaultPrecision(const TPublicType &type, TPrecision prec) |
| { |
| if (IsSampler(type.type)) |
| return true; // Skip sampler types for the time being |
| if (type.type != EbtFloat && type.type != EbtInt) |
| return false; // Only set default precision for int/float |
| if (type.primarySize > 1 || type.secondarySize > 1 || type.array) |
| return false; // Not allowed to set for aggregate types |
| int indexOfLastElement = static_cast<int>(precisionStack.size()) - 1; |
| precisionStack[indexOfLastElement][type.type] = prec; // Uses map operator [], overwrites the current value |
| return true; |
| } |
| |
| // Searches down the precisionStack for a precision qualifier for the specified TBasicType |
| TPrecision getDefaultPrecision( TBasicType type) |
| { |
| // unsigned integers use the same precision as signed |
| if (type == EbtUInt) type = EbtInt; |
| |
| if( type != EbtFloat && type != EbtInt ) return EbpUndefined; |
| int level = static_cast<int>(precisionStack.size()) - 1; |
| assert( level >= 0); // Just to be safe. Should not happen. |
| PrecisionStackLevel::iterator it; |
| TPrecision prec = EbpUndefined; // If we dont find anything we return this. Should we error check this? |
| while( level >= 0 ){ |
| it = precisionStack[level].find( type ); |
| if( it != precisionStack[level].end() ){ |
| prec = (*it).second; |
| break; |
| } |
| level--; |
| } |
| return prec; |
| } |
| |
| // This records invariant varyings declared through |
| // "invariant varying_name;". |
| void addInvariantVarying(const std::string &originalName) |
| { |
| mInvariantVaryings.insert(originalName); |
| } |
| // If this returns false, the varying could still be invariant |
| // if it is set as invariant during the varying variable |
| // declaration - this piece of information is stored in the |
| // variable's type, not here. |
| bool isVaryingInvariant(const std::string &originalName) const |
| { |
| return (mGlobalInvariant || |
| mInvariantVaryings.count(originalName) > 0); |
| } |
| |
| void setGlobalInvariant() { mGlobalInvariant = true; } |
| bool getGlobalInvariant() const { return mGlobalInvariant; } |
| |
| protected: |
| ESymbolLevel currentLevel() const { return static_cast<ESymbolLevel>(table.size() - 1); } |
| |
| std::vector<TSymbolTableLevel*> table; |
| typedef std::map< TBasicType, TPrecision > PrecisionStackLevel; |
| std::vector< PrecisionStackLevel > precisionStack; |
| |
| std::set<std::string> mInvariantVaryings; |
| bool mGlobalInvariant; |
| }; |
| |
| #endif // _SYMBOL_TABLE_INCLUDED_ |