| //===- subzero/src/IceAssembler.cpp - Assembler base class ----------------===// |
| // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| // |
| // Modified by the Subzero authors. |
| // |
| // This is forked from Dart revision 39313. |
| // Please update the revision if we merge back changes from Dart. |
| // https://code.google.com/p/dart/wiki/GettingTheSource |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // The Subzero Code Generator |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// This file implements the Assembler base class. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "IceAssembler.h" |
| |
| #include "IceGlobalContext.h" |
| #include "IceOperand.h" |
| |
| namespace Ice { |
| |
| static uintptr_t NewContents(Assembler &Assemblr, intptr_t Capacity) { |
| uintptr_t Result = Assemblr.allocateBytes(Capacity); |
| return Result; |
| } |
| |
| AssemblerFixup *AssemblerBuffer::createFixup(FixupKind Kind, |
| const Constant *Value) { |
| AssemblerFixup *F = |
| new (Assemblr.allocate<AssemblerFixup>()) AssemblerFixup(); |
| F->set_position(0); |
| F->set_kind(Kind); |
| F->set_value(Value); |
| if (!Assemblr.getPreliminary()) |
| Fixups.push_back(F); |
| return F; |
| } |
| |
| void AssemblerBuffer::EnsureCapacity::validate(AssemblerBuffer *buffer) { |
| // In debug mode, we save the assembler buffer along with the gap |
| // size before we start emitting to the buffer. This allows us to |
| // check that any single generated instruction doesn't overflow the |
| // limit implied by the minimum gap size. |
| Gap = computeGap(); |
| // Make sure that extending the capacity leaves a big enough gap |
| // for any kind of instruction. |
| assert(Gap >= kMinimumGap); |
| // Mark the buffer as having ensured the capacity. |
| assert(!buffer->hasEnsuredCapacity()); // Cannot nest. |
| buffer->HasEnsuredCapacity = true; |
| } |
| |
| AssemblerBuffer::EnsureCapacity::~EnsureCapacity() { |
| // Unmark the buffer, so we cannot emit after this. |
| Buffer->HasEnsuredCapacity = false; |
| // Make sure the generated instruction doesn't take up more |
| // space than the minimum gap. |
| intptr_t delta = Gap - computeGap(); |
| (void)delta; |
| assert(delta <= kMinimumGap); |
| } |
| |
| AssemblerBuffer::AssemblerBuffer(Assembler &Asm) : Assemblr(Asm) { |
| const intptr_t OneKB = 1024; |
| static const intptr_t kInitialBufferCapacity = 4 * OneKB; |
| Contents = NewContents(Assemblr, kInitialBufferCapacity); |
| Cursor = Contents; |
| Limit = computeLimit(Contents, kInitialBufferCapacity); |
| HasEnsuredCapacity = false; |
| |
| // Verify internal state. |
| assert(capacity() == kInitialBufferCapacity); |
| assert(size() == 0); |
| } |
| |
| AssemblerBuffer::~AssemblerBuffer() = default; |
| |
| void AssemblerBuffer::extendCapacity() { |
| intptr_t old_size = size(); |
| intptr_t old_capacity = capacity(); |
| const intptr_t OneMB = 1 << 20; |
| intptr_t new_capacity = std::min(old_capacity * 2, old_capacity + OneMB); |
| if (new_capacity < old_capacity) { |
| llvm::report_fatal_error( |
| "Unexpected overflow in AssemblerBuffer::ExtendCapacity"); |
| } |
| |
| // Allocate the new data area and copy contents of the old one to it. |
| uintptr_t new_contents = NewContents(Assemblr, new_capacity); |
| memmove(reinterpret_cast<void *>(new_contents), |
| reinterpret_cast<void *>(Contents), old_size); |
| |
| // Compute the relocation delta and switch to the new contents area. |
| intptr_t delta = new_contents - Contents; |
| Contents = new_contents; |
| |
| // Update the cursor and recompute the limit. |
| Cursor += delta; |
| Limit = computeLimit(new_contents, new_capacity); |
| |
| // Verify internal state. |
| assert(capacity() == new_capacity); |
| assert(size() == old_size); |
| } |
| |
| llvm::StringRef Assembler::getBufferView() const { |
| return llvm::StringRef(reinterpret_cast<const char *>(Buffer.contents()), |
| Buffer.size()); |
| } |
| |
| void Assembler::emitIASBytes(GlobalContext *Ctx) const { |
| Ostream &Str = Ctx->getStrEmit(); |
| intptr_t EndPosition = Buffer.size(); |
| intptr_t CurPosition = 0; |
| const intptr_t FixupSize = 4; |
| for (const AssemblerFixup *NextFixup : fixups()) { |
| intptr_t NextFixupLoc = NextFixup->position(); |
| for (intptr_t i = CurPosition; i < NextFixupLoc; ++i) { |
| Str << "\t.byte 0x"; |
| Str.write_hex(Buffer.load<uint8_t>(i)); |
| Str << "\n"; |
| } |
| Str << "\t.long "; |
| // For PCRel fixups, we write the pc-offset from a symbol into the Buffer |
| // (e.g., -4), but we don't represent that in the fixup's offset. |
| // Otherwise the fixup holds the true offset, and so does the Buffer. |
| // Just load the offset from the buffer. |
| NextFixup->emit(Ctx, Buffer.load<RelocOffsetT>(NextFixupLoc)); |
| if (fixupIsPCRel(NextFixup->kind())) |
| Str << " - ."; |
| Str << "\n"; |
| CurPosition = NextFixupLoc + FixupSize; |
| assert(CurPosition <= EndPosition); |
| } |
| // Handle any bytes that are not prefixed by a fixup. |
| for (intptr_t i = CurPosition; i < EndPosition; ++i) { |
| Str << "\t.byte 0x"; |
| Str.write_hex(Buffer.load<uint8_t>(i)); |
| Str << "\n"; |
| } |
| } |
| |
| } // end of namespace Ice |