| //===- subzero/src/IceUtils.h - Utility functions ---------------*- C++ -*-===// |
| // |
| // The Subzero Code Generator |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// This file declares some utility functions. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef SUBZERO_SRC_ICEUTILS_H |
| #define SUBZERO_SRC_ICEUTILS_H |
| |
| #include <climits> |
| |
| namespace Ice { |
| |
| /// Similar to bit_cast, but allows copying from types of unrelated |
| /// sizes. This method was introduced to enable the strict aliasing |
| /// optimizations of GCC 4.4. Basically, GCC mindlessly relies on |
| /// obscure details in the C++ standard that make reinterpret_cast |
| /// virtually useless. |
| template <class D, class S> inline D bit_copy(const S &source) { |
| D destination; |
| // This use of memcpy is safe: source and destination cannot overlap. |
| memcpy(&destination, reinterpret_cast<const void *>(&source), |
| sizeof(destination)); |
| return destination; |
| } |
| |
| class Utils { |
| Utils() = delete; |
| Utils(const Utils &) = delete; |
| Utils &operator=(const Utils &) = delete; |
| |
| public: |
| /// Check whether an N-bit two's-complement representation can hold value. |
| template <typename T> static inline bool IsInt(int N, T value) { |
| assert((0 < N) && |
| (static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(value)))); |
| T limit = static_cast<T>(1) << (N - 1); |
| return (-limit <= value) && (value < limit); |
| } |
| |
| template <typename T> static inline bool IsUint(int N, T value) { |
| assert((0 < N) && |
| (static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(value)))); |
| T limit = static_cast<T>(1) << N; |
| return (0 <= value) && (value < limit); |
| } |
| |
| /// Check whether the magnitude of value fits in N bits, i.e., whether an |
| /// (N+1)-bit sign-magnitude representation can hold value. |
| template <typename T> static inline bool IsAbsoluteUint(int N, T Value) { |
| assert((0 < N) && |
| (static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(Value)))); |
| if (Value < 0) |
| Value = -Value; |
| return IsUint(N, Value); |
| } |
| |
| /// Return true if the addition X + Y will cause integer overflow for |
| /// integers of type T. |
| template <typename T> static inline bool WouldOverflowAdd(T X, T Y) { |
| return ((X > 0 && Y > 0 && (X > std::numeric_limits<T>::max() - Y)) || |
| (X < 0 && Y < 0 && (X < std::numeric_limits<T>::min() - Y))); |
| } |
| |
| /// Return true if X is already aligned by N, where N is a power of 2. |
| template <typename T> static inline bool IsAligned(T X, intptr_t N) { |
| assert(llvm::isPowerOf2_64(N)); |
| return (X & (N - 1)) == 0; |
| } |
| |
| /// Return Value adjusted to the next highest multiple of Alignment. |
| static inline uint32_t applyAlignment(uint32_t Value, uint32_t Alignment) { |
| assert(llvm::isPowerOf2_32(Alignment)); |
| return (Value + Alignment - 1) & -Alignment; |
| } |
| |
| /// Return amount which must be added to adjust Pos to the next highest |
| /// multiple of Align. |
| static inline uint64_t OffsetToAlignment(uint64_t Pos, uint64_t Align) { |
| assert(llvm::isPowerOf2_64(Align)); |
| uint64_t Mod = Pos & (Align - 1); |
| if (Mod == 0) |
| return 0; |
| return Align - Mod; |
| } |
| |
| /// Rotate the value bit pattern to the left by shift bits. |
| /// Precondition: 0 <= shift < 32 |
| static inline uint32_t rotateLeft32(uint32_t value, uint32_t shift) { |
| if (shift == 0) |
| return value; |
| return (value << shift) | (value >> (32 - shift)); |
| } |
| |
| /// Rotate the value bit pattern to the right by shift bits. |
| static inline uint32_t rotateRight32(uint32_t value, uint32_t shift) { |
| if (shift == 0) |
| return value; |
| return (value >> shift) | (value << (32 - shift)); |
| } |
| }; |
| |
| } // end of namespace Ice |
| |
| #endif // SUBZERO_SRC_ICEUTILS_H |