blob: d3fae45e909c6b2544bd56dc2642b055d633be32 [file] [log] [blame]
//===- subzero/src/IceRegAlloc.cpp - Linear-scan implementation -----------===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LinearScan class, which performs the
// linear-scan register allocation after liveness analysis has been
// performed.
//
//===----------------------------------------------------------------------===//
#include "IceCfg.h"
#include "IceInst.h"
#include "IceOperand.h"
#include "IceRegAlloc.h"
#include "IceTargetLowering.h"
namespace Ice {
namespace {
// Returns true if Var has any definitions within Item's live range.
// TODO(stichnot): Consider trimming the Definitions list similar to
// how the live ranges are trimmed, since all the overlapsDefs() tests
// are whether some variable's definitions overlap Cur, and trimming
// is with respect Cur.start. Initial tests show no measurable
// performance difference, so we'll keep the code simple for now.
bool overlapsDefs(const Cfg *Func, const Variable *Item, const Variable *Var) {
const bool UseTrimmed = true;
VariablesMetadata *VMetadata = Func->getVMetadata();
if (const Inst *FirstDef = VMetadata->getFirstDefinition(Var))
if (Item->getLiveRange().overlapsInst(FirstDef->getNumber(), UseTrimmed))
return true;
const InstDefList &Defs = VMetadata->getLatterDefinitions(Var);
for (size_t i = 0; i < Defs.size(); ++i) {
if (Item->getLiveRange().overlapsInst(Defs[i]->getNumber(), UseTrimmed))
return true;
}
return false;
}
void dumpDisableOverlap(const Cfg *Func, const Variable *Var,
const char *Reason) {
if (Func->getContext()->isVerbose(IceV_LinearScan)) {
VariablesMetadata *VMetadata = Func->getVMetadata();
Ostream &Str = Func->getContext()->getStrDump();
Str << "Disabling Overlap due to " << Reason << " " << *Var
<< " LIVE=" << Var->getLiveRange() << " Defs=";
if (const Inst *FirstDef = VMetadata->getFirstDefinition(Var))
Str << FirstDef->getNumber();
const InstDefList &Defs = VMetadata->getLatterDefinitions(Var);
for (size_t i = 0; i < Defs.size(); ++i) {
Str << "," << Defs[i]->getNumber();
}
Str << "\n";
}
}
void dumpLiveRange(const Variable *Var, const Cfg *Func) {
Ostream &Str = Func->getContext()->getStrDump();
const static size_t BufLen = 30;
char buf[BufLen];
snprintf(buf, BufLen, "%2d", Var->getRegNumTmp());
Str << "R=" << buf << " V=";
Var->dump(Func);
Str << " Range=" << Var->getLiveRange();
}
} // end of anonymous namespace
// Implements the linear-scan algorithm. Based on "Linear Scan
// Register Allocation in the Context of SSA Form and Register
// Constraints" by Hanspeter Mössenböck and Michael Pfeiffer,
// ftp://ftp.ssw.uni-linz.ac.at/pub/Papers/Moe02.PDF . This
// implementation is modified to take affinity into account and allow
// two interfering variables to share the same register in certain
// cases.
//
// Requires running Cfg::liveness(Liveness_Intervals) in
// preparation. Results are assigned to Variable::RegNum for each
// Variable.
void LinearScan::scan(const llvm::SmallBitVector &RegMaskFull) {
TimerMarker T(TimerStack::TT_linearScan, Func);
assert(RegMaskFull.any()); // Sanity check
Unhandled.clear();
UnhandledPrecolored.clear();
Handled.clear();
Inactive.clear();
Active.clear();
Ostream &Str = Func->getContext()->getStrDump();
bool Verbose = Func->getContext()->isVerbose(IceV_LinearScan);
Func->resetCurrentNode();
VariablesMetadata *VMetadata = Func->getVMetadata();
// Gather the live ranges of all variables and add them to the
// Unhandled set.
const VarList &Vars = Func->getVariables();
{
TimerMarker T(TimerStack::TT_initUnhandled, Func);
Unhandled.reserve(Vars.size());
for (Variable *Var : Vars) {
// Explicitly don't consider zero-weight variables, which are
// meant to be spill slots.
if (Var->getWeight() == RegWeight::Zero) {
Var->setNeedsStackSlot();
continue;
}
// Don't bother if the variable has a null live range, which means
// it was never referenced.
if (Var->getLiveRange().isEmpty())
continue;
Var->setNeedsStackSlot();
Var->untrimLiveRange();
Unhandled.push_back(Var);
if (Var->hasReg()) {
Var->setRegNumTmp(Var->getRegNum());
Var->setLiveRangeInfiniteWeight();
UnhandledPrecolored.push_back(Var);
}
}
struct CompareRanges {
bool operator()(const Variable *L, const Variable *R) {
InstNumberT Lstart = L->getLiveRange().getStart();
InstNumberT Rstart = R->getLiveRange().getStart();
if (Lstart == Rstart)
return L->getIndex() < R->getIndex();
return Lstart < Rstart;
}
};
// Do a reverse sort so that erasing elements (from the end) is fast.
std::sort(Unhandled.rbegin(), Unhandled.rend(), CompareRanges());
std::sort(UnhandledPrecolored.rbegin(), UnhandledPrecolored.rend(),
CompareRanges());
}
// RegUses[I] is the number of live ranges (variables) that register
// I is currently assigned to. It can be greater than 1 as a result
// of AllowOverlap inference below.
std::vector<int> RegUses(RegMaskFull.size());
// Unhandled is already set to all ranges in increasing order of
// start points.
assert(Active.empty());
assert(Inactive.empty());
assert(Handled.empty());
UnorderedRanges::iterator Next;
while (!Unhandled.empty()) {
Variable *Cur = Unhandled.back();
Unhandled.pop_back();
if (Verbose) {
Str << "\nConsidering ";
dumpLiveRange(Cur, Func);
Str << "\n";
}
const llvm::SmallBitVector RegMask =
RegMaskFull & Func->getTarget()->getRegisterSetForType(Cur->getType());
// Check for precolored ranges. If Cur is precolored, it
// definitely gets that register. Previously processed live
// ranges would have avoided that register due to it being
// precolored. Future processed live ranges won't evict that
// register because the live range has infinite weight.
if (Cur->hasReg()) {
int32_t RegNum = Cur->getRegNum();
// RegNumTmp should have already been set above.
assert(Cur->getRegNumTmp() == RegNum);
if (Verbose) {
Str << "Precoloring ";
dumpLiveRange(Cur, Func);
Str << "\n";
}
Active.push_back(Cur);
assert(RegUses[RegNum] >= 0);
++RegUses[RegNum];
assert(!UnhandledPrecolored.empty());
assert(UnhandledPrecolored.back() == Cur);
UnhandledPrecolored.pop_back();
continue;
}
// Check for active ranges that have expired or become inactive.
for (auto I = Active.begin(), E = Active.end(); I != E; I = Next) {
Next = I;
++Next;
Variable *Item = *I;
Item->trimLiveRange(Cur->getLiveRange().getStart());
bool Moved = false;
if (Item->rangeEndsBefore(Cur)) {
// Move Item from Active to Handled list.
if (Verbose) {
Str << "Expiring ";
dumpLiveRange(Item, Func);
Str << "\n";
}
Handled.splice(Handled.end(), Active, I);
Moved = true;
} else if (!Item->rangeOverlapsStart(Cur)) {
// Move Item from Active to Inactive list.
if (Verbose) {
Str << "Inactivating ";
dumpLiveRange(Item, Func);
Str << "\n";
}
Inactive.splice(Inactive.end(), Active, I);
Moved = true;
}
if (Moved) {
// Decrement Item from RegUses[].
assert(Item->hasRegTmp());
int32_t RegNum = Item->getRegNumTmp();
--RegUses[RegNum];
assert(RegUses[RegNum] >= 0);
}
}
// Check for inactive ranges that have expired or reactivated.
for (auto I = Inactive.begin(), E = Inactive.end(); I != E; I = Next) {
Next = I;
++Next;
Variable *Item = *I;
Item->trimLiveRange(Cur->getLiveRange().getStart());
// As an optimization, don't bother checking pure point-valued
// Inactive ranges, because the overlapsStart() test will never
// succeed, and the rangeEndsBefore() test will generally only
// succeed after the last call instruction, which statistically
// happens near the end. TODO(stichnot): Consider suppressing
// this check every N iterations in case calls are only at the
// beginning of the function.
if (!Item->getLiveRange().isNonpoints())
continue;
if (Item->rangeEndsBefore(Cur)) {
// Move Item from Inactive to Handled list.
if (Verbose) {
Str << "Expiring ";
dumpLiveRange(Item, Func);
Str << "\n";
}
Handled.splice(Handled.end(), Inactive, I);
} else if (Item->rangeOverlapsStart(Cur)) {
// Move Item from Inactive to Active list.
if (Verbose) {
Str << "Reactivating ";
dumpLiveRange(Item, Func);
Str << "\n";
}
Active.splice(Active.end(), Inactive, I);
// Increment Item in RegUses[].
assert(Item->hasRegTmp());
int32_t RegNum = Item->getRegNumTmp();
assert(RegUses[RegNum] >= 0);
++RegUses[RegNum];
}
}
// Calculate available registers into Free[].
llvm::SmallBitVector Free = RegMask;
for (SizeT i = 0; i < RegMask.size(); ++i) {
if (RegUses[i] > 0)
Free[i] = false;
}
// Infer register preference and allowable overlap. Only form a
// preference when the current Variable has an unambiguous "first"
// definition. The preference is some source Variable of the
// defining instruction that either is assigned a register that is
// currently free, or that is assigned a register that is not free
// but overlap is allowed. Overlap is allowed when the Variable
// under consideration is single-definition, and its definition is
// a simple assignment - i.e., the register gets copied/aliased
// but is never modified. Furthermore, overlap is only allowed
// when preferred Variable definition instructions do not appear
// within the current Variable's live range.
Variable *Prefer = NULL;
int32_t PreferReg = Variable::NoRegister;
bool AllowOverlap = false;
if (const Inst *DefInst = VMetadata->getFirstDefinition(Cur)) {
assert(DefInst->getDest() == Cur);
bool IsAssign = DefInst->isSimpleAssign();
bool IsSingleDef = !VMetadata->isMultiDef(Cur);
for (SizeT i = 0; i < DefInst->getSrcSize(); ++i) {
// TODO(stichnot): Iterate through the actual Variables of the
// instruction, not just the source operands. This could
// capture Load instructions, including address mode
// optimization, for Prefer (but not for AllowOverlap).
if (Variable *SrcVar = llvm::dyn_cast<Variable>(DefInst->getSrc(i))) {
int32_t SrcReg = SrcVar->getRegNumTmp();
// Only consider source variables that have (so far) been
// assigned a register. That register must be one in the
// RegMask set, e.g. don't try to prefer the stack pointer
// as a result of the stacksave intrinsic.
if (SrcVar->hasRegTmp() && RegMask[SrcReg]) {
if (!Free[SrcReg]) {
// Don't bother trying to enable AllowOverlap if the
// register is already free.
AllowOverlap =
IsSingleDef && IsAssign && !overlapsDefs(Func, Cur, SrcVar);
}
if (AllowOverlap || Free[SrcReg]) {
Prefer = SrcVar;
PreferReg = SrcReg;
}
}
}
}
}
if (Verbose) {
if (Prefer) {
Str << "Initial Prefer=" << *Prefer << " R=" << PreferReg
<< " LIVE=" << Prefer->getLiveRange() << " Overlap=" << AllowOverlap
<< "\n";
}
}
// Remove registers from the Free[] list where an Inactive range
// overlaps with the current range.
for (const Variable *Item : Inactive) {
if (Item->rangeOverlaps(Cur)) {
int32_t RegNum = Item->getRegNumTmp();
// Don't assert(Free[RegNum]) because in theory (though
// probably never in practice) there could be two inactive
// variables that were marked with AllowOverlap.
Free[RegNum] = false;
// Disable AllowOverlap if an Inactive variable, which is not
// Prefer, shares Prefer's register, and has a definition
// within Cur's live range.
if (AllowOverlap && Item != Prefer && RegNum == PreferReg &&
overlapsDefs(Func, Cur, Item)) {
AllowOverlap = false;
dumpDisableOverlap(Func, Item, "Inactive");
}
}
}
// Disable AllowOverlap if an Active variable, which is not
// Prefer, shares Prefer's register, and has a definition within
// Cur's live range.
for (const Variable *Item : Active) {
int32_t RegNum = Item->getRegNumTmp();
if (Item != Prefer && RegNum == PreferReg &&
overlapsDefs(Func, Cur, Item)) {
AllowOverlap = false;
dumpDisableOverlap(Func, Item, "Active");
}
}
std::vector<RegWeight> Weights(RegMask.size());
// Remove registers from the Free[] list where an Unhandled
// precolored range overlaps with the current range, and set those
// registers to infinite weight so that they aren't candidates for
// eviction. Cur->rangeEndsBefore(Item) is an early exit check
// that turns a guaranteed O(N^2) algorithm into expected linear
// complexity.
llvm::SmallBitVector PrecoloredUnhandledMask(RegMask.size());
// Note: PrecoloredUnhandledMask is only used for dumping.
for (auto I = UnhandledPrecolored.rbegin(), E = UnhandledPrecolored.rend();
I != E; ++I) {
Variable *Item = *I;
assert(Item->hasReg());
if (Cur->rangeEndsBefore(Item))
break;
if (Item->rangeOverlaps(Cur)) {
int32_t ItemReg = Item->getRegNum(); // Note: not getRegNumTmp()
Weights[ItemReg].setWeight(RegWeight::Inf);
Free[ItemReg] = false;
PrecoloredUnhandledMask[ItemReg] = true;
// Disable AllowOverlap if the preferred register is one of
// these precolored unhandled overlapping ranges.
if (AllowOverlap && ItemReg == PreferReg) {
AllowOverlap = false;
dumpDisableOverlap(Func, Item, "PrecoloredUnhandled");
}
}
}
// Print info about physical register availability.
if (Verbose) {
for (SizeT i = 0; i < RegMask.size(); ++i) {
if (RegMask[i]) {
Str << Func->getTarget()->getRegName(i, IceType_i32)
<< "(U=" << RegUses[i] << ",F=" << Free[i]
<< ",P=" << PrecoloredUnhandledMask[i] << ") ";
}
}
Str << "\n";
}
if (Prefer && (AllowOverlap || Free[PreferReg])) {
// First choice: a preferred register that is either free or is
// allowed to overlap with its linked variable.
Cur->setRegNumTmp(PreferReg);
if (Verbose) {
Str << "Preferring ";
dumpLiveRange(Cur, Func);
Str << "\n";
}
assert(RegUses[PreferReg] >= 0);
++RegUses[PreferReg];
Active.push_back(Cur);
} else if (Free.any()) {
// Second choice: any free register. TODO: After explicit
// affinity is considered, is there a strategy better than just
// picking the lowest-numbered available register?
int32_t RegNum = Free.find_first();
Cur->setRegNumTmp(RegNum);
if (Verbose) {
Str << "Allocating ";
dumpLiveRange(Cur, Func);
Str << "\n";
}
assert(RegUses[RegNum] >= 0);
++RegUses[RegNum];
Active.push_back(Cur);
} else {
// Fallback: there are no free registers, so we look for the
// lowest-weight register and see if Cur has higher weight.
// Check Active ranges.
for (const Variable *Item : Active) {
assert(Item->rangeOverlaps(Cur));
int32_t RegNum = Item->getRegNumTmp();
assert(Item->hasRegTmp());
Weights[RegNum].addWeight(Item->getLiveRange().getWeight());
}
// Same as above, but check Inactive ranges instead of Active.
for (const Variable *Item : Inactive) {
int32_t RegNum = Item->getRegNumTmp();
assert(Item->hasRegTmp());
if (Item->rangeOverlaps(Cur))
Weights[RegNum].addWeight(Item->getLiveRange().getWeight());
}
// All the weights are now calculated. Find the register with
// smallest weight.
int32_t MinWeightIndex = RegMask.find_first();
// MinWeightIndex must be valid because of the initial
// RegMask.any() test.
assert(MinWeightIndex >= 0);
for (SizeT i = MinWeightIndex + 1; i < Weights.size(); ++i) {
if (RegMask[i] && Weights[i] < Weights[MinWeightIndex])
MinWeightIndex = i;
}
if (Cur->getLiveRange().getWeight() <= Weights[MinWeightIndex]) {
// Cur doesn't have priority over any other live ranges, so
// don't allocate any register to it, and move it to the
// Handled state.
Handled.push_back(Cur);
if (Cur->getLiveRange().getWeight().isInf()) {
Func->setError("Unable to find a physical register for an "
"infinite-weight live range");
}
} else {
// Evict all live ranges in Active that register number
// MinWeightIndex is assigned to.
for (auto I = Active.begin(), E = Active.end(); I != E; I = Next) {
Next = I;
++Next;
Variable *Item = *I;
if (Item->getRegNumTmp() == MinWeightIndex) {
if (Verbose) {
Str << "Evicting ";
dumpLiveRange(Item, Func);
Str << "\n";
}
--RegUses[MinWeightIndex];
assert(RegUses[MinWeightIndex] >= 0);
Item->setRegNumTmp(Variable::NoRegister);
Handled.splice(Handled.end(), Active, I);
}
}
// Do the same for Inactive.
for (auto I = Inactive.begin(), E = Inactive.end(); I != E; I = Next) {
Next = I;
++Next;
Variable *Item = *I;
// Note: The Item->rangeOverlaps(Cur) clause is not part of the
// description of AssignMemLoc() in the original paper. But
// there doesn't seem to be any need to evict an inactive
// live range that doesn't overlap with the live range
// currently being considered. It's especially bad if we
// would end up evicting an infinite-weight but
// currently-inactive live range. The most common situation
// for this would be a scratch register kill set for call
// instructions.
if (Item->getRegNumTmp() == MinWeightIndex &&
Item->rangeOverlaps(Cur)) {
if (Verbose) {
Str << "Evicting ";
dumpLiveRange(Item, Func);
Str << "\n";
}
Item->setRegNumTmp(Variable::NoRegister);
Handled.splice(Handled.end(), Inactive, I);
}
}
// Assign the register to Cur.
Cur->setRegNumTmp(MinWeightIndex);
assert(RegUses[MinWeightIndex] >= 0);
++RegUses[MinWeightIndex];
Active.push_back(Cur);
if (Verbose) {
Str << "Allocating ";
dumpLiveRange(Cur, Func);
Str << "\n";
}
}
}
dump(Func);
}
// Move anything Active or Inactive to Handled for easier handling.
for (Variable *I : Active)
Handled.push_back(I);
Active.clear();
for (Variable *I : Inactive)
Handled.push_back(I);
Inactive.clear();
dump(Func);
// Finish up by assigning RegNumTmp->RegNum for each Variable.
for (Variable *Item : Handled) {
int32_t RegNum = Item->getRegNumTmp();
if (Verbose) {
if (!Item->hasRegTmp()) {
Str << "Not assigning ";
Item->dump(Func);
Str << "\n";
} else {
Str << (RegNum == Item->getRegNum() ? "Reassigning " : "Assigning ")
<< Func->getTarget()->getRegName(RegNum, IceType_i32) << "(r"
<< RegNum << ") to ";
Item->dump(Func);
Str << "\n";
}
}
Item->setRegNum(Item->getRegNumTmp());
}
// TODO: Consider running register allocation one more time, with
// infinite registers, for two reasons. First, evicted live ranges
// get a second chance for a register. Second, it allows coalescing
// of stack slots. If there is no time budget for the second
// register allocation run, each unallocated variable just gets its
// own slot.
//
// Another idea for coalescing stack slots is to initialize the
// Unhandled list with just the unallocated variables, saving time
// but not offering second-chance opportunities.
}
// ======================== Dump routines ======================== //
void LinearScan::dump(Cfg *Func) const {
Ostream &Str = Func->getContext()->getStrDump();
if (!Func->getContext()->isVerbose(IceV_LinearScan))
return;
Func->resetCurrentNode();
Str << "**** Current regalloc state:\n";
Str << "++++++ Handled:\n";
for (const Variable *Item : Handled) {
dumpLiveRange(Item, Func);
Str << "\n";
}
Str << "++++++ Unhandled:\n";
for (auto I = Unhandled.rbegin(), E = Unhandled.rend(); I != E; ++I) {
dumpLiveRange(*I, Func);
Str << "\n";
}
Str << "++++++ Active:\n";
for (const Variable *Item : Active) {
dumpLiveRange(Item, Func);
Str << "\n";
}
Str << "++++++ Inactive:\n";
for (const Variable *Item : Inactive) {
dumpLiveRange(Item, Func);
Str << "\n";
}
}
} // end of namespace Ice