blob: d3cd9bf873d9c34d2a520aa001853f1e4c12ee38 [file] [log] [blame]
//===- subzero/src/assembler.h - Integrated assembler -----------*- C++ -*-===//
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
//
// Modified by the Subzero authors.
//
//===----------------------------------------------------------------------===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the Assembler base class. Instructions are assembled
// by architecture-specific assemblers that derive from this base class.
// This base class manages buffers and fixups for emitting code, etc.
//
//===----------------------------------------------------------------------===//
#ifndef SUBZERO_SRC_ASSEMBLER_H
#define SUBZERO_SRC_ASSEMBLER_H
#include "IceDefs.h"
#include "IceFixups.h"
#include "llvm/Support/Allocator.h"
namespace Ice {
// Forward declarations.
class Assembler;
class AssemblerFixup;
class AssemblerBuffer;
class ConstantRelocatable;
class MemoryRegion;
// Assembler fixups are positions in generated code that hold relocation
// information that needs to be processed before finalizing the code
// into executable memory.
class AssemblerFixup {
AssemblerFixup(const AssemblerFixup &) = delete;
AssemblerFixup &operator=(const AssemblerFixup &) = delete;
public:
virtual void Process(const MemoryRegion &region, intptr_t position) = 0;
// It would be ideal if the destructor method could be made private,
// but the g++ compiler complains when this is subclassed.
virtual ~AssemblerFixup() { llvm_unreachable("~AssemblerFixup used"); }
intptr_t position() const { return position_; }
FixupKind kind() const { return kind_; }
const ConstantRelocatable *value() const { return value_; }
protected:
AssemblerFixup(FixupKind Kind, const ConstantRelocatable *Value)
: position_(0), kind_(Kind), value_(Value) {}
private:
intptr_t position_;
FixupKind kind_;
const ConstantRelocatable *value_;
void set_position(intptr_t position) { position_ = position; }
friend class AssemblerBuffer;
};
// Assembler buffers are used to emit binary code. They grow on demand.
class AssemblerBuffer {
AssemblerBuffer(const AssemblerBuffer &) = delete;
AssemblerBuffer &operator=(const AssemblerBuffer &) = delete;
public:
AssemblerBuffer(Assembler &);
~AssemblerBuffer();
// Basic support for emitting, loading, and storing.
template <typename T> void Emit(T value) {
assert(HasEnsuredCapacity());
*reinterpret_cast<T *>(cursor_) = value;
cursor_ += sizeof(T);
}
template <typename T> T Load(intptr_t position) const {
assert(position >= 0 &&
position <= (Size() - static_cast<intptr_t>(sizeof(T))));
return *reinterpret_cast<T *>(contents_ + position);
}
template <typename T> void Store(intptr_t position, T value) {
assert(position >= 0 &&
position <= (Size() - static_cast<intptr_t>(sizeof(T))));
*reinterpret_cast<T *>(contents_ + position) = value;
}
// Emit a fixup at the current location.
void EmitFixup(AssemblerFixup *fixup) {
fixup->set_position(Size());
fixups_.push_back(fixup);
}
// Get the size of the emitted code.
intptr_t Size() const { return cursor_ - contents_; }
uintptr_t contents() const { return contents_; }
// Copy the assembled instructions into the specified memory block
// and apply all fixups.
// TODO(jvoung): This will be different. We'll be writing the text
// and reloc section to a file?
void FinalizeInstructions(const MemoryRegion &region);
// To emit an instruction to the assembler buffer, the EnsureCapacity helper
// must be used to guarantee that the underlying data area is big enough to
// hold the emitted instruction. Usage:
//
// AssemblerBuffer buffer;
// AssemblerBuffer::EnsureCapacity ensured(&buffer);
// ... emit bytes for single instruction ...
#ifndef NDEBUG
class EnsureCapacity {
EnsureCapacity(const EnsureCapacity &) = delete;
EnsureCapacity &operator=(const EnsureCapacity &) = delete;
public:
explicit EnsureCapacity(AssemblerBuffer *buffer);
~EnsureCapacity();
private:
AssemblerBuffer *buffer_;
intptr_t gap_;
intptr_t ComputeGap() { return buffer_->Capacity() - buffer_->Size(); }
};
bool has_ensured_capacity_;
bool HasEnsuredCapacity() const { return has_ensured_capacity_; }
#else // NDEBUG
class EnsureCapacity {
EnsureCapacity(const EnsureCapacity &) = delete;
EnsureCapacity &operator=(const EnsureCapacity &) = delete;
public:
explicit EnsureCapacity(AssemblerBuffer *buffer) {
if (buffer->cursor() >= buffer->limit())
buffer->ExtendCapacity();
}
};
// When building the C++ tests, assertion code is enabled. To allow
// asserting that the user of the assembler buffer has ensured the
// capacity needed for emitting, we add a dummy method in non-debug mode.
bool HasEnsuredCapacity() const { return true; }
#endif // NDEBUG
// Returns the position in the instruction stream.
intptr_t GetPosition() const { return cursor_ - contents_; }
// For bringup only.
AssemblerFixup *GetLatestFixup() const;
private:
// The limit is set to kMinimumGap bytes before the end of the data area.
// This leaves enough space for the longest possible instruction and allows
// for a single, fast space check per instruction.
static const intptr_t kMinimumGap = 32;
uintptr_t contents_;
uintptr_t cursor_;
uintptr_t limit_;
Assembler &assembler_;
std::vector<AssemblerFixup *> fixups_;
#ifndef NDEBUG
bool fixups_processed_;
#endif // !NDEBUG
uintptr_t cursor() const { return cursor_; }
uintptr_t limit() const { return limit_; }
intptr_t Capacity() const {
assert(limit_ >= contents_);
return (limit_ - contents_) + kMinimumGap;
}
// Process the fixup chain.
void ProcessFixups(const MemoryRegion &region);
// Compute the limit based on the data area and the capacity. See
// description of kMinimumGap for the reasoning behind the value.
static uintptr_t ComputeLimit(uintptr_t data, intptr_t capacity) {
return data + capacity - kMinimumGap;
}
void ExtendCapacity();
friend class AssemblerFixup;
};
class Assembler {
Assembler(const Assembler &) = delete;
Assembler &operator=(const Assembler &) = delete;
public:
Assembler() {}
virtual ~Assembler() {}
// Allocate a chunk of bytes using the per-Assembler allocator.
uintptr_t AllocateBytes(size_t bytes) {
// For now, alignment is not related to NaCl bundle alignment, since
// the buffer's GetPosition is relative to the base. So NaCl bundle
// alignment checks can be relative to that base. Later, the buffer
// will be copied out to a ".text" section (or an in memory-buffer
// that can be mprotect'ed with executable permission), and that
// second buffer should be aligned for NaCl.
const size_t Alignment = 16;
return reinterpret_cast<uintptr_t>(Allocator.Allocate(bytes, Alignment));
}
// Allocate data of type T using the per-Assembler allocator.
template <typename T> T *Allocate() { return Allocator.Allocate<T>(); }
virtual void BindCfgNodeLabel(SizeT NodeNumber) = 0;
private:
llvm::BumpPtrAllocator Allocator;
};
} // end of namespace Ice
#endif // SUBZERO_SRC_ASSEMBLER_H_