blob: 95069f06adbb09065b31039af4be247fc092b09c [file] [log] [blame]
// SwiftShader Software Renderer
//
// Copyright(c) 2005-2013 TransGaming Inc.
//
// All rights reserved. No part of this software may be copied, distributed, transmitted,
// transcribed, stored in a retrieval system, translated into any human or computer
// language by any means, or disclosed to third parties without the explicit written
// agreement of TransGaming Inc. Without such an agreement, no rights or licenses, express
// or implied, including but not limited to any patent rights, are granted to you.
//
#include "OutputASM.h"
#include "common/debug.h"
#include "InfoSink.h"
#include "libGLESv2/Shader.h"
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <GLES3/gl3.h>
namespace glsl
{
// Integer to TString conversion
TString str(int i)
{
char buffer[20];
sprintf(buffer, "%d", i);
return buffer;
}
class Temporary : public TIntermSymbol
{
public:
Temporary(OutputASM *assembler) : TIntermSymbol(TSymbolTableLevel::nextUniqueId(), "tmp", TType(EbtFloat, EbpHigh, EvqTemporary, 4, 1, false)), assembler(assembler)
{
}
~Temporary()
{
assembler->freeTemporary(this);
}
private:
OutputASM *const assembler;
};
class Constant : public TIntermConstantUnion
{
public:
Constant(float x, float y, float z, float w) : TIntermConstantUnion(constants, TType(EbtFloat, EbpHigh, EvqConstExpr, 4, 1, false))
{
constants[0].setFConst(x);
constants[1].setFConst(y);
constants[2].setFConst(z);
constants[3].setFConst(w);
}
Constant(bool b) : TIntermConstantUnion(constants, TType(EbtBool, EbpHigh, EvqConstExpr, 1, 1, false))
{
constants[0].setBConst(b);
}
Constant(int i) : TIntermConstantUnion(constants, TType(EbtInt, EbpHigh, EvqConstExpr, 1, 1, false))
{
constants[0].setIConst(i);
}
~Constant()
{
}
private:
ConstantUnion constants[4];
};
Uniform::Uniform(GLenum type, GLenum precision, const std::string &name, int arraySize, int registerIndex, int offset, int blockId) :
type(type), precision(precision), name(name), arraySize(arraySize), registerIndex(registerIndex), offset(offset), blockId(blockId)
{
}
UniformBlock::UniformBlock(const std::string& name, const std::string& instanceName, unsigned int dataSize, unsigned int arraySize,
TLayoutBlockStorage layout, bool isRowMajorLayout, int registerIndex, int blockId) :
name(name), instanceName(instanceName), dataSize(dataSize), arraySize(arraySize), layout(layout),
isRowMajorLayout(isRowMajorLayout), registerIndex(registerIndex), blockId(blockId)
{
}
Attribute::Attribute()
{
type = GL_NONE;
arraySize = 0;
registerIndex = 0;
}
Attribute::Attribute(GLenum type, const std::string &name, int arraySize, int location, int registerIndex)
{
this->type = type;
this->name = name;
this->arraySize = arraySize;
this->location = location;
this->registerIndex = registerIndex;
}
sw::PixelShader *Shader::getPixelShader() const
{
return 0;
}
sw::VertexShader *Shader::getVertexShader() const
{
return 0;
}
OutputASM::TextureFunction::TextureFunction(const TString& nodeName) : method(IMPLICIT), proj(false), offset(false)
{
TString name = TFunction::unmangleName(nodeName);
if(name == "texture2D" || name == "textureCube" || name == "texture" || name == "texture3D")
{
method = IMPLICIT;
}
else if(name == "texture2DProj" || name == "textureProj")
{
method = IMPLICIT;
proj = true;
}
else if(name == "texture2DLod" || name == "textureCubeLod" || name == "textureLod")
{
method = LOD;
}
else if(name == "texture2DProjLod" || name == "textureProjLod")
{
method = LOD;
proj = true;
}
else if(name == "textureSize")
{
method = SIZE;
}
else if(name == "textureOffset")
{
method = IMPLICIT;
offset = true;
}
else if(name == "textureProjOffset")
{
method = IMPLICIT;
offset = true;
proj = true;
}
else if(name == "textureLodOffset")
{
method = LOD;
offset = true;
}
else if(name == "textureProjLodOffset")
{
method = LOD;
proj = true;
offset = true;
}
else if(name == "texelFetch")
{
method = FETCH;
}
else if(name == "texelFetchOffset")
{
method = FETCH;
offset = true;
}
else if(name == "textureGrad")
{
method = GRAD;
}
else if(name == "textureGradOffset")
{
method = GRAD;
offset = true;
}
else if(name == "textureProjGrad")
{
method = GRAD;
proj = true;
}
else if(name == "textureProjGradOffset")
{
method = GRAD;
proj = true;
offset = true;
}
else UNREACHABLE(0);
}
OutputASM::OutputASM(TParseContext &context, Shader *shaderObject) : TIntermTraverser(true, true, true), shaderObject(shaderObject), mContext(context)
{
shader = 0;
pixelShader = 0;
vertexShader = 0;
if(shaderObject)
{
shader = shaderObject->getShader();
pixelShader = shaderObject->getPixelShader();
vertexShader = shaderObject->getVertexShader();
}
functionArray.push_back(Function(0, "main(", 0, 0));
currentFunction = 0;
outputQualifier = EvqOutput; // Set outputQualifier to any value other than EvqFragColor or EvqFragData
}
OutputASM::~OutputASM()
{
}
void OutputASM::output()
{
if(shader)
{
emitShader(GLOBAL);
if(functionArray.size() > 1) // Only call main() when there are other functions
{
Instruction *callMain = emit(sw::Shader::OPCODE_CALL);
callMain->dst.type = sw::Shader::PARAMETER_LABEL;
callMain->dst.index = 0; // main()
emit(sw::Shader::OPCODE_RET);
}
emitShader(FUNCTION);
}
}
void OutputASM::emitShader(Scope scope)
{
emitScope = scope;
currentScope = GLOBAL;
mContext.getTreeRoot()->traverse(this);
}
void OutputASM::freeTemporary(Temporary *temporary)
{
free(temporaries, temporary);
}
sw::Shader::Opcode OutputASM::getOpcode(sw::Shader::Opcode op, TIntermTyped *in) const
{
TBasicType baseType = in->getType().getBasicType();
switch(op)
{
case sw::Shader::OPCODE_NEG:
switch(baseType)
{
case EbtInt:
case EbtUInt:
return sw::Shader::OPCODE_INEG;
case EbtFloat:
default:
return op;
}
case sw::Shader::OPCODE_ADD:
switch(baseType)
{
case EbtInt:
case EbtUInt:
return sw::Shader::OPCODE_IADD;
case EbtFloat:
default:
return op;
}
case sw::Shader::OPCODE_SUB:
switch(baseType)
{
case EbtInt:
case EbtUInt:
return sw::Shader::OPCODE_ISUB;
case EbtFloat:
default:
return op;
}
case sw::Shader::OPCODE_MUL:
switch(baseType)
{
case EbtInt:
case EbtUInt:
return sw::Shader::OPCODE_IMUL;
case EbtFloat:
default:
return op;
}
case sw::Shader::OPCODE_DIV:
switch(baseType)
{
case EbtInt:
return sw::Shader::OPCODE_IDIV;
case EbtUInt:
return sw::Shader::OPCODE_UDIV;
case EbtFloat:
default:
return op;
}
case sw::Shader::OPCODE_IMOD:
return baseType == EbtUInt ? sw::Shader::OPCODE_UMOD : op;
case sw::Shader::OPCODE_ISHR:
return baseType == EbtUInt ? sw::Shader::OPCODE_USHR : op;
case sw::Shader::OPCODE_MIN:
switch(baseType)
{
case EbtInt:
return sw::Shader::OPCODE_IMIN;
case EbtUInt:
return sw::Shader::OPCODE_UMIN;
case EbtFloat:
default:
return op;
}
case sw::Shader::OPCODE_MAX:
switch(baseType)
{
case EbtInt:
return sw::Shader::OPCODE_IMAX;
case EbtUInt:
return sw::Shader::OPCODE_UMAX;
case EbtFloat:
default:
return op;
}
default:
return op;
}
}
void OutputASM::visitSymbol(TIntermSymbol *symbol)
{
// Vertex varyings don't have to be actively used to successfully link
// against pixel shaders that use them. So make sure they're declared.
if(symbol->getQualifier() == EvqVaryingOut || symbol->getQualifier() == EvqInvariantVaryingOut || symbol->getQualifier() == EvqVertexOut)
{
if(symbol->getBasicType() != EbtInvariant) // Typeless declarations are not new varyings
{
declareVarying(symbol, -1);
}
}
}
bool OutputASM::visitBinary(Visit visit, TIntermBinary *node)
{
if(currentScope != emitScope)
{
return false;
}
TIntermTyped *result = node;
TIntermTyped *left = node->getLeft();
TIntermTyped *right = node->getRight();
const TType &leftType = left->getType();
const TType &rightType = right->getType();
const TType &resultType = node->getType();
switch(node->getOp())
{
case EOpAssign:
if(visit == PostVisit)
{
assignLvalue(left, right);
copy(result, right);
}
break;
case EOpInitialize:
if(visit == PostVisit)
{
copy(left, right);
}
break;
case EOpMatrixTimesScalarAssign:
if(visit == PostVisit)
{
for(int i = 0; i < leftType.getNominalSize(); i++)
{
Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, left, right);
mul->dst.index += i;
argument(mul->src[0], left, i);
}
assignLvalue(left, result);
}
break;
case EOpVectorTimesMatrixAssign:
if(visit == PostVisit)
{
int size = leftType.getNominalSize();
for(int i = 0; i < size; i++)
{
Instruction *dot = emit(sw::Shader::OPCODE_DP(size), result, left, right);
dot->dst.mask = 1 << i;
argument(dot->src[1], right, i);
}
assignLvalue(left, result);
}
break;
case EOpMatrixTimesMatrixAssign:
if(visit == PostVisit)
{
int dim = leftType.getNominalSize();
for(int i = 0; i < dim; i++)
{
Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, left, right);
mul->dst.index += i;
argument(mul->src[1], right, i);
mul->src[1].swizzle = 0x00;
for(int j = 1; j < dim; j++)
{
Instruction *mad = emit(sw::Shader::OPCODE_MAD, result, left, right, result);
mad->dst.index += i;
argument(mad->src[0], left, j);
argument(mad->src[1], right, i);
mad->src[1].swizzle = j * 0x55;
argument(mad->src[2], result, i);
}
}
assignLvalue(left, result);
}
break;
case EOpIndexDirect:
if(visit == PostVisit)
{
int index = right->getAsConstantUnion()->getIConst(0);
if(result->isMatrix() || result->isStruct())
{
ASSERT(left->isArray());
copy(result, left, index * left->elementRegisterCount());
}
else if(result->isRegister())
{
Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, left);
if(left->isRegister())
{
mov->src[0].swizzle = index;
}
else if(left->isArray())
{
argument(mov->src[0], left, index * left->elementRegisterCount());
}
else if(left->isMatrix())
{
ASSERT(index < left->getNominalSize()); // FIXME: Report semantic error
argument(mov->src[0], left, index);
}
else UNREACHABLE(0);
}
else UNREACHABLE(0);
}
break;
case EOpIndexIndirect:
if(visit == PostVisit)
{
if(left->isArray() || left->isMatrix())
{
for(int index = 0; index < result->totalRegisterCount(); index++)
{
Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, left);
mov->dst.index += index;
mov->dst.mask = writeMask(result, index);
argument(mov->src[0], left, index);
if(left->totalRegisterCount() > 1)
{
sw::Shader::SourceParameter relativeRegister;
argument(relativeRegister, right);
mov->src[0].rel.type = relativeRegister.type;
mov->src[0].rel.index = relativeRegister.index;
mov->src[0].rel.scale = result->totalRegisterCount();
mov->src[0].rel.deterministic = !(vertexShader && left->getQualifier() == EvqUniform);
}
}
}
else if(left->isRegister())
{
emit(sw::Shader::OPCODE_EXTRACT, result, left, right);
}
else UNREACHABLE(0);
}
break;
case EOpIndexDirectStruct:
case EOpIndexDirectInterfaceBlock:
if(visit == PostVisit)
{
ASSERT(leftType.isStruct() || (leftType.isInterfaceBlock()));
const TFieldList& fields = (node->getOp() == EOpIndexDirectStruct) ?
leftType.getStruct()->fields() :
leftType.getInterfaceBlock()->fields();
int index = right->getAsConstantUnion()->getIConst(0);
int fieldOffset = 0;
for(int i = 0; i < index; i++)
{
fieldOffset += fields[i]->type()->totalRegisterCount();
}
copy(result, left, fieldOffset);
}
break;
case EOpVectorSwizzle:
if(visit == PostVisit)
{
int swizzle = 0;
TIntermAggregate *components = right->getAsAggregate();
if(components)
{
TIntermSequence &sequence = components->getSequence();
int component = 0;
for(TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); sit++)
{
TIntermConstantUnion *element = (*sit)->getAsConstantUnion();
if(element)
{
int i = element->getUnionArrayPointer()[0].getIConst();
swizzle |= i << (component * 2);
component++;
}
else UNREACHABLE(0);
}
}
else UNREACHABLE(0);
Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, left);
mov->src[0].swizzle = swizzle;
}
break;
case EOpAddAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_ADD, result), result, left, left, right); break;
case EOpAdd: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_ADD, result), result, left, right); break;
case EOpSubAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_SUB, result), result, left, left, right); break;
case EOpSub: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_SUB, result), result, left, right); break;
case EOpMulAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_MUL, result), result, left, left, right); break;
case EOpMul: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_MUL, result), result, left, right); break;
case EOpDivAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_DIV, result), result, left, left, right); break;
case EOpDiv: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_DIV, result), result, left, right); break;
case EOpIModAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_IMOD, result), result, left, left, right); break;
case EOpIMod: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_IMOD, result), result, left, right); break;
case EOpBitShiftLeftAssign: if(visit == PostVisit) emitAssign(sw::Shader::OPCODE_SHL, result, left, left, right); break;
case EOpBitShiftLeft: if(visit == PostVisit) emitBinary(sw::Shader::OPCODE_SHL, result, left, right); break;
case EOpBitShiftRightAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_ISHR, result), result, left, left, right); break;
case EOpBitShiftRight: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_ISHR, result), result, left, right); break;
case EOpBitwiseAndAssign: if(visit == PostVisit) emitAssign(sw::Shader::OPCODE_AND, result, left, left, right); break;
case EOpBitwiseAnd: if(visit == PostVisit) emitBinary(sw::Shader::OPCODE_AND, result, left, right); break;
case EOpBitwiseXorAssign: if(visit == PostVisit) emitAssign(sw::Shader::OPCODE_XOR, result, left, left, right); break;
case EOpBitwiseXor: if(visit == PostVisit) emitBinary(sw::Shader::OPCODE_XOR, result, left, right); break;
case EOpBitwiseOrAssign: if(visit == PostVisit) emitAssign(sw::Shader::OPCODE_OR, result, left, left, right); break;
case EOpBitwiseOr: if(visit == PostVisit) emitBinary(sw::Shader::OPCODE_OR, result, left, right); break;
case EOpEqual:
if(visit == PostVisit)
{
emitBinary(sw::Shader::OPCODE_EQ, result, left, right);
for(int index = 1; index < left->totalRegisterCount(); index++)
{
Temporary equal(this);
Instruction *eq = emit(sw::Shader::OPCODE_EQ, &equal, left, right);
argument(eq->src[0], left, index);
argument(eq->src[1], right, index);
emit(sw::Shader::OPCODE_AND, result, result, &equal);
}
}
break;
case EOpNotEqual:
if(visit == PostVisit)
{
emitBinary(sw::Shader::OPCODE_NE, result, left, right);
for(int index = 1; index < left->totalRegisterCount(); index++)
{
Temporary notEqual(this);
Instruction *eq = emit(sw::Shader::OPCODE_NE, &notEqual, left, right);
argument(eq->src[0], left, index);
argument(eq->src[1], right, index);
emit(sw::Shader::OPCODE_OR, result, result, &notEqual);
}
}
break;
case EOpLessThan: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_LT, result, left, right); break;
case EOpGreaterThan: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_GT, result, left, right); break;
case EOpLessThanEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_LE, result, left, right); break;
case EOpGreaterThanEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_GE, result, left, right); break;
case EOpVectorTimesScalarAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_MUL, left), result, left, left, right); break;
case EOpVectorTimesScalar: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_MUL, left), result, left, right); break;
case EOpMatrixTimesScalar:
if(visit == PostVisit)
{
for(int i = 0; i < leftType.getNominalSize(); i++)
{
Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, left, right);
mul->dst.index += i;
argument(mul->src[0], left, i);
}
}
break;
case EOpVectorTimesMatrix:
if(visit == PostVisit)
{
sw::Shader::Opcode dpOpcode = sw::Shader::OPCODE_DP(leftType.getNominalSize());
int size = rightType.getNominalSize();
for(int i = 0; i < size; i++)
{
Instruction *dot = emit(dpOpcode, result, left, right);
dot->dst.mask = 1 << i;
argument(dot->src[1], right, i);
}
}
break;
case EOpMatrixTimesVector:
if(visit == PostVisit)
{
Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, left, right);
mul->src[1].swizzle = 0x00;
int size = rightType.getNominalSize();
for(int i = 1; i < size; i++)
{
Instruction *mad = emit(sw::Shader::OPCODE_MAD, result, left, right, result);
argument(mad->src[0], left, i);
mad->src[1].swizzle = i * 0x55;
}
}
break;
case EOpMatrixTimesMatrix:
if(visit == PostVisit)
{
int dim = leftType.getNominalSize();
int size = rightType.getNominalSize();
for(int i = 0; i < size; i++)
{
Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, left, right);
mul->dst.index += i;
argument(mul->src[1], right, i);
mul->src[1].swizzle = 0x00;
for(int j = 1; j < dim; j++)
{
Instruction *mad = emit(sw::Shader::OPCODE_MAD, result, left, right, result);
mad->dst.index += i;
argument(mad->src[0], left, j);
argument(mad->src[1], right, i);
mad->src[1].swizzle = j * 0x55;
argument(mad->src[2], result, i);
}
}
}
break;
case EOpLogicalOr:
if(trivial(right, 6))
{
if(visit == PostVisit)
{
emit(sw::Shader::OPCODE_OR, result, left, right);
}
}
else // Short-circuit evaluation
{
if(visit == InVisit)
{
emit(sw::Shader::OPCODE_MOV, result, left);
Instruction *ifnot = emit(sw::Shader::OPCODE_IF, 0, result);
ifnot->src[0].modifier = sw::Shader::MODIFIER_NOT;
}
else if(visit == PostVisit)
{
emit(sw::Shader::OPCODE_MOV, result, right);
emit(sw::Shader::OPCODE_ENDIF);
}
}
break;
case EOpLogicalXor: if(visit == PostVisit) emit(sw::Shader::OPCODE_XOR, result, left, right); break;
case EOpLogicalAnd:
if(trivial(right, 6))
{
if(visit == PostVisit)
{
emit(sw::Shader::OPCODE_AND, result, left, right);
}
}
else // Short-circuit evaluation
{
if(visit == InVisit)
{
emit(sw::Shader::OPCODE_MOV, result, left);
emit(sw::Shader::OPCODE_IF, 0, result);
}
else if(visit == PostVisit)
{
emit(sw::Shader::OPCODE_MOV, result, right);
emit(sw::Shader::OPCODE_ENDIF);
}
}
break;
default: UNREACHABLE(node->getOp());
}
return true;
}
void OutputASM::emitDeterminant(TIntermTyped *result, TIntermTyped *arg, int size, int col, int row, int outCol, int outRow)
{
switch(size)
{
case 1: // Used for cofactor computation only
{
// For a 2x2 matrix, the cofactor is simply a transposed move or negate
bool isMov = (row == col);
sw::Shader::Opcode op = isMov ? sw::Shader::OPCODE_MOV : sw::Shader::OPCODE_NEG;
Instruction *mov = emit(op, result, arg);
mov->src[0].index += isMov ? 1 - row : row;
mov->src[0].swizzle = 0x55 * (isMov ? 1 - col : col);
mov->dst.index += outCol;
mov->dst.mask = 1 << outRow;
}
break;
case 2:
{
static const unsigned int swizzle[3] = { 0x99, 0x88, 0x44 }; // xy?? : yzyz, xzxz, xyxy
bool isCofactor = (col >= 0) && (row >= 0);
int col0 = (isCofactor && (col <= 0)) ? 1 : 0;
int col1 = (isCofactor && (col <= 1)) ? 2 : 1;
bool negate = isCofactor && ((col & 0x01) ^ (row & 0x01));
Instruction *det = emit(sw::Shader::OPCODE_DET2, result, arg, arg);
det->src[0].index += negate ? col1 : col0;
det->src[1].index += negate ? col0 : col1;
det->src[0].swizzle = det->src[1].swizzle = swizzle[isCofactor ? row : 2];
det->dst.index += outCol;
det->dst.mask = 1 << outRow;
}
break;
case 3:
{
static const unsigned int swizzle[4] = { 0xF9, 0xF8, 0xF4, 0xE4 }; // xyz? : yzww, xzww, xyww, xyzw
bool isCofactor = (col >= 0) && (row >= 0);
int col0 = (isCofactor && (col <= 0)) ? 1 : 0;
int col1 = (isCofactor && (col <= 1)) ? 2 : 1;
int col2 = (isCofactor && (col <= 2)) ? 3 : 2;
bool negate = isCofactor && ((col & 0x01) ^ (row & 0x01));
Instruction *det = emit(sw::Shader::OPCODE_DET3, result, arg, arg, arg);
det->src[0].index += col0;
det->src[1].index += negate ? col2 : col1;
det->src[2].index += negate ? col1 : col2;
det->src[0].swizzle = det->src[1].swizzle = det->src[2].swizzle = swizzle[isCofactor ? row : 3];
det->dst.index += outCol;
det->dst.mask = 1 << outRow;
}
break;
case 4:
{
Instruction *det = emit(sw::Shader::OPCODE_DET4, result, arg, arg, arg, arg);
det->src[1].index += 1;
det->src[2].index += 2;
det->src[3].index += 3;
det->dst.index += outCol;
det->dst.mask = 1 << outRow;
}
break;
default:
UNREACHABLE(size);
break;
}
}
bool OutputASM::visitUnary(Visit visit, TIntermUnary *node)
{
if(currentScope != emitScope)
{
return false;
}
TIntermTyped *result = node;
TIntermTyped *arg = node->getOperand();
TBasicType basicType = arg->getType().getBasicType();
union
{
float f;
int i;
} one_value;
if(basicType == EbtInt || basicType == EbtUInt)
{
one_value.i = 1;
}
else
{
one_value.f = 1.0f;
}
Constant one(one_value.f, one_value.f, one_value.f, one_value.f);
Constant rad(1.74532925e-2f, 1.74532925e-2f, 1.74532925e-2f, 1.74532925e-2f);
Constant deg(5.72957795e+1f, 5.72957795e+1f, 5.72957795e+1f, 5.72957795e+1f);
switch(node->getOp())
{
case EOpNegative:
if(visit == PostVisit)
{
sw::Shader::Opcode negOpcode = getOpcode(sw::Shader::OPCODE_NEG, arg);
for(int index = 0; index < arg->totalRegisterCount(); index++)
{
Instruction *neg = emit(negOpcode, result, arg);
neg->dst.index += index;
argument(neg->src[0], arg, index);
}
}
break;
case EOpVectorLogicalNot: if(visit == PostVisit) emit(sw::Shader::OPCODE_NOT, result, arg); break;
case EOpLogicalNot: if(visit == PostVisit) emit(sw::Shader::OPCODE_NOT, result, arg); break;
case EOpPostIncrement:
if(visit == PostVisit)
{
copy(result, arg);
sw::Shader::Opcode addOpcode = getOpcode(sw::Shader::OPCODE_ADD, arg);
for(int index = 0; index < arg->totalRegisterCount(); index++)
{
Instruction *add = emit(addOpcode, arg, arg, &one);
add->dst.index += index;
argument(add->src[0], arg, index);
}
assignLvalue(arg, arg);
}
break;
case EOpPostDecrement:
if(visit == PostVisit)
{
copy(result, arg);
sw::Shader::Opcode subOpcode = getOpcode(sw::Shader::OPCODE_SUB, arg);
for(int index = 0; index < arg->totalRegisterCount(); index++)
{
Instruction *sub = emit(subOpcode, arg, arg, &one);
sub->dst.index += index;
argument(sub->src[0], arg, index);
}
assignLvalue(arg, arg);
}
break;
case EOpPreIncrement:
if(visit == PostVisit)
{
sw::Shader::Opcode addOpcode = getOpcode(sw::Shader::OPCODE_ADD, arg);
for(int index = 0; index < arg->totalRegisterCount(); index++)
{
Instruction *add = emit(addOpcode, result, arg, &one);
add->dst.index += index;
argument(add->src[0], arg, index);
}
assignLvalue(arg, result);
}
break;
case EOpPreDecrement:
if(visit == PostVisit)
{
sw::Shader::Opcode subOpcode = getOpcode(sw::Shader::OPCODE_SUB, arg);
for(int index = 0; index < arg->totalRegisterCount(); index++)
{
Instruction *sub = emit(subOpcode, result, arg, &one);
sub->dst.index += index;
argument(sub->src[0], arg, index);
}
assignLvalue(arg, result);
}
break;
case EOpRadians: if(visit == PostVisit) emit(sw::Shader::OPCODE_MUL, result, arg, &rad); break;
case EOpDegrees: if(visit == PostVisit) emit(sw::Shader::OPCODE_MUL, result, arg, &deg); break;
case EOpSin: if(visit == PostVisit) emit(sw::Shader::OPCODE_SIN, result, arg); break;
case EOpCos: if(visit == PostVisit) emit(sw::Shader::OPCODE_COS, result, arg); break;
case EOpTan: if(visit == PostVisit) emit(sw::Shader::OPCODE_TAN, result, arg); break;
case EOpAsin: if(visit == PostVisit) emit(sw::Shader::OPCODE_ASIN, result, arg); break;
case EOpAcos: if(visit == PostVisit) emit(sw::Shader::OPCODE_ACOS, result, arg); break;
case EOpAtan: if(visit == PostVisit) emit(sw::Shader::OPCODE_ATAN, result, arg); break;
case EOpSinh: if(visit == PostVisit) emit(sw::Shader::OPCODE_SINH, result, arg); break;
case EOpCosh: if(visit == PostVisit) emit(sw::Shader::OPCODE_COSH, result, arg); break;
case EOpTanh: if(visit == PostVisit) emit(sw::Shader::OPCODE_TANH, result, arg); break;
case EOpAsinh: if(visit == PostVisit) emit(sw::Shader::OPCODE_ASINH, result, arg); break;
case EOpAcosh: if(visit == PostVisit) emit(sw::Shader::OPCODE_ACOSH, result, arg); break;
case EOpAtanh: if(visit == PostVisit) emit(sw::Shader::OPCODE_ATANH, result, arg); break;
case EOpExp: if(visit == PostVisit) emit(sw::Shader::OPCODE_EXP, result, arg); break;
case EOpLog: if(visit == PostVisit) emit(sw::Shader::OPCODE_LOG, result, arg); break;
case EOpExp2: if(visit == PostVisit) emit(sw::Shader::OPCODE_EXP2, result, arg); break;
case EOpLog2: if(visit == PostVisit) emit(sw::Shader::OPCODE_LOG2, result, arg); break;
case EOpSqrt: if(visit == PostVisit) emit(sw::Shader::OPCODE_SQRT, result, arg); break;
case EOpInverseSqrt: if(visit == PostVisit) emit(sw::Shader::OPCODE_RSQ, result, arg); break;
case EOpAbs: if(visit == PostVisit) emit(sw::Shader::OPCODE_ABS, result, arg); break;
case EOpSign: if(visit == PostVisit) emit(sw::Shader::OPCODE_SGN, result, arg); break;
case EOpFloor: if(visit == PostVisit) emit(sw::Shader::OPCODE_FLOOR, result, arg); break;
case EOpTrunc: if(visit == PostVisit) emit(sw::Shader::OPCODE_TRUNC, result, arg); break;
case EOpRound: if(visit == PostVisit) emit(sw::Shader::OPCODE_ROUND, result, arg); break;
case EOpRoundEven: if(visit == PostVisit) emit(sw::Shader::OPCODE_ROUNDEVEN, result, arg); break;
case EOpCeil: if(visit == PostVisit) emit(sw::Shader::OPCODE_CEIL, result, arg, result); break;
case EOpFract: if(visit == PostVisit) emit(sw::Shader::OPCODE_FRC, result, arg); break;
case EOpIsNan: if(visit == PostVisit) emit(sw::Shader::OPCODE_ISNAN, result, arg); break;
case EOpIsInf: if(visit == PostVisit) emit(sw::Shader::OPCODE_ISINF, result, arg); break;
case EOpLength: if(visit == PostVisit) emit(sw::Shader::OPCODE_LEN(dim(arg)), result, arg); break;
case EOpNormalize: if(visit == PostVisit) emit(sw::Shader::OPCODE_NRM(dim(arg)), result, arg); break;
case EOpDFdx: if(visit == PostVisit) emit(sw::Shader::OPCODE_DFDX, result, arg); break;
case EOpDFdy: if(visit == PostVisit) emit(sw::Shader::OPCODE_DFDY, result, arg); break;
case EOpFwidth: if(visit == PostVisit) emit(sw::Shader::OPCODE_FWIDTH, result, arg); break;
case EOpAny: if(visit == PostVisit) emit(sw::Shader::OPCODE_ANY, result, arg); break;
case EOpAll: if(visit == PostVisit) emit(sw::Shader::OPCODE_ALL, result, arg); break;
case EOpFloatBitsToInt: if(visit == PostVisit) emit(sw::Shader::OPCODE_FLOATBITSTOINT, result, arg); break;
case EOpFloatBitsToUint: if(visit == PostVisit) emit(sw::Shader::OPCODE_FLOATBITSTOUINT, result, arg); break;
case EOpIntBitsToFloat: if(visit == PostVisit) emit(sw::Shader::OPCODE_INTBITSTOFLOAT, result, arg); break;
case EOpUintBitsToFloat: if(visit == PostVisit) emit(sw::Shader::OPCODE_UINTBITSTOFLOAT, result, arg); break;
case EOpPackSnorm2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_PACKSNORM2x16, result, arg); break;
case EOpPackUnorm2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_PACKUNORM2x16, result, arg); break;
case EOpPackHalf2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_PACKHALF2x16, result, arg); break;
case EOpUnpackSnorm2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_UNPACKSNORM2x16, result, arg); break;
case EOpUnpackUnorm2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_UNPACKUNORM2x16, result, arg); break;
case EOpUnpackHalf2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_UNPACKHALF2x16, result, arg); break;
case EOpTranspose:
if(visit == PostVisit)
{
int numCols = arg->getNominalSize();
int numRows = arg->getSecondarySize();
for(int i = 0; i < numCols; ++i)
{
for(int j = 0; j < numRows; ++j)
{
Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, arg);
mov->src[0].index += i;
mov->src[0].swizzle = 0x55 * j;
mov->dst.index += j;
mov->dst.mask = 1 << i;
}
}
}
break;
case EOpDeterminant:
if(visit == PostVisit)
{
int size = arg->getNominalSize();
ASSERT(size == arg->getSecondarySize());
emitDeterminant(result, arg, size);
}
break;
case EOpInverse:
if(visit == PostVisit)
{
int size = arg->getNominalSize();
ASSERT(size == arg->getSecondarySize());
// Compute transposed matrix of cofactors
for(int i = 0; i < size; ++i)
{
for(int j = 0; j < size; ++j)
{
// For a 2x2 matrix, the cofactor is simply a transposed move or negate
// For a 3x3 or 4x4 matrix, the cofactor is a transposed determinant
emitDeterminant(result, arg, size - 1, j, i, i, j);
}
}
// Compute 1 / determinant
Temporary invDet(this);
emitDeterminant(&invDet, arg, size);
Constant one(1.0f, 1.0f, 1.0f, 1.0f);
Instruction *div = emit(sw::Shader::OPCODE_DIV, &invDet, &one, &invDet);
div->src[1].swizzle = 0x00; // xxxx
// Divide transposed matrix of cofactors by determinant
for(int i = 0; i < size; ++i)
{
Instruction *div = emit(sw::Shader::OPCODE_MUL, result, result, &invDet);
div->src[0].index += i;
div->dst.index += i;
}
}
break;
default: UNREACHABLE(node->getOp());
}
return true;
}
bool OutputASM::visitAggregate(Visit visit, TIntermAggregate *node)
{
if(currentScope != emitScope && node->getOp() != EOpFunction && node->getOp() != EOpSequence)
{
return false;
}
Constant zero(0.0f, 0.0f, 0.0f, 0.0f);
TIntermTyped *result = node;
const TType &resultType = node->getType();
TIntermSequence &arg = node->getSequence();
int argumentCount = arg.size();
switch(node->getOp())
{
case EOpSequence: break;
case EOpDeclaration: break;
case EOpPrototype: break;
case EOpComma:
if(visit == PostVisit)
{
copy(result, arg[1]);
}
break;
case EOpFunction:
if(visit == PreVisit)
{
const TString &name = node->getName();
if(emitScope == FUNCTION)
{
if(functionArray.size() > 1) // No need for a label when there's only main()
{
Instruction *label = emit(sw::Shader::OPCODE_LABEL);
label->dst.type = sw::Shader::PARAMETER_LABEL;
const Function *function = findFunction(name);
ASSERT(function); // Should have been added during global pass
label->dst.index = function->label;
currentFunction = function->label;
}
}
else if(emitScope == GLOBAL)
{
if(name != "main(")
{
TIntermSequence &arguments = node->getSequence()[0]->getAsAggregate()->getSequence();
functionArray.push_back(Function(functionArray.size(), name, &arguments, node));
}
}
else UNREACHABLE(emitScope);
currentScope = FUNCTION;
}
else if(visit == PostVisit)
{
if(emitScope == FUNCTION)
{
if(functionArray.size() > 1) // No need to return when there's only main()
{
emit(sw::Shader::OPCODE_RET);
}
}
currentScope = GLOBAL;
}
break;
case EOpFunctionCall:
if(visit == PostVisit)
{
if(node->isUserDefined())
{
const TString &name = node->getName();
const Function *function = findFunction(name);
if(!function)
{
mContext.error(node->getLine(), "function definition not found", name.c_str());
return false;
}
TIntermSequence &arguments = *function->arg;
for(int i = 0; i < argumentCount; i++)
{
TIntermTyped *in = arguments[i]->getAsTyped();
if(in->getQualifier() == EvqIn ||
in->getQualifier() == EvqInOut ||
in->getQualifier() == EvqConstReadOnly)
{
copy(in, arg[i]);
}
}
Instruction *call = emit(sw::Shader::OPCODE_CALL);
call->dst.type = sw::Shader::PARAMETER_LABEL;
call->dst.index = function->label;
if(function->ret && function->ret->getType().getBasicType() != EbtVoid)
{
copy(result, function->ret);
}
for(int i = 0; i < argumentCount; i++)
{
TIntermTyped *argument = arguments[i]->getAsTyped();
TIntermTyped *out = arg[i]->getAsTyped();
if(argument->getQualifier() == EvqOut ||
argument->getQualifier() == EvqInOut)
{
copy(out, argument);
}
}
}
else
{
const TextureFunction textureFunction(node->getName());
switch(textureFunction.method)
{
case TextureFunction::IMPLICIT:
{
TIntermTyped *t = arg[1]->getAsTyped();
TIntermNode* offset = textureFunction.offset ? arg[2] : 0;
if(argumentCount == 2 || (textureFunction.offset && argumentCount == 3))
{
Instruction *tex = emit(textureFunction.offset ? sw::Shader::OPCODE_TEXOFFSET : sw::Shader::OPCODE_TEX,
result, arg[1], arg[0], offset);
if(textureFunction.proj)
{
tex->project = true;
switch(t->getNominalSize())
{
case 2: tex->src[0].swizzle = 0x54; break; // xyyy
case 3: tex->src[0].swizzle = 0xA4; break; // xyzz
case 4: break; // xyzw
default:
UNREACHABLE(t->getNominalSize());
break;
}
}
}
else if(argumentCount == 3 || (textureFunction.offset && argumentCount == 4)) // bias
{
Temporary proj(this);
if(textureFunction.proj)
{
Instruction *div = emit(sw::Shader::OPCODE_DIV, &proj, arg[1], arg[1]);
div->dst.mask = 0x3;
switch(t->getNominalSize())
{
case 2:
case 3:
case 4:
div->src[1].swizzle = 0x55 * (t->getNominalSize() - 1);
break;
default:
UNREACHABLE(t->getNominalSize());
break;
}
}
else
{
emit(sw::Shader::OPCODE_MOV, &proj, arg[1]);
}
Instruction *bias = emit(sw::Shader::OPCODE_MOV, &proj, arg[textureFunction.offset ? 3 : 2]);
bias->dst.mask = 0x8;
Instruction *tex = emit(textureFunction.offset ? sw::Shader::OPCODE_TEXOFFSET : sw::Shader::OPCODE_TEX,
result, &proj, arg[0], offset); // FIXME: Implement an efficient TEXLDB instruction
tex->bias = true;
}
else UNREACHABLE(argumentCount);
}
break;
case TextureFunction::LOD:
{
TIntermTyped *t = arg[1]->getAsTyped();
Temporary proj(this);
if(textureFunction.proj)
{
Instruction *div = emit(sw::Shader::OPCODE_DIV, &proj, arg[1], arg[1]);
div->dst.mask = 0x3;
switch(t->getNominalSize())
{
case 2:
case 3:
case 4:
div->src[1].swizzle = 0x55 * (t->getNominalSize() - 1);
break;
default:
UNREACHABLE(t->getNominalSize());
break;
}
}
else
{
emit(sw::Shader::OPCODE_MOV, &proj, arg[1]);
}
Instruction *lod = emit(sw::Shader::OPCODE_MOV, &proj, arg[2]);
lod->dst.mask = 0x8;
emit(textureFunction.offset ? sw::Shader::OPCODE_TEXLDLOFFSET : sw::Shader::OPCODE_TEXLDL,
result, &proj, arg[0], textureFunction.offset ? arg[3] : 0);
}
break;
case TextureFunction::FETCH:
{
TIntermTyped *t = arg[1]->getAsTyped();
if(argumentCount == 3 || (textureFunction.offset && argumentCount == 4))
{
TIntermNode* offset = textureFunction.offset ? arg[3] : 0;
emit(textureFunction.offset ? sw::Shader::OPCODE_TEXELFETCHOFFSET : sw::Shader::OPCODE_TEXELFETCH,
result, arg[1], arg[0], arg[2], offset);
}
else UNREACHABLE(argumentCount);
}
break;
case TextureFunction::GRAD:
{
TIntermTyped *t = arg[1]->getAsTyped();
if(argumentCount == 4 || (textureFunction.offset && argumentCount == 5))
{
Temporary uvwb(this);
if(textureFunction.proj)
{
Instruction *div = emit(sw::Shader::OPCODE_DIV, &uvwb, arg[1], arg[1]);
div->dst.mask = 0x3;
switch(t->getNominalSize())
{
case 2:
case 3:
case 4:
div->src[1].swizzle = 0x55 * (t->getNominalSize() - 1);
break;
default:
UNREACHABLE(t->getNominalSize());
break;
}
}
else
{
emit(sw::Shader::OPCODE_MOV, &uvwb, arg[1]);
}
TIntermNode* offset = textureFunction.offset ? arg[4] : 0;
emit(textureFunction.offset ? sw::Shader::OPCODE_TEXGRADOFFSET : sw::Shader::OPCODE_TEXGRAD,
result, &uvwb, arg[0], arg[2], arg[3], offset);
}
else UNREACHABLE(argumentCount);
}
break;
case TextureFunction::SIZE:
emit(sw::Shader::OPCODE_TEXSIZE, result, arg[1], arg[0]);
break;
default:
UNREACHABLE(textureFunction.method);
}
}
}
break;
case EOpParameters:
break;
case EOpConstructFloat:
case EOpConstructVec2:
case EOpConstructVec3:
case EOpConstructVec4:
case EOpConstructBool:
case EOpConstructBVec2:
case EOpConstructBVec3:
case EOpConstructBVec4:
case EOpConstructInt:
case EOpConstructIVec2:
case EOpConstructIVec3:
case EOpConstructIVec4:
case EOpConstructUInt:
case EOpConstructUVec2:
case EOpConstructUVec3:
case EOpConstructUVec4:
if(visit == PostVisit)
{
int component = 0;
for(int i = 0; i < argumentCount; i++)
{
TIntermTyped *argi = arg[i]->getAsTyped();
int size = argi->getNominalSize();
if(!argi->isMatrix())
{
Instruction *mov = emitCast(result, argi);
mov->dst.mask = (0xF << component) & 0xF;
mov->src[0].swizzle = readSwizzle(argi, size) << (component * 2);
component += size;
}
else // Matrix
{
int column = 0;
while(component < resultType.getNominalSize())
{
Instruction *mov = emitCast(result, argi);
mov->dst.mask = (0xF << component) & 0xF;
mov->src[0].index += column;
mov->src[0].swizzle = readSwizzle(argi, size) << (component * 2);
column++;
component += size;
}
}
}
}
break;
case EOpConstructMat2:
case EOpConstructMat2x3:
case EOpConstructMat2x4:
case EOpConstructMat3x2:
case EOpConstructMat3:
case EOpConstructMat3x4:
case EOpConstructMat4x2:
case EOpConstructMat4x3:
case EOpConstructMat4:
if(visit == PostVisit)
{
TIntermTyped *arg0 = arg[0]->getAsTyped();
const int outCols = result->getNominalSize();
const int outRows = result->getSecondarySize();
if(arg0->isScalar() && arg.size() == 1) // Construct scale matrix
{
for(int i = 0; i < outCols; i++)
{
Instruction *init = emit(sw::Shader::OPCODE_MOV, result, &zero);
init->dst.index += i;
Instruction *mov = emitCast(result, arg0);
mov->dst.index += i;
mov->dst.mask = 1 << i;
ASSERT(mov->src[0].swizzle == 0x00);
}
}
else if(arg0->isMatrix())
{
const int inCols = arg0->getNominalSize();
const int inRows = arg0->getSecondarySize();
for(int i = 0; i < outCols; i++)
{
if(i >= inCols || outRows > inRows)
{
// Initialize to identity matrix
Constant col((i == 0 ? 1.0f : 0.0f), (i == 1 ? 1.0f : 0.0f), (i == 2 ? 1.0f : 0.0f), (i == 3 ? 1.0f : 0.0f));
Instruction *mov = emitCast(result, &col);
mov->dst.index += i;
}
if(i < inCols)
{
Instruction *mov = emitCast(result, arg0);
mov->dst.index += i;
mov->dst.mask = 0xF >> (4 - inRows);
argument(mov->src[0], arg0, i);
}
}
}
else
{
int column = 0;
int row = 0;
for(int i = 0; i < argumentCount; i++)
{
TIntermTyped *argi = arg[i]->getAsTyped();
int size = argi->getNominalSize();
int element = 0;
while(element < size)
{
Instruction *mov = emitCast(result, argi);
mov->dst.index += column;
mov->dst.mask = (0xF << row) & 0xF;
mov->src[0].swizzle = (readSwizzle(argi, size) << (row * 2)) + 0x55 * element;
int end = row + size - element;
column = end >= outRows ? column + 1 : column;
element = element + outRows - row;
row = end >= outRows ? 0 : end;
}
}
}
}
break;
case EOpConstructStruct:
if(visit == PostVisit)
{
int offset = 0;
for(int i = 0; i < argumentCount; i++)
{
TIntermTyped *argi = arg[i]->getAsTyped();
int size = argi->totalRegisterCount();
for(int index = 0; index < size; index++)
{
Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, argi);
mov->dst.index += index + offset;
mov->dst.mask = writeMask(result, offset + index);
argument(mov->src[0], argi, index);
}
offset += size;
}
}
break;
case EOpLessThan: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_LT, result, arg[0], arg[1]); break;
case EOpGreaterThan: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_GT, result, arg[0], arg[1]); break;
case EOpLessThanEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_LE, result, arg[0], arg[1]); break;
case EOpGreaterThanEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_GE, result, arg[0], arg[1]); break;
case EOpVectorEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_EQ, result, arg[0], arg[1]); break;
case EOpVectorNotEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_NE, result, arg[0], arg[1]); break;
case EOpMod: if(visit == PostVisit) emit(sw::Shader::OPCODE_MOD, result, arg[0], arg[1]); break;
case EOpPow: if(visit == PostVisit) emit(sw::Shader::OPCODE_POW, result, arg[0], arg[1]); break;
case EOpAtan: if(visit == PostVisit) emit(sw::Shader::OPCODE_ATAN2, result, arg[0], arg[1]); break;
case EOpMin: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_MIN, result), result, arg[0], arg[1]); break;
case EOpMax: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_MAX, result), result, arg[0], arg[1]); break;
case EOpClamp:
if(visit == PostVisit)
{
emit(getOpcode(sw::Shader::OPCODE_MAX, result), result, arg[0], arg[1]);
emit(getOpcode(sw::Shader::OPCODE_MIN, result), result, result, arg[2]);
}
break;
case EOpMix: if(visit == PostVisit) emit(sw::Shader::OPCODE_LRP, result, arg[2], arg[1], arg[0]); break;
case EOpStep: if(visit == PostVisit) emit(sw::Shader::OPCODE_STEP, result, arg[0], arg[1]); break;
case EOpSmoothStep: if(visit == PostVisit) emit(sw::Shader::OPCODE_SMOOTH, result, arg[0], arg[1], arg[2]); break;
case EOpDistance: if(visit == PostVisit) emit(sw::Shader::OPCODE_DIST(dim(arg[0])), result, arg[0], arg[1]); break;
case EOpDot: if(visit == PostVisit) emit(sw::Shader::OPCODE_DP(dim(arg[0])), result, arg[0], arg[1]); break;
case EOpCross: if(visit == PostVisit) emit(sw::Shader::OPCODE_CRS, result, arg[0], arg[1]); break;
case EOpFaceForward: if(visit == PostVisit) emit(sw::Shader::OPCODE_FORWARD(dim(arg[0])), result, arg[0], arg[1], arg[2]); break;
case EOpReflect: if(visit == PostVisit) emit(sw::Shader::OPCODE_REFLECT(dim(arg[0])), result, arg[0], arg[1]); break;
case EOpRefract: if(visit == PostVisit) emit(sw::Shader::OPCODE_REFRACT(dim(arg[0])), result, arg[0], arg[1], arg[2]); break;
case EOpMul:
if(visit == PostVisit)
{
TIntermTyped *arg0 = arg[0]->getAsTyped();
TIntermTyped *arg1 = arg[1]->getAsTyped();
ASSERT((arg0->getNominalSize() == arg1->getNominalSize()) && (arg0->getSecondarySize() == arg1->getSecondarySize()));
int size = arg0->getNominalSize();
for(int i = 0; i < size; i++)
{
Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, arg[0], arg[1]);
mul->dst.index += i;
argument(mul->src[0], arg[0], i);
argument(mul->src[1], arg[1], i);
}
}
break;
case EOpOuterProduct:
if(visit == PostVisit)
{
for(int i = 0; i < dim(arg[1]); i++)
{
Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, arg[0], arg[1]);
mul->dst.index += i;
mul->src[1].swizzle = 0x55 * i;
}
}
break;
default: UNREACHABLE(node->getOp());
}
return true;
}
bool OutputASM::visitSelection(Visit visit, TIntermSelection *node)
{
if(currentScope != emitScope)
{
return false;
}
TIntermTyped *condition = node->getCondition();
TIntermNode *trueBlock = node->getTrueBlock();
TIntermNode *falseBlock = node->getFalseBlock();
TIntermConstantUnion *constantCondition = condition->getAsConstantUnion();
condition->traverse(this);
if(node->usesTernaryOperator())
{
if(constantCondition)
{
bool trueCondition = constantCondition->getUnionArrayPointer()->getBConst();
if(trueCondition)
{
trueBlock->traverse(this);
copy(node, trueBlock);
}
else
{
falseBlock->traverse(this);
copy(node, falseBlock);
}
}
else if(trivial(node, 6)) // Fast to compute both potential results and no side effects
{
trueBlock->traverse(this);
falseBlock->traverse(this);
emit(sw::Shader::OPCODE_SELECT, node, condition, trueBlock, falseBlock);
}
else
{
emit(sw::Shader::OPCODE_IF, 0, condition);
if(trueBlock)
{
trueBlock->traverse(this);
copy(node, trueBlock);
}
if(falseBlock)
{
emit(sw::Shader::OPCODE_ELSE);
falseBlock->traverse(this);
copy(node, falseBlock);
}
emit(sw::Shader::OPCODE_ENDIF);
}
}
else // if/else statement
{
if(constantCondition)
{
bool trueCondition = constantCondition->getUnionArrayPointer()->getBConst();
if(trueCondition)
{
if(trueBlock)
{
trueBlock->traverse(this);
}
}
else
{
if(falseBlock)
{
falseBlock->traverse(this);
}
}
}
else
{
emit(sw::Shader::OPCODE_IF, 0, condition);
if(trueBlock)
{
trueBlock->traverse(this);
}
if(falseBlock)
{
emit(sw::Shader::OPCODE_ELSE);
falseBlock->traverse(this);
}
emit(sw::Shader::OPCODE_ENDIF);
}
}
return false;
}
bool OutputASM::visitLoop(Visit visit, TIntermLoop *node)
{
if(currentScope != emitScope)
{
return false;
}
unsigned int iterations = loopCount(node);
if(iterations == 0)
{
return false;
}
bool unroll = (iterations <= 4);
if(unroll)
{
DetectLoopDiscontinuity detectLoopDiscontinuity;
unroll = !detectLoopDiscontinuity.traverse(node);
}
TIntermNode *init = node->getInit();
TIntermTyped *condition = node->getCondition();
TIntermTyped *expression = node->getExpression();
TIntermNode *body = node->getBody();
if(node->getType() == ELoopDoWhile)
{
Temporary iterate(this);
Constant True(true);
emit(sw::Shader::OPCODE_MOV, &iterate, &True);
emit(sw::Shader::OPCODE_WHILE, 0, &iterate); // FIXME: Implement real do-while
if(body)
{
body->traverse(this);
}
emit(sw::Shader::OPCODE_TEST);
condition->traverse(this);
emit(sw::Shader::OPCODE_MOV, &iterate, condition);
emit(sw::Shader::OPCODE_ENDWHILE);
}
else
{
if(init)
{
init->traverse(this);
}
if(unroll)
{
for(unsigned int i = 0; i < iterations; i++)
{
// condition->traverse(this); // Condition could contain statements, but not in an unrollable loop
if(body)
{
body->traverse(this);
}
if(expression)
{
expression->traverse(this);
}
}
}
else
{
if(condition)
{
condition->traverse(this);
}
emit(sw::Shader::OPCODE_WHILE, 0, condition);
if(body)
{
body->traverse(this);
}
emit(sw::Shader::OPCODE_TEST);
if(expression)
{
expression->traverse(this);
}
if(condition)
{
condition->traverse(this);
}
emit(sw::Shader::OPCODE_ENDWHILE);
}
}
return false;
}
bool OutputASM::visitBranch(Visit visit, TIntermBranch *node)
{
if(currentScope != emitScope)
{
return false;
}
switch(node->getFlowOp())
{
case EOpKill: if(visit == PostVisit) emit(sw::Shader::OPCODE_DISCARD); break;
case EOpBreak: if(visit == PostVisit) emit(sw::Shader::OPCODE_BREAK); break;
case EOpContinue: if(visit == PostVisit) emit(sw::Shader::OPCODE_CONTINUE); break;
case EOpReturn:
if(visit == PostVisit)
{
TIntermTyped *value = node->getExpression();
if(value)
{
copy(functionArray[currentFunction].ret, value);
}
emit(sw::Shader::OPCODE_LEAVE);
}
break;
default: UNREACHABLE(node->getFlowOp());
}
return true;
}
bool OutputASM::isSamplerRegister(TIntermTyped *operand)
{
return operand && isSamplerRegister(operand->getType());
}
bool OutputASM::isSamplerRegister(const TType &type)
{
// A sampler register's qualifiers can be:
// - EvqUniform: The sampler uniform is used as is in the code (default case).
// - EvqTemporary: The sampler is indexed. It's still a sampler register.
// - EvqIn (and other similar types): The sampler has been passed as a function argument. At this point,
// the sampler has been copied and is no longer a sampler register.
return IsSampler(type.getBasicType()) && (type.getQualifier() == EvqUniform || type.getQualifier() == EvqTemporary);
}
Instruction *OutputASM::emit(sw::Shader::Opcode op, TIntermTyped *dst, TIntermNode *src0, TIntermNode *src1, TIntermNode *src2, TIntermNode *src3, TIntermNode *src4, int index)
{
if(isSamplerRegister(dst))
{
op = sw::Shader::OPCODE_NULL; // Can't assign to a sampler, but this is hit when indexing sampler arrays
}
Instruction *instruction = new Instruction(op);
if(dst)
{
instruction->dst.type = registerType(dst);
instruction->dst.index = registerIndex(dst) + index;
instruction->dst.mask = writeMask(dst);
instruction->dst.integer = (dst->getBasicType() == EbtInt);
}
argument(instruction->src[0], src0, index);
argument(instruction->src[1], src1, index);
argument(instruction->src[2], src2, index);
argument(instruction->src[3], src3, index);
argument(instruction->src[4], src4, index);
shader->append(instruction);
return instruction;
}
Instruction *OutputASM::emitCast(TIntermTyped *dst, TIntermTyped *src)
{
switch(src->getBasicType())
{
case EbtBool:
switch(dst->getBasicType())
{
case EbtInt: return emit(sw::Shader::OPCODE_B2I, dst, src);
case EbtUInt: return emit(sw::Shader::OPCODE_B2U, dst, src);
case EbtFloat: return emit(sw::Shader::OPCODE_B2F, dst, src);
default: break;
}
break;
case EbtInt:
switch(dst->getBasicType())
{
case EbtBool: return emit(sw::Shader::OPCODE_I2B, dst, src);
case EbtFloat: return emit(sw::Shader::OPCODE_I2F, dst, src);
default: break;
}
break;
case EbtUInt:
switch(dst->getBasicType())
{
case EbtBool: return emit(sw::Shader::OPCODE_U2B, dst, src);
case EbtFloat: return emit(sw::Shader::OPCODE_U2F, dst, src);
default: break;
}
break;
case EbtFloat:
switch(dst->getBasicType())
{
case EbtBool: return emit(sw::Shader::OPCODE_F2B, dst, src);
case EbtInt: return emit(sw::Shader::OPCODE_F2I, dst, src);
case EbtUInt: return emit(sw::Shader::OPCODE_F2U, dst, src);
default: break;
}
break;
default:
break;
}
return emit(sw::Shader::OPCODE_MOV, dst, src);
}
void OutputASM::emitBinary(sw::Shader::Opcode op, TIntermTyped *dst, TIntermNode *src0, TIntermNode *src1, TIntermNode *src2)
{
for(int index = 0; index < dst->elementRegisterCount(); index++)
{
emit(op, dst, src0, src1, src2, 0, 0, index);
}
}
void OutputASM::emitAssign(sw::Shader::Opcode op, TIntermTyped *result, TIntermTyped *lhs, TIntermTyped *src0, TIntermTyped *src1)
{
emitBinary(op, result, src0, src1);
assignLvalue(lhs, result);
}
void OutputASM::emitCmp(sw::Shader::Control cmpOp, TIntermTyped *dst, TIntermNode *left, TIntermNode *right, int index)
{
sw::Shader::Opcode opcode;
switch(left->getAsTyped()->getBasicType())
{
case EbtBool:
case EbtInt:
opcode = sw::Shader::OPCODE_ICMP;
break;
case EbtUInt:
opcode = sw::Shader::OPCODE_UCMP;
break;
default:
opcode = sw::Shader::OPCODE_CMP;
break;
}
Instruction *cmp = emit(opcode, dst, left, right);
cmp->control = cmpOp;
argument(cmp->src[0], left, index);
argument(cmp->src[1], right, index);
}
int componentCount(const TType &type, int registers)
{
if(registers == 0)
{
return 0;
}
if(type.isArray() && registers >= type.elementRegisterCount())
{
int index = registers / type.elementRegisterCount();
registers -= index * type.elementRegisterCount();
return index * type.getElementSize() + componentCount(type, registers);
}
if(type.isStruct() || type.isInterfaceBlock())
{
const TFieldList& fields = type.getStruct() ? type.getStruct()->fields() : type.getInterfaceBlock()->fields();
int elements = 0;
for(TFieldList::const_iterator field = fields.begin(); field != fields.end(); field++)
{
const TType &fieldType = *((*field)->type());
if(fieldType.totalRegisterCount() <= registers)
{
registers -= fieldType.totalRegisterCount();
elements += fieldType.getObjectSize();
}
else // Register within this field
{
return elements + componentCount(fieldType, registers);
}
}
}
else if(type.isMatrix())
{
return registers * type.registerSize();
}
UNREACHABLE(0);
return 0;
}
int registerSize(const TType &type, int registers)
{
if(registers == 0)
{
if(type.isStruct())
{
return registerSize(*((*(type.getStruct()->fields().begin()))->type()), 0);
}
return type.registerSize();
}
if(type.isArray() && registers >= type.elementRegisterCount())
{
int index = registers / type.elementRegisterCount();
registers -= index * type.elementRegisterCount();
return registerSize(type, registers);
}
if(type.isStruct() || type.isInterfaceBlock())
{
const TFieldList& fields = type.getStruct() ? type.getStruct()->fields() : type.getInterfaceBlock()->fields();
int elements = 0;
for(TFieldList::const_iterator field = fields.begin(); field != fields.end(); field++)
{
const TType &fieldType = *((*field)->type());
if(fieldType.totalRegisterCount() <= registers)
{
registers -= fieldType.totalRegisterCount();
elements += fieldType.getObjectSize();
}
else // Register within this field
{
return registerSize(fieldType, registers);
}
}
}
else if(type.isMatrix())
{
return registerSize(type, 0);
}
UNREACHABLE(0);
return 0;
}
void OutputASM::argument(sw::Shader::SourceParameter &parameter, TIntermNode *argument, int index)
{
if(argument)
{
TIntermTyped *arg = argument->getAsTyped();
const TType &type = arg->getType();
index = (index >= arg->totalRegisterCount()) ? arg->totalRegisterCount() - 1 : index;
int size = registerSize(type, index);
parameter.type = registerType(arg);
if(arg->getQualifier() == EvqConstExpr)
{
int component = componentCount(type, index);
ConstantUnion *constants = arg->getAsConstantUnion()->getUnionArrayPointer();
for(int i = 0; i < 4; i++)
{
if(size == 1) // Replicate
{
parameter.value[i] = constants[component + 0].getAsFloat();
}
else if(i < size)
{
parameter.value[i] = constants[component + i].getAsFloat();
}
else
{
parameter.value[i] = 0.0f;
}
}
}
else
{
parameter.index = registerIndex(arg) + index;
if(isSamplerRegister(arg))
{
TIntermBinary *binary = argument->getAsBinaryNode();
if(binary)
{
TIntermTyped *left = binary->getLeft();
TIntermTyped *right = binary->getRight();
switch(binary->getOp())
{
case EOpIndexDirect:
parameter.index += right->getAsConstantUnion()->getIConst(0);
break;
case EOpIndexIndirect:
if(left->getArraySize() > 1)
{
parameter.rel.type = registerType(binary->getRight());
parameter.rel.index = registerIndex(binary->getRight());
parameter.rel.scale = 1;
parameter.rel.deterministic = true;
}
break;
case EOpIndexDirectStruct:
case EOpIndexDirectInterfaceBlock:
parameter.index += right->getAsConstantUnion()->getIConst(0);
break;
default:
UNREACHABLE(binary->getOp());
}
}
}
}
if(!IsSampler(arg->getBasicType()))
{
parameter.swizzle = readSwizzle(arg, size);
}
}
}
void OutputASM::copy(TIntermTyped *dst, TIntermNode *src, int offset)
{
for(int index = 0; index < dst->totalRegisterCount(); index++)
{
Instruction *mov = emit(sw::Shader::OPCODE_MOV, dst, src);
mov->dst.index += index;
mov->dst.mask = writeMask(dst, index);
argument(mov->src[0], src, offset + index);
}
}
int swizzleElement(int swizzle, int index)
{
return (swizzle >> (index * 2)) & 0x03;
}
int swizzleSwizzle(int leftSwizzle, int rightSwizzle)
{
return (swizzleElement(leftSwizzle, swizzleElement(rightSwizzle, 0)) << 0) |
(swizzleElement(leftSwizzle, swizzleElement(rightSwizzle, 1)) << 2) |
(swizzleElement(leftSwizzle, swizzleElement(rightSwizzle, 2)) << 4) |
(swizzleElement(leftSwizzle, swizzleElement(rightSwizzle, 3)) << 6);
}
void OutputASM::assignLvalue(TIntermTyped *dst, TIntermTyped *src)
{
if(src &&
((src->isVector() && (!dst->isVector() || (dst->getNominalSize() != dst->getNominalSize()))) ||
(src->isMatrix() && (!dst->isMatrix() || (src->getNominalSize() != dst->getNominalSize()) || (src->getSecondarySize() != dst->getSecondarySize())))))
{
return mContext.error(src->getLine(), "Result type should match the l-value type in compound assignment", src->isVector() ? "vector" : "matrix");
}
TIntermBinary *binary = dst->getAsBinaryNode();
if(binary && binary->getOp() == EOpIndexIndirect && dst->isScalar())
{
Instruction *insert = new Instruction(sw::Shader::OPCODE_INSERT);
Temporary address(this);
lvalue(insert->dst, address, dst);
insert->src[0].type = insert->dst.type;
insert->src[0].index = insert->dst.index;
insert->src[0].rel = insert->dst.rel;
argument(insert->src[1], src);
argument(insert->src[2], binary->getRight());
shader->append(insert);
}
else
{
for(int offset = 0; offset < dst->totalRegisterCount(); offset++)
{
Instruction *mov = new Instruction(sw::Shader::OPCODE_MOV);
Temporary address(this);
int swizzle = lvalue(mov->dst, address, dst);
mov->dst.index += offset;
if(offset > 0)
{
mov->dst.mask = writeMask(dst, offset);
}
argument(mov->src[0], src, offset);
mov->src[0].swizzle = swizzleSwizzle(mov->src[0].swizzle, swizzle);
shader->append(mov);
}
}
}
int OutputASM::lvalue(sw::Shader::DestinationParameter &dst, Temporary &address, TIntermTyped *node)
{
TIntermTyped *result = node;
TIntermBinary *binary = node->getAsBinaryNode();
TIntermSymbol *symbol = node->getAsSymbolNode();
if(binary)
{
TIntermTyped *left = binary->getLeft();
TIntermTyped *right = binary->getRight();
int leftSwizzle = lvalue(dst, address, left); // Resolve the l-value of the left side
switch(binary->getOp())
{
case EOpIndexDirect:
{
int rightIndex = right->getAsConstantUnion()->getIConst(0);
if(left->isRegister())
{
int leftMask = dst.mask;
dst.mask = 1;
while((leftMask & dst.mask) == 0)
{
dst.mask = dst.mask << 1;
}
int element = swizzleElement(leftSwizzle, rightIndex);
dst.mask = 1 << element;
return element;
}
else if(left->isArray() || left->isMatrix())
{
dst.index += rightIndex * result->totalRegisterCount();
return 0xE4;
}
else UNREACHABLE(0);
}
break;
case EOpIndexIndirect:
{
if(left->isRegister())
{
// Requires INSERT instruction (handled by calling function)
}
else if(left->isArray() || left->isMatrix())
{
int scale = result->totalRegisterCount();
if(dst.rel.type == sw::Shader::PARAMETER_VOID) // Use the index register as the relative address directly
{
if(left->totalRegisterCount() > 1)
{
sw::Shader::SourceParameter relativeRegister;
argument(relativeRegister, right);
dst.rel.index = relativeRegister.index;
dst.rel.type = relativeRegister.type;
dst.rel.scale = scale;
dst.rel.deterministic = !(vertexShader && left->getQualifier() == EvqUniform);
}
}
else if(dst.rel.index != registerIndex(&address)) // Move the previous index register to the address register
{
if(scale == 1)
{
Constant oldScale((int)dst.rel.scale);
Instruction *mad = emit(sw::Shader::OPCODE_IMAD, &address, &address, &oldScale, right);
mad->src[0].index = dst.rel.index;
mad->src[0].type = dst.rel.type;
}
else
{
Constant oldScale((int)dst.rel.scale);
Instruction *mul = emit(sw::Shader::OPCODE_IMUL, &address, &address, &oldScale);
mul->src[0].index = dst.rel.index;
mul->src[0].type = dst.rel.type;
Constant newScale(scale);
emit(sw::Shader::OPCODE_IMAD, &address, right, &newScale, &address);
}
dst.rel.type = sw::Shader::PARAMETER_TEMP;
dst.rel.index = registerIndex(&address);
dst.rel.scale = 1;
}
else // Just add the new index to the address register
{
if(scale == 1)
{
emit(sw::Shader::OPCODE_IADD, &address, &address, right);
}
else
{
Constant newScale(scale);
emit(sw::Shader::OPCODE_IMAD, &address, right, &newScale, &address);
}
}
}
else UNREACHABLE(0);
}
break;
case EOpIndexDirectStruct:
case EOpIndexDirectInterfaceBlock:
{
const TFieldList& fields = (binary->getOp() == EOpIndexDirectStruct) ?
left->getType().getStruct()->fields() :
left->getType().getInterfaceBlock()->fields();
int index = right->getAsConstantUnion()->getIConst(0);
int fieldOffset = 0;
for(int i = 0; i < index; i++)
{
fieldOffset += fields[i]->type()->totalRegisterCount();
}
dst.type = registerType(left);
dst.index += fieldOffset;
dst.mask = writeMask(right);
return 0xE4;
}
break;
case EOpVectorSwizzle:
{
ASSERT(left->isRegister());
int leftMask = dst.mask;
int swizzle = 0;
int rightMask = 0;
TIntermSequence &sequence = right->getAsAggregate()->getSequence();
for(unsigned int i = 0; i < sequence.size(); i++)
{
int index = sequence[i]->getAsConstantUnion()->getIConst(0);
int element = swizzleElement(leftSwizzle, index);
rightMask = rightMask | (1 << element);
swizzle = swizzle | swizzleElement(leftSwizzle, i) << (element * 2);
}
dst.mask = leftMask & rightMask;
return swizzle;
}
break;
default:
UNREACHABLE(binary->getOp()); // Not an l-value operator
break;
}
}
else if(symbol)
{
dst.type = registerType(symbol);
dst.index = registerIndex(symbol);
dst.mask = writeMask(symbol);
return 0xE4;
}
return 0xE4;
}
sw::Shader::ParameterType OutputASM::registerType(TIntermTyped *operand)
{
if(isSamplerRegister(operand))
{
return sw::Shader::PARAMETER_SAMPLER;
}
const TQualifier qualifier = operand->getQualifier();
if((EvqFragColor == qualifier) || (EvqFragData == qualifier))
{
if(((EvqFragData == qualifier) && (EvqFragColor == outputQualifier)) ||
((EvqFragColor == qualifier) && (EvqFragData == outputQualifier)))
{
mContext.error(operand->getLine(), "static assignment to both gl_FragData and gl_FragColor", "");
}
outputQualifier = qualifier;
}
switch(qualifier)
{
case EvqTemporary: return sw::Shader::PARAMETER_TEMP;
case EvqGlobal: return sw::Shader::PARAMETER_TEMP;
case EvqConstExpr: return sw::Shader::PARAMETER_FLOAT4LITERAL; // All converted to float
case EvqAttribute: return sw::Shader::PARAMETER_INPUT;
case EvqVaryingIn: return sw::Shader::PARAMETER_INPUT;
case EvqVaryingOut: return sw::Shader::PARAMETER_OUTPUT;
case EvqVertexIn: return sw::Shader::PARAMETER_INPUT;
case EvqFragmentOut: return sw::Shader::PARAMETER_COLOROUT;
case EvqVertexOut: return sw::Shader::PARAMETER_OUTPUT;
case EvqFragmentIn: return sw::Shader::PARAMETER_INPUT;
case EvqInvariantVaryingIn: return sw::Shader::PARAMETER_INPUT; // FIXME: Guarantee invariance at the backend
case EvqInvariantVaryingOut: return sw::Shader::PARAMETER_OUTPUT; // FIXME: Guarantee invariance at the backend
case EvqSmooth: return sw::Shader::PARAMETER_OUTPUT;
case EvqFlat: return sw::Shader::PARAMETER_OUTPUT;
case EvqCentroidOut: return sw::Shader::PARAMETER_OUTPUT;
case EvqSmoothIn: return sw::Shader::PARAMETER_INPUT;
case EvqFlatIn: return sw::Shader::PARAMETER_INPUT;
case EvqCentroidIn: return sw::Shader::PARAMETER_INPUT;
case EvqUniform: return sw::Shader::PARAMETER_CONST;
case EvqIn: return sw::Shader::PARAMETER_TEMP;
case EvqOut: return sw::Shader::PARAMETER_TEMP;
case EvqInOut: return sw::Shader::PARAMETER_TEMP;
case EvqConstReadOnly: return sw::Shader::PARAMETER_TEMP;
case EvqPosition: return sw::Shader::PARAMETER_OUTPUT;
case EvqPointSize: return sw::Shader::PARAMETER_OUTPUT;
case EvqInstanceID: return sw::Shader::PARAMETER_MISCTYPE;
case EvqFragCoord: return sw::Shader::PARAMETER_MISCTYPE;
case EvqFrontFacing: return sw::Shader::PARAMETER_MISCTYPE;
case EvqPointCoord: return sw::Shader::PARAMETER_INPUT;
case EvqFragColor: return sw::Shader::PARAMETER_COLOROUT;
case EvqFragData: return sw::Shader::PARAMETER_COLOROUT;
case EvqFragDepth: return sw::Shader::PARAMETER_DEPTHOUT;
default: UNREACHABLE(qualifier);
}
return sw::Shader::PARAMETER_VOID;
}
int OutputASM::registerIndex(TIntermTyped *operand)
{
if(isSamplerRegister(operand))
{
return samplerRegister(operand);
}
switch(operand->getQualifier())
{
case EvqTemporary: return temporaryRegister(operand);
case EvqGlobal: return temporaryRegister(operand);
case EvqConstExpr: UNREACHABLE(EvqConstExpr);
case EvqAttribute: return attributeRegister(operand);
case EvqVaryingIn: return varyingRegister(operand);
case EvqVaryingOut: return varyingRegister(operand);
case EvqVertexIn: return attributeRegister(operand);
case EvqFragmentOut: return fragmentOutputRegister(operand);
case EvqVertexOut: return varyingRegister(operand);
case EvqFragmentIn: return varyingRegister(operand);
case EvqInvariantVaryingIn: return varyingRegister(operand);
case EvqInvariantVaryingOut: return varyingRegister(operand);
case EvqSmooth: return varyingRegister(operand);
case EvqFlat: return varyingRegister(operand);
case EvqCentroidOut: return varyingRegister(operand);
case EvqSmoothIn: return varyingRegister(operand);
case EvqFlatIn: return varyingRegister(operand);
case EvqCentroidIn: return varyingRegister(operand);
case EvqUniform: return uniformRegister(operand);
case EvqIn: return temporaryRegister(operand);
case EvqOut: return temporaryRegister(operand);
case EvqInOut: return temporaryRegister(operand);
case EvqConstReadOnly: return temporaryRegister(operand);
case EvqPosition: return varyingRegister(operand);
case EvqPointSize: return varyingRegister(operand);
case EvqInstanceID: vertexShader->instanceIdDeclared = true; return 0;
case EvqFragCoord: pixelShader->vPosDeclared = true; return 0;
case EvqFrontFacing: pixelShader->vFaceDeclared = true; return 1;
case EvqPointCoord: return varyingRegister(operand);
case EvqFragColor: return 0;
case EvqFragData: return 0;
case EvqFragDepth: return 0;
default: UNREACHABLE(operand->getQualifier());
}
return 0;
}
int OutputASM::writeMask(TIntermTyped *destination, int index)
{
if(destination->getQualifier() == EvqPointSize)
{
return 0x2; // Point size stored in the y component
}
return 0xF >> (4 - registerSize(destination->getType(), index));
}
int OutputASM::readSwizzle(TIntermTyped *argument, int size)
{
if(argument->getQualifier() == EvqPointSize)
{
return 0x55; // Point size stored in the y component
}
static const unsigned char swizzleSize[5] = {0x00, 0x00, 0x54, 0xA4, 0xE4}; // (void), xxxx, xyyy, xyzz, xyzw
return swizzleSize[size];
}
// Conservatively checks whether an expression is fast to compute and has no side effects
bool OutputASM::trivial(TIntermTyped *expression, int budget)
{
if(!expression->isRegister())
{
return false;
}
return cost(expression, budget) >= 0;
}
// Returns the remaining computing budget (if < 0 the expression is too expensive or has side effects)
int OutputASM::cost(TIntermNode *expression, int budget)
{
if(budget < 0)
{
return budget;
}
if(expression->getAsSymbolNode())
{
return budget;
}
else if(expression->getAsConstantUnion())
{
return budget;
}
else if(expression->getAsBinaryNode())
{
TIntermBinary *binary = expression->getAsBinaryNode();
switch(binary->getOp())
{
case EOpVectorSwizzle:
case EOpIndexDirect:
case EOpIndexDirectStruct:
case EOpIndexDirectInterfaceBlock:
return cost(binary->getLeft(), budget - 0);
case EOpAdd:
case EOpSub:
case EOpMul:
return cost(binary->getLeft(), cost(binary->getRight(), budget - 1));
default:
return -1;
}
}
else if(expression->getAsUnaryNode())
{
TIntermUnary *unary = expression->getAsUnaryNode();
switch(unary->getOp())
{
case EOpAbs:
case EOpNegative:
return cost(unary->getOperand(), budget - 1);
default:
return -1;
}
}
else if(expression->getAsSelectionNode())
{
TIntermSelection *selection = expression->getAsSelectionNode();
if(selection->usesTernaryOperator())
{
TIntermTyped *condition = selection->getCondition();
TIntermNode *trueBlock = selection->getTrueBlock();
TIntermNode *falseBlock = selection->getFalseBlock();
TIntermConstantUnion *constantCondition = condition->getAsConstantUnion();
if(constantCondition)
{
bool trueCondition = constantCondition->getUnionArrayPointer()->getBConst();
if(trueCondition)
{
return cost(trueBlock, budget - 0);
}
else
{
return cost(falseBlock, budget - 0);
}
}
else
{
return cost(trueBlock, cost(falseBlock, budget - 2));
}
}
}
return -1;
}
const Function *OutputASM::findFunction(const TString &name)
{
for(unsigned int f = 0; f < functionArray.size(); f++)
{
if(functionArray[f].name == name)
{
return &functionArray[f];
}
}
return 0;
}
int OutputASM::temporaryRegister(TIntermTyped *temporary)
{
return allocate(temporaries, temporary);
}
int OutputASM::varyingRegister(TIntermTyped *varying)
{
int var = lookup(varyings, varying);
if(var == -1)
{
var = allocate(varyings, varying);
int componentCount = varying->registerSize();
int registerCount = varying->totalRegisterCount();
if(pixelShader)
{
if((var + registerCount) > sw::PixelShader::MAX_INPUT_VARYINGS)
{
mContext.error(varying->getLine(), "Varyings packing failed: Too many varyings", "fragment shader");
return 0;
}
if(varying->getQualifier() == EvqPointCoord)
{
ASSERT(varying->isRegister());
if(componentCount >= 1) pixelShader->semantic[var][0] = sw::Shader::Semantic(sw::Shader::USAGE_TEXCOORD, var);
if(componentCount >= 2) pixelShader->semantic[var][1] = sw::Shader::Semantic(sw::Shader::USAGE_TEXCOORD, var);
if(componentCount >= 3) pixelShader->semantic[var][2] = sw::Shader::Semantic(sw::Shader::USAGE_TEXCOORD, var);
if(componentCount >= 4) pixelShader->semantic[var][3] = sw::Shader::Semantic(sw::Shader::USAGE_TEXCOORD, var);
}
else
{
for(int i = 0; i < varying->totalRegisterCount(); i++)
{
if(componentCount >= 1) pixelShader->semantic[var + i][0] = sw::Shader::Semantic(sw::Shader::USAGE_COLOR, var + i);
if(componentCount >= 2) pixelShader->semantic[var + i][1] = sw::Shader::Semantic(sw::Shader::USAGE_COLOR, var + i);
if(componentCount >= 3) pixelShader->semantic[var + i][2] = sw::Shader::Semantic(sw::Shader::USAGE_COLOR, var + i);
if(componentCount >= 4) pixelShader->semantic[var + i][3] = sw::Shader::Semantic(sw::Shader::USAGE_COLOR, var + i);
}
}
}
else if(vertexShader)
{
if((var + registerCount) > sw::VertexShader::MAX_OUTPUT_VARYINGS)
{
mContext.error(varying->getLine(), "Varyings packing failed: Too many varyings", "vertex shader");
return 0;
}
if(varying->getQualifier() == EvqPosition)
{
ASSERT(varying->isRegister());
vertexShader->output[var][0] = sw::Shader::Semantic(sw::Shader::USAGE_POSITION, 0);
vertexShader->output[var][1] = sw::Shader::Semantic(sw::Shader::USAGE_POSITION, 0);
vertexShader->output[var][2] = sw::Shader::Semantic(sw::Shader::USAGE_POSITION, 0);
vertexShader->output[var][3] = sw::Shader::Semantic(sw::Shader::USAGE_POSITION, 0);
vertexShader->positionRegister = var;
}
else if(varying->getQualifier() == EvqPointSize)
{
ASSERT(varying->isRegister());
vertexShader->output[var][0] = sw::Shader::Semantic(sw::Shader::USAGE_PSIZE, 0);
vertexShader->output[var][1] = sw::Shader::Semantic(sw::Shader::USAGE_PSIZE, 0);
vertexShader->output[var][2] = sw::Shader::Semantic(sw::Shader::USAGE_PSIZE, 0);
vertexShader->output[var][3] = sw::Shader::Semantic(sw::Shader::USAGE_PSIZE, 0);
vertexShader->pointSizeRegister = var;
}
else
{
// Semantic indexes for user varyings will be assigned during program link to match the pixel shader
}
}
else UNREACHABLE(0);
declareVarying(varying, var);
}
return var;
}
void OutputASM::declareVarying(TIntermTyped *varying, int reg)
{
if(varying->getQualifier() != EvqPointCoord) // gl_PointCoord does not need linking
{
const TType &type = varying->getType();
const char *name = varying->getAsSymbolNode()->getSymbol().c_str();
VaryingList &activeVaryings = shaderObject->varyings;
// Check if this varying has been declared before without having a register assigned
for(VaryingList::iterator v = activeVaryings.begin(); v != activeVaryings.end(); v++)
{
if(v->name == name)
{
if(reg >= 0)
{
ASSERT(v->reg < 0 || v->reg == reg);
v->reg = reg;
}
return;
}
}
activeVaryings.push_back(glsl::Varying(glVariableType(type), name, varying->getArraySize(), reg, 0));
}
}
int OutputASM::uniformRegister(TIntermTyped *uniform)
{
const TType &type = uniform->getType();
ASSERT(!IsSampler(type.getBasicType()));
TInterfaceBlock *block = type.getAsInterfaceBlock();
TIntermSymbol *symbol = uniform->getAsSymbolNode();
ASSERT(symbol || block);
if(symbol || block)
{
int index = lookup(uniforms, uniform);
if(index == -1)
{
index = allocate(uniforms, uniform);
const TString &name = symbol ? symbol->getSymbol() : block->name();
declareUniform(type, name, index);
}
return index;
}
return 0;
}
int OutputASM::attributeRegister(TIntermTyped *attribute)
{
ASSERT(!attribute->isArray());
int index = lookup(attributes, attribute);
if(index == -1)
{
TIntermSymbol *symbol = attribute->getAsSymbolNode();
ASSERT(symbol);
if(symbol)
{
index = allocate(attributes, attribute);
const TType &type = attribute->getType();
int registerCount = attribute->totalRegisterCount();
if(vertexShader && (index + registerCount) <= sw::VertexShader::MAX_INPUT_ATTRIBUTES)
{
for(int i = 0; i < registerCount; i++)
{
vertexShader->input[index + i] = sw::Shader::Semantic(sw::Shader::USAGE_TEXCOORD, index + i);
}
}
ActiveAttributes &activeAttributes = shaderObject->activeAttributes;
const char *name = symbol->getSymbol().c_str();
activeAttributes.push_back(Attribute(glVariableType(type), name, type.getArraySize(), type.getLayoutQualifier().location, index));
}
}
return index;
}
int OutputASM::fragmentOutputRegister(TIntermTyped *fragmentOutput)
{
return allocate(fragmentOutputs, fragmentOutput);
}
int OutputASM::samplerRegister(TIntermTyped *sampler)
{
ASSERT(IsSampler(sampler->getType().getBasicType()));
TIntermSymbol *symbol = sampler->getAsSymbolNode();
TIntermBinary *binary = sampler->getAsBinaryNode();
if(symbol)
{
return samplerRegister(symbol);
}
else if(binary)
{
ASSERT(binary->getOp() == EOpIndexDirect || binary->getOp() == EOpIndexIndirect ||
binary->getOp() == EOpIndexDirectStruct || binary->getOp() == EOpIndexDirectInterfaceBlock);
return samplerRegister(binary->getLeft()); // Index added later
}
else UNREACHABLE(0);
return 0;
}
int OutputASM::samplerRegister(TIntermSymbol *sampler)
{
const TType &type = sampler->getType();
ASSERT(IsSampler(type.getBasicType()) || type.getStruct()); // Structures can contain samplers
int index = lookup(samplers, sampler);
if(index == -1)
{
index = allocate(samplers, sampler);
if(sampler->getQualifier() == EvqUniform)
{
const char *name = sampler->getSymbol().c_str();
declareUniform(type, name, index);
}
}
return index;
}
int OutputASM::lookup(VariableArray &list, TIntermTyped *variable)
{
for(unsigned int i = 0; i < list.size(); i++)
{
if(list[i] == variable)
{
return i; // Pointer match
}
}
TIntermSymbol *varSymbol = variable->getAsSymbolNode();
TInterfaceBlock *varBlock = variable->getType().getAsInterfaceBlock();
if(varSymbol)
{
for(unsigned int i = 0; i < list.size(); i++)
{
if(list[i])
{
TIntermSymbol *listSymbol = list[i]->getAsSymbolNode();
if(listSymbol)
{
if(listSymbol->getId() == varSymbol->getId())
{
ASSERT(listSymbol->getSymbol() == varSymbol->getSymbol());
ASSERT(listSymbol->getType() == varSymbol->getType());
ASSERT(listSymbol->getQualifier() == varSymbol->getQualifier());
return i;
}
}
}
}
}
else if(varBlock)
{
for(unsigned int i = 0; i < list.size(); i++)
{
if(list[i])
{
TInterfaceBlock *listBlock = list[i]->getType().getAsInterfaceBlock();
if(listBlock)
{
if(listBlock->name() == varBlock->name())
{
ASSERT(listBlock->arraySize() == varBlock->arraySize());
ASSERT(listBlock->fields() == varBlock->fields());
ASSERT(listBlock->blockStorage() == varBlock->blockStorage());
ASSERT(listBlock->matrixPacking() == varBlock->matrixPacking());
return i;
}
}
}
}
}
return -1;
}
int OutputASM::allocate(VariableArray &list, TIntermTyped *variable)
{
int index = lookup(list, variable);
if(index == -1)
{
unsigned int registerCount = variable->totalRegisterCount();
for(unsigned int i = 0; i < list.size(); i++)
{
if(list[i] == 0)
{
unsigned int j = 1;
for( ; j < registerCount && (i + j) < list.size(); j++)
{
if(list[i + j] != 0)
{
break;
}
}
if(j == registerCount) // Found free slots
{
for(unsigned int j = 0; j < registerCount; j++)
{
list[i + j] = variable;
}
return i;
}
}
}
index = list.size();
for(unsigned int i = 0; i < registerCount; i++)
{
list.push_back(variable);
}
}
return index;
}
void OutputASM::free(VariableArray &list, TIntermTyped *variable)
{
int index = lookup(list, variable);
if(index >= 0)
{
list[index] = 0;
}
}
void OutputASM::declareUniform(const TType &type, const TString &name, int registerIndex, int offset, int blockId)
{
const TStructure *structure = type.getStruct();
const TInterfaceBlock *block = (type.isInterfaceBlock() || (blockId == -1)) ? type.getInterfaceBlock() : nullptr;
ActiveUniforms &activeUniforms = shaderObject->activeUniforms;
if(block)
{
ActiveUniformBlocks &activeUniformBlocks = shaderObject->activeUniformBlocks;
blockId = activeUniformBlocks.size();
unsigned int dataSize = block->objectSize() * 4; // FIXME: assuming 4 bytes per element
activeUniformBlocks.push_back(UniformBlock(block->name().c_str(), block->hasInstanceName() ? block->instanceName().c_str() : std::string(), dataSize,
block->arraySize(), block->blockStorage(), block->matrixPacking() == EmpRowMajor, registerIndex, blockId));
}
if(!structure && !block)
{
if(blockId >= 0)
{
shaderObject->activeUniformBlocks[blockId].fields.push_back(activeUniforms.size());
}
activeUniforms.push_back(Uniform(glVariableType(type), glVariablePrecision(type), name.c_str(), type.getArraySize(), registerIndex, offset, blockId));
if(isSamplerRegister(type))
{
for(int i = 0; i < type.totalRegisterCount(); i++)
{
shader->declareSampler(registerIndex + i);
}
}
}
else
{
const TFieldList& fields = structure ? structure->fields() : block->fields();
const bool containerHasName = structure || block->hasInstanceName();
const TString &containerName = structure ? name : (containerHasName ? block->instanceName() : TString());
if(type.isArray() && (structure || type.isInterfaceBlock()))
{
int fieldRegisterIndex = (blockId == -1) ? registerIndex : 0;
int fieldOffset = 0;
for(int i = 0; i < type.getArraySize(); i++)
{
for(size_t j = 0; j < fields.size(); j++)
{
const TType &fieldType = *(fields[j]->type());
const TString &fieldName = fields[j]->name();
const TString uniformName = containerHasName ? containerName + "[" + str(i) + "]." + fieldName : fieldName;
declareUniform(fieldType, uniformName, fieldRegisterIndex, fieldOffset, blockId);
int registerCount = fieldType.totalRegisterCount();
fieldRegisterIndex += registerCount;
fieldOffset += registerCount * fieldType.registerSize();
}
}
}
else
{
int fieldRegisterIndex = (blockId == -1) ? registerIndex : 0;
int fieldOffset = 0;
for(size_t i = 0; i < fields.size(); i++)
{
const TType &fieldType = *(fields[i]->type());
const TString &fieldName = fields[i]->name();
const TString uniformName = containerHasName ? containerName + "." + fieldName : fieldName;
declareUniform(fieldType, uniformName, fieldRegisterIndex, fieldOffset, blockId);
int registerCount = fieldType.totalRegisterCount();
fieldRegisterIndex += registerCount;
fieldOffset += registerCount * fieldType.registerSize();
}
}
}
}
GLenum OutputASM::glVariableType(const TType &type)
{
switch(type.getBasicType())
{
case EbtFloat:
if(type.isScalar())
{
return GL_FLOAT;
}
else if(type.isVector())
{
switch(type.getNominalSize())
{
case 2: return GL_FLOAT_VEC2;
case 3: return GL_FLOAT_VEC3;
case 4: return GL_FLOAT_VEC4;
default: UNREACHABLE(type.getNominalSize());
}
}
else if(type.isMatrix())
{
switch(type.getNominalSize())
{
case 2:
switch(type.getSecondarySize())
{
case 2: return GL_FLOAT_MAT2;
case 3: return GL_FLOAT_MAT2x3;
case 4: return GL_FLOAT_MAT2x4;
default: UNREACHABLE(type.getSecondarySize());
}
case 3:
switch(type.getSecondarySize())
{
case 2: return GL_FLOAT_MAT3x2;
case 3: return GL_FLOAT_MAT3;
case 4: return GL_FLOAT_MAT3x4;
default: UNREACHABLE(type.getSecondarySize());
}
case 4:
switch(type.getSecondarySize())
{
case 2: return GL_FLOAT_MAT4x2;
case 3: return GL_FLOAT_MAT4x3;
case 4: return GL_FLOAT_MAT4;
default: UNREACHABLE(type.getSecondarySize());
}
default: UNREACHABLE(type.getNominalSize());
}
}
else UNREACHABLE(0);
break;
case EbtInt:
if(type.isScalar())
{
return GL_INT;
}
else if(type.isVector())
{
switch(type.getNominalSize())
{
case 2: return GL_INT_VEC2;
case 3: return GL_INT_VEC3;
case 4: return GL_INT_VEC4;
default: UNREACHABLE(type.getNominalSize());
}
}
else UNREACHABLE(0);
break;
case EbtUInt:
if(type.isScalar())
{
return GL_UNSIGNED_INT;
}
else if(type.isVector())
{
switch(type.getNominalSize())
{
case 2: return GL_UNSIGNED_INT_VEC2;
case 3: return GL_UNSIGNED_INT_VEC3;
case 4: return GL_UNSIGNED_INT_VEC4;
default: UNREACHABLE(type.getNominalSize());
}
}
else UNREACHABLE(0);
break;
case EbtBool:
if(type.isScalar())
{
return GL_BOOL;
}
else if(type.isVector())
{
switch(type.getNominalSize())
{
case 2: return GL_BOOL_VEC2;
case 3: return GL_BOOL_VEC3;
case 4: return GL_BOOL_VEC4;
default: UNREACHABLE(type.getNominalSize());
}
}
else UNREACHABLE(0);
break;
case EbtSampler2D:
return GL_SAMPLER_2D;
case EbtISampler2D:
return GL_INT_SAMPLER_2D;
case EbtUSampler2D:
return GL_UNSIGNED_INT_SAMPLER_2D;
case EbtSamplerCube:
return GL_SAMPLER_CUBE;
case EbtISamplerCube:
return GL_INT_SAMPLER_CUBE;
case EbtUSamplerCube:
return GL_UNSIGNED_INT_SAMPLER_CUBE;
case EbtSamplerExternalOES:
return GL_SAMPLER_EXTERNAL_OES;
case EbtSampler3D:
return GL_SAMPLER_3D_OES;
case EbtISampler3D:
return GL_INT_SAMPLER_3D;
case EbtUSampler3D:
return GL_UNSIGNED_INT_SAMPLER_3D;
case EbtSampler2DArray:
return GL_SAMPLER_2D_ARRAY;
case EbtISampler2DArray:
return GL_INT_SAMPLER_2D_ARRAY;
case EbtUSampler2DArray:
return GL_UNSIGNED_INT_SAMPLER_2D_ARRAY;
case EbtSampler2DShadow:
return GL_SAMPLER_2D_SHADOW;
case EbtSamplerCubeShadow:
return GL_SAMPLER_CUBE_SHADOW;
case EbtSampler2DArrayShadow:
return GL_SAMPLER_2D_ARRAY_SHADOW;
default:
UNREACHABLE(type.getBasicType());
break;
}
return GL_NONE;
}
GLenum OutputASM::glVariablePrecision(const TType &type)
{
if(type.getBasicType() == EbtFloat)
{
switch(type.getPrecision())
{
case EbpHigh: return GL_HIGH_FLOAT;
case EbpMedium: return GL_MEDIUM_FLOAT;
case EbpLow: return GL_LOW_FLOAT;
case EbpUndefined:
// Should be defined as the default precision by the parser
default: UNREACHABLE(type.getPrecision());
}
}
else if(type.getBasicType() == EbtInt)
{
switch(type.getPrecision())
{
case EbpHigh: return GL_HIGH_INT;
case EbpMedium: return GL_MEDIUM_INT;
case EbpLow: return GL_LOW_INT;
case EbpUndefined:
// Should be defined as the default precision by the parser
default: UNREACHABLE(type.getPrecision());
}
}
// Other types (boolean, sampler) don't have a precision
return GL_NONE;
}
int OutputASM::dim(TIntermNode *v)
{
TIntermTyped *vector = v->getAsTyped();
ASSERT(vector && vector->isRegister());
return vector->getNominalSize();
}
int OutputASM::dim2(TIntermNode *m)
{
TIntermTyped *matrix = m->getAsTyped();
ASSERT(matrix && matrix->isMatrix() && !matrix->isArray());
return matrix->getSecondarySize();
}
// Returns ~0 if no loop count could be determined
unsigned int OutputASM::loopCount(TIntermLoop *node)
{
// Parse loops of the form:
// for(int index = initial; index [comparator] limit; index += increment)
TIntermSymbol *index = 0;
TOperator comparator = EOpNull;
int initial = 0;
int limit = 0;
int increment = 0;
// Parse index name and intial value
if(node->getInit())
{
TIntermAggregate *init = node->getInit()->getAsAggregate();
if(init)
{
TIntermSequence &sequence = init->getSequence();
TIntermTyped *variable = sequence[0]->getAsTyped();
if(variable && variable->getQualifier() == EvqTemporary)
{
TIntermBinary *assign = variable->getAsBinaryNode();
if(assign->getOp() == EOpInitialize)
{
TIntermSymbol *symbol = assign->getLeft()->getAsSymbolNode();
TIntermConstantUnion *constant = assign->getRight()->getAsConstantUnion();
if(symbol && constant)
{
if(constant->getBasicType() == EbtInt && constant->getNominalSize() == 1)
{
index = symbol;
initial = constant->getUnionArrayPointer()[0].getIConst();
}
}
}
}
}
}
// Parse comparator and limit value
if(index && node->getCondition())
{
TIntermBinary *test = node->getCondition()->getAsBinaryNode();
if(test && test->getLeft()->getAsSymbolNode()->getId() == index->getId())
{
TIntermConstantUnion *constant = test->getRight()->getAsConstantUnion();
if(constant)
{
if(constant->getBasicType() == EbtInt && constant->getNominalSize() == 1)
{
comparator = test->getOp();
limit = constant->getUnionArrayPointer()[0].getIConst();
}
}
}
}
// Parse increment
if(index && comparator != EOpNull && node->getExpression())
{
TIntermBinary *binaryTerminal = node->getExpression()->getAsBinaryNode();
TIntermUnary *unaryTerminal = node->getExpression()->getAsUnaryNode();
if(binaryTerminal)
{
TOperator op = binaryTerminal->getOp();
TIntermConstantUnion *constant = binaryTerminal->getRight()->getAsConstantUnion();
if(constant)
{
if(constant->getBasicType() == EbtInt && constant->getNominalSize() == 1)
{
int value = constant->getUnionArrayPointer()[0].getIConst();
switch(op)
{
case EOpAddAssign: increment = value; break;
case EOpSubAssign: increment = -value; break;
default: UNIMPLEMENTED();
}
}
}
}
else if(unaryTerminal)
{
TOperator op = unaryTerminal->getOp();
switch(op)
{
case EOpPostIncrement: increment = 1; break;
case EOpPostDecrement: increment = -1; break;
case EOpPreIncrement: increment = 1; break;
case EOpPreDecrement: increment = -1; break;
default: UNIMPLEMENTED();
}
}
}
if(index && comparator != EOpNull && increment != 0)
{
if(comparator == EOpLessThanEqual)
{
comparator = EOpLessThan;
limit += 1;
}
if(comparator == EOpLessThan)
{
int iterations = (limit - initial) / increment;
if(iterations <= 0)
{
iterations = 0;
}
return iterations;
}
else UNIMPLEMENTED(); // Falls through
}
return ~0;
}
bool DetectLoopDiscontinuity::traverse(TIntermNode *node)
{
loopDepth = 0;
loopDiscontinuity = false;
node->traverse(this);
return loopDiscontinuity;
}
bool DetectLoopDiscontinuity::visitLoop(Visit visit, TIntermLoop *loop)
{
if(visit == PreVisit)
{
loopDepth++;
}
else if(visit == PostVisit)
{
loopDepth++;
}
return true;
}
bool DetectLoopDiscontinuity::visitBranch(Visit visit, TIntermBranch *node)
{
if(loopDiscontinuity)
{
return false;
}
if(!loopDepth)
{
return true;
}
switch(node->getFlowOp())
{
case EOpKill:
break;
case EOpBreak:
case EOpContinue:
case EOpReturn:
loopDiscontinuity = true;
break;
default: UNREACHABLE(node->getFlowOp());
}
return !loopDiscontinuity;
}
bool DetectLoopDiscontinuity::visitAggregate(Visit visit, TIntermAggregate *node)
{
return !loopDiscontinuity;
}
}