blob: 5f3bfd3fc67b90da0411af9267e3334b0da695de [file] [log] [blame]
//===- subzero/src/IceCfg.h - Control flow graph ----------------*- C++ -*-===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the Cfg class, which represents the control flow
// graph and the overall per-function compilation context.
//
//===----------------------------------------------------------------------===//
#ifndef SUBZERO_SRC_ICECFG_H
#define SUBZERO_SRC_ICECFG_H
#include "IceDefs.h"
#include "IceTypes.h"
#include "IceGlobalContext.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/Support/Allocator.h"
namespace Ice {
class Cfg {
public:
Cfg(GlobalContext *Ctx);
~Cfg();
GlobalContext *getContext() const { return Ctx; }
// Manage the name and return type of the function being translated.
void setFunctionName(const IceString &Name) { FunctionName = Name; }
IceString getFunctionName() const { return FunctionName; }
void setReturnType(Type Ty) { ReturnType = Ty; }
// Manage the "internal" attribute of the function.
void setInternal(bool Internal) { IsInternalLinkage = Internal; }
bool getInternal() const { return IsInternalLinkage; }
// Translation error flagging. If support for some construct is
// known to be missing, instead of an assertion failure, setError()
// should be called and the error should be propagated back up.
// This way, we can gracefully fail to translate and let a fallback
// translator handle the function.
void setError(const IceString &Message);
bool hasError() const { return HasError; }
IceString getError() const { return ErrorMessage; }
// Manage nodes (a.k.a. basic blocks, CfgNodes).
void setEntryNode(CfgNode *EntryNode) { Entry = EntryNode; }
CfgNode *getEntryNode() const { return Entry; }
// Create a node and append it to the end of the linearized list.
CfgNode *makeNode(const IceString &Name = "");
SizeT getNumNodes() const { return Nodes.size(); }
const NodeList &getNodes() const { return Nodes; }
// Manage instruction numbering.
int32_t newInstNumber() { return NextInstNumber++; }
// Manage Variables.
Variable *makeVariable(Type Ty, const CfgNode *Node,
const IceString &Name = "");
SizeT getNumVariables() const { return Variables.size(); }
const VarList &getVariables() const { return Variables; }
// Manage arguments to the function.
void addArg(Variable *Arg);
const VarList &getArgs() const { return Args; }
// Miscellaneous accessors.
TargetLowering *getTarget() const { return Target.get(); }
bool hasComputedFrame() const;
// Passes over the CFG.
void translate();
// After the CFG is fully constructed, iterate over the nodes and
// compute the predecessor edges, in the form of
// CfgNode::InEdges[].
void computePredecessors();
void placePhiLoads();
void placePhiStores();
void deletePhis();
void genCode();
void genFrame();
// Manage the CurrentNode field, which is used for validating the
// Variable::DefNode field during dumping/emitting.
void setCurrentNode(const CfgNode *Node) { CurrentNode = Node; }
const CfgNode *getCurrentNode() const { return CurrentNode; }
void emit();
void dump();
// Allocate data of type T using the per-Cfg allocator.
template <typename T> T *allocate() { return Allocator.Allocate<T>(); }
// Allocate an instruction of type T using the per-Cfg instruction allocator.
template <typename T> T *allocateInst() { return Allocator.Allocate<T>(); }
// Allocate an array of data of type T using the per-Cfg allocator.
template <typename T> T *allocateArrayOf(size_t NumElems) {
return Allocator.Allocate<T>(NumElems);
}
// Deallocate data that was allocated via allocate<T>().
template <typename T> void deallocate(T *Object) {
Allocator.Deallocate(Object);
}
// Deallocate data that was allocated via allocateInst<T>().
template <typename T> void deallocateInst(T *Instr) {
Allocator.Deallocate(Instr);
}
// Deallocate data that was allocated via allocateArrayOf<T>().
template <typename T> void deallocateArrayOf(T *Array) {
Allocator.Deallocate(Array);
}
private:
// TODO: for now, everything is allocated from the same allocator. In the
// future we may want to split this to several allocators, for example in
// order to use a "Recycler" to preserve memory. If we keep all allocation
// requests from the Cfg exposed via methods, we can always switch the
// implementation over at a later point.
llvm::BumpPtrAllocator Allocator;
GlobalContext *Ctx;
IceString FunctionName;
Type ReturnType;
bool IsInternalLinkage;
bool HasError;
IceString ErrorMessage;
CfgNode *Entry; // entry basic block
NodeList Nodes; // linearized node list; Entry should be first
int32_t NextInstNumber;
VarList Variables;
VarList Args; // subset of Variables, in argument order
llvm::OwningPtr<TargetLowering> Target;
// CurrentNode is maintained during dumping/emitting just for
// validating Variable::DefNode. Normally, a traversal over
// CfgNodes maintains this, but before global operations like
// register allocation, setCurrentNode(NULL) should be called to
// avoid spurious validation failures.
const CfgNode *CurrentNode;
Cfg(const Cfg &) LLVM_DELETED_FUNCTION;
Cfg &operator=(const Cfg &) LLVM_DELETED_FUNCTION;
};
} // end of namespace Ice
#endif // SUBZERO_SRC_ICECFG_H