blob: c00b2c77538a49faf6b7fe37af067b0fccda7094 [file] [log] [blame]
//===- subzero/src/IceCfgNode.cpp - Basic block (node) implementation -----===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the CfgNode class, including the complexities
// of instruction insertion and in-edge calculation.
//
//===----------------------------------------------------------------------===//
#include "IceCfg.h"
#include "IceCfgNode.h"
#include "IceInst.h"
#include "IceOperand.h"
#include "IceTargetLowering.h"
namespace Ice {
CfgNode::CfgNode(Cfg *Func, SizeT LabelNumber, IceString Name)
: Func(Func), Number(LabelNumber), Name(Name), HasReturn(false) {}
// Returns the name the node was created with. If no name was given,
// it synthesizes a (hopefully) unique name.
IceString CfgNode::getName() const {
if (!Name.empty())
return Name;
char buf[30];
snprintf(buf, llvm::array_lengthof(buf), "__%u", getIndex());
return buf;
}
// Adds an instruction to either the Phi list or the regular
// instruction list. Validates that all Phis are added before all
// regular instructions.
void CfgNode::appendInst(Inst *Inst) {
if (InstPhi *Phi = llvm::dyn_cast<InstPhi>(Inst)) {
if (!Insts.empty()) {
Func->setError("Phi instruction added to the middle of a block");
return;
}
Phis.push_back(Phi);
} else {
Insts.push_back(Inst);
}
Inst->updateVars(this);
}
// When a node is created, the OutEdges are immediately knows, but the
// InEdges have to be built up incrementally. After the CFG has been
// constructed, the computePredecessors() pass finalizes it by
// creating the InEdges list.
void CfgNode::computePredecessors() {
OutEdges = (*Insts.rbegin())->getTerminatorEdges();
for (NodeList::const_iterator I = OutEdges.begin(), E = OutEdges.end();
I != E; ++I) {
CfgNode *Node = *I;
Node->InEdges.push_back(this);
}
}
// This does part 1 of Phi lowering, by creating a new dest variable
// for each Phi instruction, replacing the Phi instruction's dest with
// that variable, and adding an explicit assignment of the old dest to
// the new dest. For example,
// a=phi(...)
// changes to
// "a_phi=phi(...); a=a_phi".
//
// This is in preparation for part 2 which deletes the Phi
// instructions and appends assignment instructions to predecessor
// blocks. Note that this transformation preserves SSA form.
void CfgNode::placePhiLoads() {
for (PhiList::iterator I = Phis.begin(), E = Phis.end(); I != E; ++I) {
Inst *Inst = (*I)->lower(Func, this);
Insts.insert(Insts.begin(), Inst);
Inst->updateVars(this);
}
}
// This does part 2 of Phi lowering. For each Phi instruction at each
// out-edge, create a corresponding assignment instruction, and add
// all the assignments near the end of this block. They need to be
// added before any branch instruction, and also if the block ends
// with a compare instruction followed by a branch instruction that we
// may want to fuse, it's better to insert the new assignments before
// the compare instruction.
//
// Note that this transformation takes the Phi dest variables out of
// SSA form, as there may be assignments to the dest variable in
// multiple blocks.
//
// TODO: Defer this pass until after register allocation, then split
// critical edges, add the assignments, and lower them. This should
// reduce the amount of shuffling at the end of each block.
void CfgNode::placePhiStores() {
// Find the insertion point. TODO: After branch/compare fusing is
// implemented, try not to insert Phi stores between the compare and
// conditional branch instructions, otherwise the branch/compare
// pattern matching may fail. However, the branch/compare sequence
// will have to be broken if the compare result is read (by the
// assignment) before it is written (by the compare).
InstList::iterator InsertionPoint = Insts.end();
// Every block must end in a terminator instruction.
assert(InsertionPoint != Insts.begin());
--InsertionPoint;
// Confirm via assert() that InsertionPoint is a terminator
// instruction. Calling getTerminatorEdges() on a non-terminator
// instruction will cause an llvm_unreachable().
assert(((*InsertionPoint)->getTerminatorEdges(), true));
// Consider every out-edge.
for (NodeList::const_iterator I1 = OutEdges.begin(), E1 = OutEdges.end();
I1 != E1; ++I1) {
CfgNode *Target = *I1;
// Consider every Phi instruction at the out-edge.
for (PhiList::const_iterator I2 = Target->Phis.begin(),
E2 = Target->Phis.end();
I2 != E2; ++I2) {
Operand *Operand = (*I2)->getOperandForTarget(this);
assert(Operand);
Variable *Dest = (*I2)->getDest();
assert(Dest);
InstAssign *NewInst = InstAssign::create(Func, Dest, Operand);
// If Src is a variable, set the Src and Dest variables to
// prefer each other for register allocation.
if (Variable *Src = llvm::dyn_cast<Variable>(Operand)) {
bool AllowOverlap = false;
Dest->setPreferredRegister(Src, AllowOverlap);
Src->setPreferredRegister(Dest, AllowOverlap);
}
Insts.insert(InsertionPoint, NewInst);
NewInst->updateVars(this);
}
}
}
// Deletes the phi instructions after the loads and stores are placed.
void CfgNode::deletePhis() {
for (PhiList::iterator I = Phis.begin(), E = Phis.end(); I != E; ++I) {
(*I)->setDeleted();
}
}
// Drives the target lowering. Passes the current instruction and the
// next non-deleted instruction for target lowering.
void CfgNode::genCode() {
TargetLowering *Target = Func->getTarget();
LoweringContext &Context = Target->getContext();
// Lower only the regular instructions. Defer the Phi instructions.
Context.init(this);
while (!Context.atEnd()) {
InstList::iterator Orig = Context.getCur();
if (llvm::isa<InstRet>(*Orig))
setHasReturn();
Target->lower();
// Ensure target lowering actually moved the cursor.
assert(Context.getCur() != Orig);
}
}
// ======================== Dump routines ======================== //
void CfgNode::emit(Cfg *Func) const {
Func->setCurrentNode(this);
Ostream &Str = Func->getContext()->getStrEmit();
if (Func->getEntryNode() == this) {
Str << Func->getContext()->mangleName(Func->getFunctionName()) << ":\n";
}
Str << getAsmName() << ":\n";
for (PhiList::const_iterator I = Phis.begin(), E = Phis.end(); I != E; ++I) {
InstPhi *Inst = *I;
if (Inst->isDeleted())
continue;
// Emitting a Phi instruction should cause an error.
Inst->emit(Func);
}
for (InstList::const_iterator I = Insts.begin(), E = Insts.end(); I != E;
++I) {
Inst *Inst = *I;
if (Inst->isDeleted())
continue;
// Here we detect redundant assignments like "mov eax, eax" and
// suppress them.
if (Inst->isRedundantAssign())
continue;
(*I)->emit(Func);
}
}
void CfgNode::dump(Cfg *Func) const {
Func->setCurrentNode(this);
Ostream &Str = Func->getContext()->getStrDump();
if (Func->getContext()->isVerbose(IceV_Instructions)) {
Str << getName() << ":\n";
}
// Dump list of predecessor nodes.
if (Func->getContext()->isVerbose(IceV_Preds) && !InEdges.empty()) {
Str << " // preds = ";
for (NodeList::const_iterator I = InEdges.begin(), E = InEdges.end();
I != E; ++I) {
if (I != InEdges.begin())
Str << ", ";
Str << "%" << (*I)->getName();
}
Str << "\n";
}
// Dump each instruction.
if (Func->getContext()->isVerbose(IceV_Instructions)) {
for (PhiList::const_iterator I = Phis.begin(), E = Phis.end(); I != E;
++I) {
const Inst *Inst = *I;
Inst->dumpDecorated(Func);
}
InstList::const_iterator I = Insts.begin(), E = Insts.end();
while (I != E) {
Inst *Inst = *I++;
Inst->dumpDecorated(Func);
}
}
// Dump list of successor nodes.
if (Func->getContext()->isVerbose(IceV_Succs)) {
Str << " // succs = ";
for (NodeList::const_iterator I = OutEdges.begin(), E = OutEdges.end();
I != E; ++I) {
if (I != OutEdges.begin())
Str << ", ";
Str << "%" << (*I)->getName();
}
Str << "\n";
}
}
} // end of namespace Ice