blob: 32246c4bef031382ea1e53fe8224c2cfab032ef3 [file] [log] [blame]
//===- subzero/src/IceTargetLoweringX8632.cpp - x86-32 lowering -----------===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TargetLoweringX8632 class, which
// consists almost entirely of the lowering sequence for each
// high-level instruction. It also implements
// TargetX8632Fast::postLower() which does the simplest possible
// register allocation for the "fast" target.
//
//===----------------------------------------------------------------------===//
#include "IceDefs.h"
#include "IceCfg.h"
#include "IceCfgNode.h"
#include "IceInstX8632.h"
#include "IceOperand.h"
#include "IceTargetLoweringX8632.def"
#include "IceTargetLoweringX8632.h"
namespace Ice {
namespace {
// The following table summarizes the logic for lowering the fcmp instruction.
// There is one table entry for each of the 16 conditions. A comment in
// lowerFcmp() describes the lowering template. In the most general case, there
// is a compare followed by two conditional branches, because some fcmp
// conditions don't map to a single x86 conditional branch. However, in many
// cases it is possible to swap the operands in the comparison and have a single
// conditional branch. Since it's quite tedious to validate the table by hand,
// good execution tests are helpful.
const struct TableFcmp_ {
uint32_t Default;
bool SwapOperands;
InstX8632Br::BrCond C1, C2;
} TableFcmp[] = {
#define X(val, dflt, swap, C1, C2) \
{ dflt, swap, InstX8632Br::C1, InstX8632Br::C2 } \
,
FCMPX8632_TABLE
#undef X
};
const size_t TableFcmpSize = llvm::array_lengthof(TableFcmp);
// The following table summarizes the logic for lowering the icmp instruction
// for i32 and narrower types. Each icmp condition has a clear mapping to an
// x86 conditional branch instruction.
const struct TableIcmp32_ {
InstX8632Br::BrCond Mapping;
} TableIcmp32[] = {
#define X(val, C_32, C1_64, C2_64, C3_64) \
{ InstX8632Br::C_32 } \
,
ICMPX8632_TABLE
#undef X
};
const size_t TableIcmp32Size = llvm::array_lengthof(TableIcmp32);
// The following table summarizes the logic for lowering the icmp instruction
// for the i64 type. For Eq and Ne, two separate 32-bit comparisons and
// conditional branches are needed. For the other conditions, three separate
// conditional branches are needed.
const struct TableIcmp64_ {
InstX8632Br::BrCond C1, C2, C3;
} TableIcmp64[] = {
#define X(val, C_32, C1_64, C2_64, C3_64) \
{ InstX8632Br::C1_64, InstX8632Br::C2_64, InstX8632Br::C3_64 } \
,
ICMPX8632_TABLE
#undef X
};
const size_t TableIcmp64Size = llvm::array_lengthof(TableIcmp64);
InstX8632Br::BrCond getIcmp32Mapping(InstIcmp::ICond Cond) {
size_t Index = static_cast<size_t>(Cond);
assert(Index < TableIcmp32Size);
return TableIcmp32[Index].Mapping;
}
// In some cases, there are x-macros tables for both high-level and
// low-level instructions/operands that use the same enum key value.
// The tables are kept separate to maintain a proper separation
// between abstraction layers. There is a risk that the tables
// could get out of sync if enum values are reordered or if entries
// are added or deleted. This dummy function uses static_assert to
// ensure everything is kept in sync.
void xMacroIntegrityCheck() {
// Validate the enum values in FCMPX8632_TABLE.
{
// Define a temporary set of enum values based on low-level
// table entries.
enum _tmp_enum {
#define X(val, dflt, swap, C1, C2) _tmp_##val,
FCMPX8632_TABLE
#undef X
};
// Define a set of constants based on high-level table entries.
#define X(tag, str) static const int _table1_##tag = InstFcmp::tag;
ICEINSTFCMP_TABLE;
#undef X
// Define a set of constants based on low-level table entries,
// and ensure the table entry keys are consistent.
#define X(val, dflt, swap, C1, C2) \
static const int _table2_##val = _tmp_##val; \
STATIC_ASSERT(_table1_##val == _table2_##val);
FCMPX8632_TABLE;
#undef X
// Repeat the static asserts with respect to the high-level
// table entries in case the high-level table has extra entries.
#define X(tag, str) STATIC_ASSERT(_table1_##tag == _table2_##tag);
ICEINSTFCMP_TABLE;
#undef X
}
// Validate the enum values in ICMPX8632_TABLE.
{
// Define a temporary set of enum values based on low-level
// table entries.
enum _tmp_enum {
#define X(val, C_32, C1_64, C2_64, C3_64) _tmp_##val,
ICMPX8632_TABLE
#undef X
};
// Define a set of constants based on high-level table entries.
#define X(tag, str) static const int _table1_##tag = InstIcmp::tag;
ICEINSTICMP_TABLE;
#undef X
// Define a set of constants based on low-level table entries,
// and ensure the table entry keys are consistent.
#define X(val, C_32, C1_64, C2_64, C3_64) \
static const int _table2_##val = _tmp_##val; \
STATIC_ASSERT(_table1_##val == _table2_##val);
ICMPX8632_TABLE;
#undef X
// Repeat the static asserts with respect to the high-level
// table entries in case the high-level table has extra entries.
#define X(tag, str) STATIC_ASSERT(_table1_##tag == _table2_##tag);
ICEINSTICMP_TABLE;
#undef X
}
// Validate the enum values in ICETYPEX8632_TABLE.
{
// Define a temporary set of enum values based on low-level
// table entries.
enum _tmp_enum {
#define X(tag, cvt, sdss, width) _tmp_##tag,
ICETYPEX8632_TABLE
#undef X
};
// Define a set of constants based on high-level table entries.
#define X(tag, size, align, str) static const int _table1_##tag = tag;
ICETYPE_TABLE;
#undef X
// Define a set of constants based on low-level table entries,
// and ensure the table entry keys are consistent.
#define X(tag, cvt, sdss, width) \
static const int _table2_##tag = _tmp_##tag; \
STATIC_ASSERT(_table1_##tag == _table2_##tag);
ICETYPEX8632_TABLE;
#undef X
// Repeat the static asserts with respect to the high-level
// table entries in case the high-level table has extra entries.
#define X(tag, size, align, str) STATIC_ASSERT(_table1_##tag == _table2_##tag);
ICETYPE_TABLE;
#undef X
}
}
} // end of anonymous namespace
TargetX8632::TargetX8632(Cfg *Func)
: TargetLowering(Func), IsEbpBasedFrame(false), FrameSizeLocals(0),
LocalsSizeBytes(0), NextLabelNumber(0), ComputedLiveRanges(false),
PhysicalRegisters(VarList(Reg_NUM)) {
// TODO: Don't initialize IntegerRegisters and friends every time.
// Instead, initialize in some sort of static initializer for the
// class.
llvm::SmallBitVector IntegerRegisters(Reg_NUM);
llvm::SmallBitVector IntegerRegistersI8(Reg_NUM);
llvm::SmallBitVector FloatRegisters(Reg_NUM);
llvm::SmallBitVector InvalidRegisters(Reg_NUM);
ScratchRegs.resize(Reg_NUM);
#define X(val, init, name, name16, name8, scratch, preserved, stackptr, \
frameptr, isI8, isInt, isFP) \
IntegerRegisters[val] = isInt; \
IntegerRegistersI8[val] = isI8; \
FloatRegisters[val] = isFP; \
ScratchRegs[val] = scratch;
REGX8632_TABLE;
#undef X
TypeToRegisterSet[IceType_void] = InvalidRegisters;
TypeToRegisterSet[IceType_i1] = IntegerRegistersI8;
TypeToRegisterSet[IceType_i8] = IntegerRegistersI8;
TypeToRegisterSet[IceType_i16] = IntegerRegisters;
TypeToRegisterSet[IceType_i32] = IntegerRegisters;
TypeToRegisterSet[IceType_i64] = IntegerRegisters;
TypeToRegisterSet[IceType_f32] = FloatRegisters;
TypeToRegisterSet[IceType_f64] = FloatRegisters;
}
void TargetX8632::translateOm1() {
GlobalContext *Context = Func->getContext();
Ostream &Str = Context->getStrDump();
Timer T_placePhiLoads;
Func->placePhiLoads();
if (Func->hasError())
return;
T_placePhiLoads.printElapsedUs(Context, "placePhiLoads()");
Timer T_placePhiStores;
Func->placePhiStores();
if (Func->hasError())
return;
T_placePhiStores.printElapsedUs(Context, "placePhiStores()");
Timer T_deletePhis;
Func->deletePhis();
if (Func->hasError())
return;
T_deletePhis.printElapsedUs(Context, "deletePhis()");
if (Context->isVerbose()) {
Str << "================ After Phi lowering ================\n";
Func->dump();
}
Timer T_genCode;
Func->genCode();
if (Func->hasError())
return;
T_genCode.printElapsedUs(Context, "genCode()");
if (Context->isVerbose()) {
Str << "================ After initial x8632 codegen ================\n";
Func->dump();
}
Timer T_genFrame;
Func->genFrame();
if (Func->hasError())
return;
T_genFrame.printElapsedUs(Context, "genFrame()");
if (Context->isVerbose()) {
Str << "================ After stack frame mapping ================\n";
Func->dump();
}
}
IceString TargetX8632::RegNames[] = {
#define X(val, init, name, name16, name8, scratch, preserved, stackptr, \
frameptr, isI8, isInt, isFP) \
name,
REGX8632_TABLE
#undef X
};
Variable *TargetX8632::getPhysicalRegister(SizeT RegNum) {
assert(RegNum < PhysicalRegisters.size());
Variable *Reg = PhysicalRegisters[RegNum];
if (Reg == NULL) {
CfgNode *Node = NULL; // NULL means multi-block lifetime
Reg = Func->makeVariable(IceType_i32, Node);
Reg->setRegNum(RegNum);
PhysicalRegisters[RegNum] = Reg;
}
return Reg;
}
IceString TargetX8632::getRegName(SizeT RegNum, Type Ty) const {
assert(RegNum < Reg_NUM);
static IceString RegNames8[] = {
#define X(val, init, name, name16, name8, scratch, preserved, stackptr, \
frameptr, isI8, isInt, isFP) \
"" name8,
REGX8632_TABLE
#undef X
};
static IceString RegNames16[] = {
#define X(val, init, name, name16, name8, scratch, preserved, stackptr, \
frameptr, isI8, isInt, isFP) \
"" name16,
REGX8632_TABLE
#undef X
};
switch (Ty) {
case IceType_i1:
case IceType_i8:
return RegNames8[RegNum];
case IceType_i16:
return RegNames16[RegNum];
default:
return RegNames[RegNum];
}
}
void TargetX8632::emitVariable(const Variable *Var, const Cfg *Func) const {
Ostream &Str = Ctx->getStrEmit();
assert(Var->getLocalUseNode() == NULL ||
Var->getLocalUseNode() == Func->getCurrentNode());
if (Var->hasReg()) {
Str << getRegName(Var->getRegNum(), Var->getType());
return;
}
Str << InstX8632::getWidthString(Var->getType());
Str << " [" << getRegName(getFrameOrStackReg(), IceType_i32);
int32_t Offset = Var->getStackOffset() + getStackAdjustment();
if (Offset) {
if (Offset > 0)
Str << "+";
Str << Offset;
}
Str << "]";
}
// Helper function for addProlog(). Sets the frame offset for Arg,
// updates InArgsSizeBytes according to Arg's width, and generates an
// instruction to copy Arg into its assigned register if applicable.
// For an I64 arg that has been split into Lo and Hi components, it
// calls itself recursively on the components, taking care to handle
// Lo first because of the little-endian architecture.
void TargetX8632::setArgOffsetAndCopy(Variable *Arg, Variable *FramePtr,
int32_t BasicFrameOffset,
int32_t &InArgsSizeBytes) {
Variable *Lo = Arg->getLo();
Variable *Hi = Arg->getHi();
Type Ty = Arg->getType();
if (Lo && Hi && Ty == IceType_i64) {
assert(Lo->getType() != IceType_i64); // don't want infinite recursion
assert(Hi->getType() != IceType_i64); // don't want infinite recursion
setArgOffsetAndCopy(Lo, FramePtr, BasicFrameOffset, InArgsSizeBytes);
setArgOffsetAndCopy(Hi, FramePtr, BasicFrameOffset, InArgsSizeBytes);
return;
}
Arg->setStackOffset(BasicFrameOffset + InArgsSizeBytes);
if (Arg->hasReg()) {
assert(Ty != IceType_i64);
OperandX8632Mem *Mem = OperandX8632Mem::create(
Func, Ty, FramePtr,
Ctx->getConstantInt(IceType_i32, Arg->getStackOffset()));
_mov(Arg, Mem);
}
InArgsSizeBytes += typeWidthInBytesOnStack(Ty);
}
void TargetX8632::addProlog(CfgNode *Node) {
// If SimpleCoalescing is false, each variable without a register
// gets its own unique stack slot, which leads to large stack
// frames. If SimpleCoalescing is true, then each "global" variable
// without a register gets its own slot, but "local" variable slots
// are reused across basic blocks. E.g., if A and B are local to
// block 1 and C is local to block 2, then C may share a slot with A
// or B.
const bool SimpleCoalescing = true;
int32_t InArgsSizeBytes = 0;
int32_t RetIpSizeBytes = 4;
int32_t PreservedRegsSizeBytes = 0;
LocalsSizeBytes = 0;
Context.init(Node);
Context.setInsertPoint(Context.getCur());
// Determine stack frame offsets for each Variable without a
// register assignment. This can be done as one variable per stack
// slot. Or, do coalescing by running the register allocator again
// with an infinite set of registers (as a side effect, this gives
// variables a second chance at physical register assignment).
//
// A middle ground approach is to leverage sparsity and allocate one
// block of space on the frame for globals (variables with
// multi-block lifetime), and one block to share for locals
// (single-block lifetime).
llvm::SmallBitVector CalleeSaves =
getRegisterSet(RegSet_CalleeSave, RegSet_None);
int32_t GlobalsSize = 0;
std::vector<int> LocalsSize(Func->getNumNodes());
// Prepass. Compute RegsUsed, PreservedRegsSizeBytes, and
// LocalsSizeBytes.
RegsUsed = llvm::SmallBitVector(CalleeSaves.size());
const VarList &Variables = Func->getVariables();
const VarList &Args = Func->getArgs();
for (VarList::const_iterator I = Variables.begin(), E = Variables.end();
I != E; ++I) {
Variable *Var = *I;
if (Var->hasReg()) {
RegsUsed[Var->getRegNum()] = true;
continue;
}
// An argument passed on the stack already has a stack slot.
if (Var->getIsArg())
continue;
// A spill slot linked to a variable with a stack slot should reuse
// that stack slot.
if (Var->getWeight() == RegWeight::Zero && Var->getRegisterOverlap()) {
if (Variable *Linked = Var->getPreferredRegister()) {
if (!Linked->hasReg())
continue;
}
}
int32_t Increment = typeWidthInBytesOnStack(Var->getType());
if (SimpleCoalescing) {
if (Var->isMultiblockLife()) {
GlobalsSize += Increment;
} else {
SizeT NodeIndex = Var->getLocalUseNode()->getIndex();
LocalsSize[NodeIndex] += Increment;
if (LocalsSize[NodeIndex] > LocalsSizeBytes)
LocalsSizeBytes = LocalsSize[NodeIndex];
}
} else {
LocalsSizeBytes += Increment;
}
}
LocalsSizeBytes += GlobalsSize;
// Add push instructions for preserved registers.
for (SizeT i = 0; i < CalleeSaves.size(); ++i) {
if (CalleeSaves[i] && RegsUsed[i]) {
PreservedRegsSizeBytes += 4;
const bool SuppressStackAdjustment = true;
_push(getPhysicalRegister(i), SuppressStackAdjustment);
}
}
// Generate "push ebp; mov ebp, esp"
if (IsEbpBasedFrame) {
assert((RegsUsed & getRegisterSet(RegSet_FramePointer, RegSet_None))
.count() == 0);
PreservedRegsSizeBytes += 4;
Variable *ebp = getPhysicalRegister(Reg_ebp);
Variable *esp = getPhysicalRegister(Reg_esp);
const bool SuppressStackAdjustment = true;
_push(ebp, SuppressStackAdjustment);
_mov(ebp, esp);
}
// Generate "sub esp, LocalsSizeBytes"
if (LocalsSizeBytes)
_sub(getPhysicalRegister(Reg_esp),
Ctx->getConstantInt(IceType_i32, LocalsSizeBytes));
resetStackAdjustment();
// Fill in stack offsets for args, and copy args into registers for
// those that were register-allocated. Args are pushed right to
// left, so Arg[0] is closest to the stack/frame pointer.
//
// TODO: Make this right for different width args, calling
// conventions, etc. For one thing, args passed in registers will
// need to be copied/shuffled to their home registers (the
// RegManager code may have some permutation logic to leverage),
// and if they have no home register, home space will need to be
// allocated on the stack to copy into.
Variable *FramePtr = getPhysicalRegister(getFrameOrStackReg());
int32_t BasicFrameOffset = PreservedRegsSizeBytes + RetIpSizeBytes;
if (!IsEbpBasedFrame)
BasicFrameOffset += LocalsSizeBytes;
for (SizeT i = 0; i < Args.size(); ++i) {
Variable *Arg = Args[i];
setArgOffsetAndCopy(Arg, FramePtr, BasicFrameOffset, InArgsSizeBytes);
}
// Fill in stack offsets for locals.
int32_t TotalGlobalsSize = GlobalsSize;
GlobalsSize = 0;
LocalsSize.assign(LocalsSize.size(), 0);
int32_t NextStackOffset = 0;
for (VarList::const_iterator I = Variables.begin(), E = Variables.end();
I != E; ++I) {
Variable *Var = *I;
if (Var->hasReg()) {
RegsUsed[Var->getRegNum()] = true;
continue;
}
if (Var->getIsArg())
continue;
if (Var->getWeight() == RegWeight::Zero && Var->getRegisterOverlap()) {
if (Variable *Linked = Var->getPreferredRegister()) {
if (!Linked->hasReg()) {
// TODO: Make sure Linked has already been assigned a stack
// slot.
Var->setStackOffset(Linked->getStackOffset());
continue;
}
}
}
int32_t Increment = typeWidthInBytesOnStack(Var->getType());
if (SimpleCoalescing) {
if (Var->isMultiblockLife()) {
GlobalsSize += Increment;
NextStackOffset = GlobalsSize;
} else {
SizeT NodeIndex = Var->getLocalUseNode()->getIndex();
LocalsSize[NodeIndex] += Increment;
NextStackOffset = TotalGlobalsSize + LocalsSize[NodeIndex];
}
} else {
NextStackOffset += Increment;
}
if (IsEbpBasedFrame)
Var->setStackOffset(-NextStackOffset);
else
Var->setStackOffset(LocalsSizeBytes - NextStackOffset);
}
this->FrameSizeLocals = NextStackOffset;
this->HasComputedFrame = true;
if (Func->getContext()->isVerbose(IceV_Frame)) {
Func->getContext()->getStrDump() << "LocalsSizeBytes=" << LocalsSizeBytes
<< "\n"
<< "InArgsSizeBytes=" << InArgsSizeBytes
<< "\n"
<< "PreservedRegsSizeBytes="
<< PreservedRegsSizeBytes << "\n";
}
}
void TargetX8632::addEpilog(CfgNode *Node) {
InstList &Insts = Node->getInsts();
InstList::reverse_iterator RI, E;
for (RI = Insts.rbegin(), E = Insts.rend(); RI != E; ++RI) {
if (llvm::isa<InstX8632Ret>(*RI))
break;
}
if (RI == E)
return;
// Convert the reverse_iterator position into its corresponding
// (forward) iterator position.
InstList::iterator InsertPoint = RI.base();
--InsertPoint;
Context.init(Node);
Context.setInsertPoint(InsertPoint);
Variable *esp = getPhysicalRegister(Reg_esp);
if (IsEbpBasedFrame) {
Variable *ebp = getPhysicalRegister(Reg_ebp);
_mov(esp, ebp);
_pop(ebp);
} else {
// add esp, LocalsSizeBytes
if (LocalsSizeBytes)
_add(esp, Ctx->getConstantInt(IceType_i32, LocalsSizeBytes));
}
// Add pop instructions for preserved registers.
llvm::SmallBitVector CalleeSaves =
getRegisterSet(RegSet_CalleeSave, RegSet_None);
for (SizeT i = 0; i < CalleeSaves.size(); ++i) {
SizeT j = CalleeSaves.size() - i - 1;
if (j == Reg_ebp && IsEbpBasedFrame)
continue;
if (CalleeSaves[j] && RegsUsed[j]) {
_pop(getPhysicalRegister(j));
}
}
}
void TargetX8632::split64(Variable *Var) {
switch (Var->getType()) {
default:
return;
case IceType_i64:
// TODO: Only consider F64 if we need to push each half when
// passing as an argument to a function call. Note that each half
// is still typed as I32.
case IceType_f64:
break;
}
Variable *Lo = Var->getLo();
Variable *Hi = Var->getHi();
if (Lo) {
assert(Hi);
return;
}
assert(Hi == NULL);
Lo = Func->makeVariable(IceType_i32, Context.getNode(),
Var->getName() + "__lo");
Hi = Func->makeVariable(IceType_i32, Context.getNode(),
Var->getName() + "__hi");
Var->setLoHi(Lo, Hi);
if (Var->getIsArg()) {
Lo->setIsArg(Func);
Hi->setIsArg(Func);
}
}
Operand *TargetX8632::loOperand(Operand *Operand) {
assert(Operand->getType() == IceType_i64);
if (Operand->getType() != IceType_i64)
return Operand;
if (Variable *Var = llvm::dyn_cast<Variable>(Operand)) {
split64(Var);
return Var->getLo();
}
if (ConstantInteger *Const = llvm::dyn_cast<ConstantInteger>(Operand)) {
uint64_t Mask = (1ull << 32) - 1;
return Ctx->getConstantInt(IceType_i32, Const->getValue() & Mask);
}
if (OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(Operand)) {
return OperandX8632Mem::create(Func, IceType_i32, Mem->getBase(),
Mem->getOffset(), Mem->getIndex(),
Mem->getShift());
}
llvm_unreachable("Unsupported operand type");
return NULL;
}
Operand *TargetX8632::hiOperand(Operand *Operand) {
assert(Operand->getType() == IceType_i64);
if (Operand->getType() != IceType_i64)
return Operand;
if (Variable *Var = llvm::dyn_cast<Variable>(Operand)) {
split64(Var);
return Var->getHi();
}
if (ConstantInteger *Const = llvm::dyn_cast<ConstantInteger>(Operand)) {
return Ctx->getConstantInt(IceType_i32, Const->getValue() >> 32);
}
if (OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(Operand)) {
Constant *Offset = Mem->getOffset();
if (Offset == NULL)
Offset = Ctx->getConstantInt(IceType_i32, 4);
else if (ConstantInteger *IntOffset =
llvm::dyn_cast<ConstantInteger>(Offset)) {
Offset = Ctx->getConstantInt(IceType_i32, 4 + IntOffset->getValue());
} else if (ConstantRelocatable *SymOffset =
llvm::dyn_cast<ConstantRelocatable>(Offset)) {
Offset = Ctx->getConstantSym(IceType_i32, 4 + SymOffset->getOffset(),
SymOffset->getName());
}
return OperandX8632Mem::create(Func, IceType_i32, Mem->getBase(), Offset,
Mem->getIndex(), Mem->getShift());
}
llvm_unreachable("Unsupported operand type");
return NULL;
}
llvm::SmallBitVector TargetX8632::getRegisterSet(RegSetMask Include,
RegSetMask Exclude) const {
llvm::SmallBitVector Registers(Reg_NUM);
#define X(val, init, name, name16, name8, scratch, preserved, stackptr, \
frameptr, isI8, isInt, isFP) \
if (scratch && (Include & RegSet_CallerSave)) \
Registers[val] = true; \
if (preserved && (Include & RegSet_CalleeSave)) \
Registers[val] = true; \
if (stackptr && (Include & RegSet_StackPointer)) \
Registers[val] = true; \
if (frameptr && (Include & RegSet_FramePointer)) \
Registers[val] = true; \
if (scratch && (Exclude & RegSet_CallerSave)) \
Registers[val] = false; \
if (preserved && (Exclude & RegSet_CalleeSave)) \
Registers[val] = false; \
if (stackptr && (Exclude & RegSet_StackPointer)) \
Registers[val] = false; \
if (frameptr && (Exclude & RegSet_FramePointer)) \
Registers[val] = false;
REGX8632_TABLE
#undef X
return Registers;
}
void TargetX8632::lowerAlloca(const InstAlloca *Inst) {
IsEbpBasedFrame = true;
// TODO(sehr,stichnot): align allocated memory, keep stack aligned, minimize
// the number of adjustments of esp, etc.
Variable *esp = getPhysicalRegister(Reg_esp);
Operand *TotalSize = legalize(Inst->getSizeInBytes());
Variable *Dest = Inst->getDest();
_sub(esp, TotalSize);
_mov(Dest, esp);
}
void TargetX8632::lowerArithmetic(const InstArithmetic *Inst) {
Variable *Dest = Inst->getDest();
Operand *Src0 = legalize(Inst->getSrc(0));
Operand *Src1 = legalize(Inst->getSrc(1));
if (Dest->getType() == IceType_i64) {
Variable *DestLo = llvm::cast<Variable>(loOperand(Dest));
Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest));
Operand *Src0Lo = loOperand(Src0);
Operand *Src0Hi = hiOperand(Src0);
Operand *Src1Lo = loOperand(Src1);
Operand *Src1Hi = hiOperand(Src1);
Variable *T_Lo = NULL, *T_Hi = NULL;
switch (Inst->getOp()) {
case InstArithmetic::Add:
_mov(T_Lo, Src0Lo);
_add(T_Lo, Src1Lo);
_mov(DestLo, T_Lo);
_mov(T_Hi, Src0Hi);
_adc(T_Hi, Src1Hi);
_mov(DestHi, T_Hi);
break;
case InstArithmetic::And:
_mov(T_Lo, Src0Lo);
_and(T_Lo, Src1Lo);
_mov(DestLo, T_Lo);
_mov(T_Hi, Src0Hi);
_and(T_Hi, Src1Hi);
_mov(DestHi, T_Hi);
break;
case InstArithmetic::Or:
_mov(T_Lo, Src0Lo);
_or(T_Lo, Src1Lo);
_mov(DestLo, T_Lo);
_mov(T_Hi, Src0Hi);
_or(T_Hi, Src1Hi);
_mov(DestHi, T_Hi);
break;
case InstArithmetic::Xor:
_mov(T_Lo, Src0Lo);
_xor(T_Lo, Src1Lo);
_mov(DestLo, T_Lo);
_mov(T_Hi, Src0Hi);
_xor(T_Hi, Src1Hi);
_mov(DestHi, T_Hi);
break;
case InstArithmetic::Sub:
_mov(T_Lo, Src0Lo);
_sub(T_Lo, Src1Lo);
_mov(DestLo, T_Lo);
_mov(T_Hi, Src0Hi);
_sbb(T_Hi, Src1Hi);
_mov(DestHi, T_Hi);
break;
case InstArithmetic::Mul: {
Variable *T_1 = NULL, *T_2 = NULL, *T_3 = NULL;
Variable *T_4Lo = makeReg(IceType_i32, Reg_eax);
Variable *T_4Hi = makeReg(IceType_i32, Reg_edx);
// gcc does the following:
// a=b*c ==>
// t1 = b.hi; t1 *=(imul) c.lo
// t2 = c.hi; t2 *=(imul) b.lo
// t3:eax = b.lo
// t4.hi:edx,t4.lo:eax = t3:eax *(mul) c.lo
// a.lo = t4.lo
// t4.hi += t1
// t4.hi += t2
// a.hi = t4.hi
_mov(T_1, Src0Hi);
_imul(T_1, Src1Lo);
_mov(T_2, Src1Hi);
_imul(T_2, Src0Lo);
_mov(T_3, Src0Lo, Reg_eax);
_mul(T_4Lo, T_3, Src1Lo);
// The mul instruction produces two dest variables, edx:eax. We
// create a fake definition of edx to account for this.
Context.insert(InstFakeDef::create(Func, T_4Hi, T_4Lo));
_mov(DestLo, T_4Lo);
_add(T_4Hi, T_1);
_add(T_4Hi, T_2);
_mov(DestHi, T_4Hi);
} break;
case InstArithmetic::Shl: {
// TODO: Refactor the similarities between Shl, Lshr, and Ashr.
// gcc does the following:
// a=b<<c ==>
// t1:ecx = c.lo & 0xff
// t2 = b.lo
// t3 = b.hi
// t3 = shld t3, t2, t1
// t2 = shl t2, t1
// test t1, 0x20
// je L1
// use(t3)
// t3 = t2
// t2 = 0
// L1:
// a.lo = t2
// a.hi = t3
Variable *T_1 = NULL, *T_2 = NULL, *T_3 = NULL;
Constant *BitTest = Ctx->getConstantInt(IceType_i32, 0x20);
Constant *Zero = Ctx->getConstantInt(IceType_i32, 0);
InstX8632Label *Label = InstX8632Label::create(Func, this);
_mov(T_1, Src1Lo, Reg_ecx);
_mov(T_2, Src0Lo);
_mov(T_3, Src0Hi);
_shld(T_3, T_2, T_1);
_shl(T_2, T_1);
_test(T_1, BitTest);
_br(InstX8632Br::Br_e, Label);
// Because of the intra-block control flow, we need to fake a use
// of T_3 to prevent its earlier definition from being dead-code
// eliminated in the presence of its later definition.
Context.insert(InstFakeUse::create(Func, T_3));
_mov(T_3, T_2);
_mov(T_2, Zero);
Context.insert(Label);
_mov(DestLo, T_2);
_mov(DestHi, T_3);
} break;
case InstArithmetic::Lshr: {
// a=b>>c (unsigned) ==>
// t1:ecx = c.lo & 0xff
// t2 = b.lo
// t3 = b.hi
// t2 = shrd t2, t3, t1
// t3 = shr t3, t1
// test t1, 0x20
// je L1
// use(t2)
// t2 = t3
// t3 = 0
// L1:
// a.lo = t2
// a.hi = t3
Variable *T_1 = NULL, *T_2 = NULL, *T_3 = NULL;
Constant *BitTest = Ctx->getConstantInt(IceType_i32, 0x20);
Constant *Zero = Ctx->getConstantInt(IceType_i32, 0);
InstX8632Label *Label = InstX8632Label::create(Func, this);
_mov(T_1, Src1Lo, Reg_ecx);
_mov(T_2, Src0Lo);
_mov(T_3, Src0Hi);
_shrd(T_2, T_3, T_1);
_shr(T_3, T_1);
_test(T_1, BitTest);
_br(InstX8632Br::Br_e, Label);
// Because of the intra-block control flow, we need to fake a use
// of T_3 to prevent its earlier definition from being dead-code
// eliminated in the presence of its later definition.
Context.insert(InstFakeUse::create(Func, T_2));
_mov(T_2, T_3);
_mov(T_3, Zero);
Context.insert(Label);
_mov(DestLo, T_2);
_mov(DestHi, T_3);
} break;
case InstArithmetic::Ashr: {
// a=b>>c (signed) ==>
// t1:ecx = c.lo & 0xff
// t2 = b.lo
// t3 = b.hi
// t2 = shrd t2, t3, t1
// t3 = sar t3, t1
// test t1, 0x20
// je L1
// use(t2)
// t2 = t3
// t3 = sar t3, 0x1f
// L1:
// a.lo = t2
// a.hi = t3
Variable *T_1 = NULL, *T_2 = NULL, *T_3 = NULL;
Constant *BitTest = Ctx->getConstantInt(IceType_i32, 0x20);
Constant *SignExtend = Ctx->getConstantInt(IceType_i32, 0x1f);
InstX8632Label *Label = InstX8632Label::create(Func, this);
_mov(T_1, Src1Lo, Reg_ecx);
_mov(T_2, Src0Lo);
_mov(T_3, Src0Hi);
_shrd(T_2, T_3, T_1);
_sar(T_3, T_1);
_test(T_1, BitTest);
_br(InstX8632Br::Br_e, Label);
// Because of the intra-block control flow, we need to fake a use
// of T_3 to prevent its earlier definition from being dead-code
// eliminated in the presence of its later definition.
Context.insert(InstFakeUse::create(Func, T_2));
_mov(T_2, T_3);
_sar(T_3, SignExtend);
Context.insert(Label);
_mov(DestLo, T_2);
_mov(DestHi, T_3);
} break;
case InstArithmetic::Udiv: {
const SizeT MaxSrcs = 2;
InstCall *Call = makeHelperCall("__udivdi3", Dest, MaxSrcs);
Call->addArg(Inst->getSrc(0));
Call->addArg(Inst->getSrc(1));
lowerCall(Call);
} break;
case InstArithmetic::Sdiv: {
const SizeT MaxSrcs = 2;
InstCall *Call = makeHelperCall("__divdi3", Dest, MaxSrcs);
Call->addArg(Inst->getSrc(0));
Call->addArg(Inst->getSrc(1));
lowerCall(Call);
} break;
case InstArithmetic::Urem: {
const SizeT MaxSrcs = 2;
InstCall *Call = makeHelperCall("__umoddi3", Dest, MaxSrcs);
Call->addArg(Inst->getSrc(0));
Call->addArg(Inst->getSrc(1));
lowerCall(Call);
} break;
case InstArithmetic::Srem: {
const SizeT MaxSrcs = 2;
InstCall *Call = makeHelperCall("__moddi3", Dest, MaxSrcs);
Call->addArg(Inst->getSrc(0));
Call->addArg(Inst->getSrc(1));
lowerCall(Call);
} break;
case InstArithmetic::Fadd:
case InstArithmetic::Fsub:
case InstArithmetic::Fmul:
case InstArithmetic::Fdiv:
case InstArithmetic::Frem:
llvm_unreachable("FP instruction with i64 type");
break;
}
} else { // Dest->getType() != IceType_i64
Variable *T_edx = NULL;
Variable *T = NULL;
switch (Inst->getOp()) {
case InstArithmetic::Add:
_mov(T, Src0);
_add(T, Src1);
_mov(Dest, T);
break;
case InstArithmetic::And:
_mov(T, Src0);
_and(T, Src1);
_mov(Dest, T);
break;
case InstArithmetic::Or:
_mov(T, Src0);
_or(T, Src1);
_mov(Dest, T);
break;
case InstArithmetic::Xor:
_mov(T, Src0);
_xor(T, Src1);
_mov(Dest, T);
break;
case InstArithmetic::Sub:
_mov(T, Src0);
_sub(T, Src1);
_mov(Dest, T);
break;
case InstArithmetic::Mul:
// TODO: Optimize for llvm::isa<Constant>(Src1)
// TODO: Strength-reduce multiplications by a constant,
// particularly -1 and powers of 2. Advanced: use lea to
// multiply by 3, 5, 9.
//
// The 8-bit version of imul only allows the form "imul r/m8"
// where T must be in eax.
if (Dest->getType() == IceType_i8)
_mov(T, Src0, Reg_eax);
else
_mov(T, Src0);
_imul(T, Src1);
_mov(Dest, T);
break;
case InstArithmetic::Shl:
_mov(T, Src0);
if (!llvm::isa<Constant>(Src1))
Src1 = legalizeToVar(Src1, false, Reg_ecx);
_shl(T, Src1);
_mov(Dest, T);
break;
case InstArithmetic::Lshr:
_mov(T, Src0);
if (!llvm::isa<Constant>(Src1))
Src1 = legalizeToVar(Src1, false, Reg_ecx);
_shr(T, Src1);
_mov(Dest, T);
break;
case InstArithmetic::Ashr:
_mov(T, Src0);
if (!llvm::isa<Constant>(Src1))
Src1 = legalizeToVar(Src1, false, Reg_ecx);
_sar(T, Src1);
_mov(Dest, T);
break;
case InstArithmetic::Udiv:
if (Dest->getType() == IceType_i8) {
Variable *T_ah = NULL;
Constant *Zero = Ctx->getConstantInt(IceType_i8, 0);
_mov(T, Src0, Reg_eax);
_mov(T_ah, Zero, Reg_ah);
_div(T, Src1, T_ah);
_mov(Dest, T);
} else {
Constant *Zero = Ctx->getConstantInt(IceType_i32, 0);
_mov(T, Src0, Reg_eax);
_mov(T_edx, Zero, Reg_edx);
_div(T, Src1, T_edx);
_mov(Dest, T);
}
break;
case InstArithmetic::Sdiv:
T_edx = makeReg(IceType_i32, Reg_edx);
_mov(T, Src0, Reg_eax);
_cdq(T_edx, T);
_idiv(T, Src1, T_edx);
_mov(Dest, T);
break;
case InstArithmetic::Urem:
if (Dest->getType() == IceType_i8) {
Variable *T_ah = NULL;
Constant *Zero = Ctx->getConstantInt(IceType_i8, 0);
_mov(T, Src0, Reg_eax);
_mov(T_ah, Zero, Reg_ah);
_div(T_ah, Src1, T);
_mov(Dest, T_ah);
} else {
Constant *Zero = Ctx->getConstantInt(IceType_i32, 0);
_mov(T_edx, Zero, Reg_edx);
_mov(T, Src0, Reg_eax);
_div(T_edx, Src1, T);
_mov(Dest, T_edx);
}
break;
case InstArithmetic::Srem:
T_edx = makeReg(IceType_i32, Reg_edx);
_mov(T, Src0, Reg_eax);
_cdq(T_edx, T);
_idiv(T_edx, Src1, T);
_mov(Dest, T_edx);
break;
case InstArithmetic::Fadd:
_mov(T, Src0);
_addss(T, Src1);
_mov(Dest, T);
break;
case InstArithmetic::Fsub:
_mov(T, Src0);
_subss(T, Src1);
_mov(Dest, T);
break;
case InstArithmetic::Fmul:
_mov(T, Src0);
_mulss(T, Src1);
_mov(Dest, T);
break;
case InstArithmetic::Fdiv:
_mov(T, Src0);
_divss(T, Src1);
_mov(Dest, T);
break;
case InstArithmetic::Frem: {
const SizeT MaxSrcs = 2;
Type Ty = Dest->getType();
InstCall *Call =
makeHelperCall(Ty == IceType_f32 ? "fmodf" : "fmod", Dest, MaxSrcs);
Call->addArg(Src0);
Call->addArg(Src1);
return lowerCall(Call);
} break;
}
}
}
void TargetX8632::lowerAssign(const InstAssign *Inst) {
Variable *Dest = Inst->getDest();
Operand *Src0 = Inst->getSrc(0);
assert(Dest->getType() == Src0->getType());
if (Dest->getType() == IceType_i64) {
Src0 = legalize(Src0);
Operand *Src0Lo = loOperand(Src0);
Operand *Src0Hi = hiOperand(Src0);
Variable *DestLo = llvm::cast<Variable>(loOperand(Dest));
Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest));
Variable *T_Lo = NULL, *T_Hi = NULL;
_mov(T_Lo, Src0Lo);
_mov(DestLo, T_Lo);
_mov(T_Hi, Src0Hi);
_mov(DestHi, T_Hi);
} else {
const bool AllowOverlap = true;
// RI is either a physical register or an immediate.
Operand *RI = legalize(Src0, Legal_Reg | Legal_Imm, AllowOverlap);
_mov(Dest, RI);
}
}
void TargetX8632::lowerBr(const InstBr *Inst) {
if (Inst->isUnconditional()) {
_br(Inst->getTargetUnconditional());
} else {
Operand *Src0 = legalize(Inst->getCondition());
Constant *Zero = Ctx->getConstantInt(IceType_i32, 0);
_cmp(Src0, Zero);
_br(InstX8632Br::Br_ne, Inst->getTargetTrue(), Inst->getTargetFalse());
}
}
void TargetX8632::lowerCall(const InstCall *Instr) {
// Generate a sequence of push instructions, pushing right to left,
// keeping track of stack offsets in case a push involves a stack
// operand and we are using an esp-based frame.
uint32_t StackOffset = 0;
// TODO: If for some reason the call instruction gets dead-code
// eliminated after lowering, we would need to ensure that the
// pre-call push instructions and the post-call esp adjustment get
// eliminated as well.
for (SizeT NumArgs = Instr->getNumArgs(), i = 0; i < NumArgs; ++i) {
Operand *Arg = legalize(Instr->getArg(NumArgs - i - 1));
if (Arg->getType() == IceType_i64) {
_push(hiOperand(Arg));
_push(loOperand(Arg));
} else if (Arg->getType() == IceType_f64) {
// If the Arg turns out to be a memory operand, we need to push
// 8 bytes, which requires two push instructions. This ends up
// being somewhat clumsy in the current IR, so we use a
// workaround. Force the operand into a (xmm) register, and
// then push the register. An xmm register push is actually not
// possible in x86, but the Push instruction emitter handles
// this by decrementing the stack pointer and directly writing
// the xmm register value.
Variable *T = NULL;
_mov(T, Arg);
_push(T);
} else {
_push(Arg);
}
StackOffset += typeWidthInBytesOnStack(Arg->getType());
}
// Generate the call instruction. Assign its result to a temporary
// with high register allocation weight.
Variable *Dest = Instr->getDest();
Variable *eax = NULL; // doubles as RegLo as necessary
Variable *edx = NULL;
if (Dest) {
switch (Dest->getType()) {
case IceType_NUM:
llvm_unreachable("Invalid Call dest type");
break;
case IceType_void:
break;
case IceType_i1:
case IceType_i8:
case IceType_i16:
case IceType_i32:
eax = makeReg(Dest->getType(), Reg_eax);
break;
case IceType_i64:
eax = makeReg(IceType_i32, Reg_eax);
edx = makeReg(IceType_i32, Reg_edx);
break;
case IceType_f32:
case IceType_f64:
// Leave eax==edx==NULL, and capture the result with the fstp
// instruction.
break;
}
}
Operand *CallTarget = legalize(Instr->getCallTarget());
Inst *NewCall = InstX8632Call::create(Func, eax, CallTarget);
Context.insert(NewCall);
if (edx)
Context.insert(InstFakeDef::create(Func, edx));
// Add the appropriate offset to esp.
if (StackOffset) {
Variable *esp = Func->getTarget()->getPhysicalRegister(Reg_esp);
_add(esp, Ctx->getConstantInt(IceType_i32, StackOffset));
}
// Insert a register-kill pseudo instruction.
VarList KilledRegs;
for (SizeT i = 0; i < ScratchRegs.size(); ++i) {
if (ScratchRegs[i])
KilledRegs.push_back(Func->getTarget()->getPhysicalRegister(i));
}
Context.insert(InstFakeKill::create(Func, KilledRegs, NewCall));
// Generate a FakeUse to keep the call live if necessary.
if (Instr->hasSideEffects() && eax) {
Inst *FakeUse = InstFakeUse::create(Func, eax);
Context.insert(FakeUse);
}
// Generate Dest=eax assignment.
if (Dest && eax) {
if (edx) {
split64(Dest);
Variable *DestLo = Dest->getLo();
Variable *DestHi = Dest->getHi();
DestLo->setPreferredRegister(eax, false);
DestHi->setPreferredRegister(edx, false);
_mov(DestLo, eax);
_mov(DestHi, edx);
} else {
Dest->setPreferredRegister(eax, false);
_mov(Dest, eax);
}
}
// Special treatment for an FP function which returns its result in
// st(0).
if (Dest &&
(Dest->getType() == IceType_f32 || Dest->getType() == IceType_f64)) {
_fstp(Dest);
// If Dest ends up being a physical xmm register, the fstp emit
// code will route st(0) through a temporary stack slot.
}
}
void TargetX8632::lowerCast(const InstCast *Inst) {
// a = cast(b) ==> t=cast(b); a=t; (link t->b, link a->t, no overlap)
InstCast::OpKind CastKind = Inst->getCastKind();
Variable *Dest = Inst->getDest();
// Src0RM is the source operand legalized to physical register or memory, but
// not immediate, since the relevant x86 native instructions don't allow an
// immediate operand. If the operand is an immediate, we could consider
// computing the strength-reduced result at translation time, but we're
// unlikely to see something like that in the bitcode that the optimizer
// wouldn't have already taken care of.
Operand *Src0RM = legalize(Inst->getSrc(0), Legal_Reg | Legal_Mem, true);
switch (CastKind) {
default:
Func->setError("Cast type not supported");
return;
case InstCast::Sext:
if (Dest->getType() == IceType_i64) {
// t1=movsx src; t2=t1; t2=sar t2, 31; dst.lo=t1; dst.hi=t2
Variable *DestLo = llvm::cast<Variable>(loOperand(Dest));
Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest));
Variable *T_Lo = makeReg(DestLo->getType());
if (Src0RM->getType() == IceType_i32)
_mov(T_Lo, Src0RM);
else
_movsx(T_Lo, Src0RM);
_mov(DestLo, T_Lo);
Variable *T_Hi = NULL;
Constant *Shift = Ctx->getConstantInt(IceType_i32, 31);
_mov(T_Hi, T_Lo);
_sar(T_Hi, Shift);
_mov(DestHi, T_Hi);
} else {
// TODO: Sign-extend an i1 via "shl reg, 31; sar reg, 31", and
// also copy to the high operand of a 64-bit variable.
// t1 = movsx src; dst = t1
Variable *T = makeReg(Dest->getType());
_movsx(T, Src0RM);
_mov(Dest, T);
}
break;
case InstCast::Zext:
if (Dest->getType() == IceType_i64) {
// t1=movzx src; dst.lo=t1; dst.hi=0
Constant *Zero = Ctx->getConstantInt(IceType_i32, 0);
Variable *DestLo = llvm::cast<Variable>(loOperand(Dest));
Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest));
Variable *Tmp = makeReg(DestLo->getType());
if (Src0RM->getType() == IceType_i32)
_mov(Tmp, Src0RM);
else
_movzx(Tmp, Src0RM);
_mov(DestLo, Tmp);
_mov(DestHi, Zero);
} else if (Src0RM->getType() == IceType_i1) {
// t = Src0RM; t &= 1; Dest = t
Operand *One = Ctx->getConstantInt(IceType_i32, 1);
Variable *T = makeReg(IceType_i32);
_movzx(T, Src0RM);
_and(T, One);
_mov(Dest, T);
} else {
// t1 = movzx src; dst = t1
Variable *T = makeReg(Dest->getType());
_movzx(T, Src0RM);
_mov(Dest, T);
}
break;
case InstCast::Trunc: {
if (Src0RM->getType() == IceType_i64)
Src0RM = loOperand(Src0RM);
// t1 = trunc Src0RM; Dest = t1
Variable *T = NULL;
_mov(T, Src0RM);
_mov(Dest, T);
break;
}
case InstCast::Fptrunc:
case InstCast::Fpext: {
// t1 = cvt Src0RM; Dest = t1
Variable *T = makeReg(Dest->getType());
_cvt(T, Src0RM);
_mov(Dest, T);
break;
}
case InstCast::Fptosi:
if (Dest->getType() == IceType_i64) {
// Use a helper for converting floating-point values to 64-bit
// integers. SSE2 appears to have no way to convert from xmm
// registers to something like the edx:eax register pair, and
// gcc and clang both want to use x87 instructions complete with
// temporary manipulation of the status word. This helper is
// not needed for x86-64.
split64(Dest);
const SizeT MaxSrcs = 1;
Type SrcType = Inst->getSrc(0)->getType();
InstCall *Call = makeHelperCall(
SrcType == IceType_f32 ? "cvtftosi64" : "cvtdtosi64", Dest, MaxSrcs);
// TODO: Call the correct compiler-rt helper function.
Call->addArg(Inst->getSrc(0));
lowerCall(Call);
} else {
// t1.i32 = cvt Src0RM; t2.dest_type = t1; Dest = t2.dest_type
Variable *T_1 = makeReg(IceType_i32);
Variable *T_2 = makeReg(Dest->getType());
_cvt(T_1, Src0RM);
_mov(T_2, T_1); // T_1 and T_2 may have different integer types
_mov(Dest, T_2);
T_2->setPreferredRegister(T_1, true);
}
break;
case InstCast::Fptoui:
if (Dest->getType() == IceType_i64 || Dest->getType() == IceType_i32) {
// Use a helper for both x86-32 and x86-64.
split64(Dest);
const SizeT MaxSrcs = 1;
Type DestType = Dest->getType();
Type SrcType = Src0RM->getType();
IceString DstSubstring = (DestType == IceType_i64 ? "64" : "32");
IceString SrcSubstring = (SrcType == IceType_f32 ? "f" : "d");
// Possibilities are cvtftoui32, cvtdtoui32, cvtftoui64, cvtdtoui64
IceString TargetString = "cvt" + SrcSubstring + "toui" + DstSubstring;
// TODO: Call the correct compiler-rt helper function.
InstCall *Call = makeHelperCall(TargetString, Dest, MaxSrcs);
Call->addArg(Inst->getSrc(0));
lowerCall(Call);
return;
} else {
// t1.i32 = cvt Src0RM; t2.dest_type = t1; Dest = t2.dest_type
Variable *T_1 = makeReg(IceType_i32);
Variable *T_2 = makeReg(Dest->getType());
_cvt(T_1, Src0RM);
_mov(T_2, T_1); // T_1 and T_2 may have different integer types
_mov(Dest, T_2);
T_2->setPreferredRegister(T_1, true);
}
break;
case InstCast::Sitofp:
if (Src0RM->getType() == IceType_i64) {
// Use a helper for x86-32.
const SizeT MaxSrcs = 1;
Type DestType = Dest->getType();
InstCall *Call = makeHelperCall(
DestType == IceType_f32 ? "cvtsi64tof" : "cvtsi64tod", Dest, MaxSrcs);
// TODO: Call the correct compiler-rt helper function.
Call->addArg(Inst->getSrc(0));
lowerCall(Call);
return;
} else {
// Sign-extend the operand.
// t1.i32 = movsx Src0RM; t2 = Cvt t1.i32; Dest = t2
Variable *T_1 = makeReg(IceType_i32);
Variable *T_2 = makeReg(Dest->getType());
if (Src0RM->getType() == IceType_i32)
_mov(T_1, Src0RM);
else
_movsx(T_1, Src0RM);
_cvt(T_2, T_1);
_mov(Dest, T_2);
}
break;
case InstCast::Uitofp:
if (Src0RM->getType() == IceType_i64 || Src0RM->getType() == IceType_i32) {
// Use a helper for x86-32 and x86-64. Also use a helper for
// i32 on x86-32.
const SizeT MaxSrcs = 1;
Type DestType = Dest->getType();
IceString SrcSubstring = (Src0RM->getType() == IceType_i64 ? "64" : "32");
IceString DstSubstring = (DestType == IceType_f32 ? "f" : "d");
// Possibilities are cvtui32tof, cvtui32tod, cvtui64tof, cvtui64tod
IceString TargetString = "cvtui" + SrcSubstring + "to" + DstSubstring;
// TODO: Call the correct compiler-rt helper function.
InstCall *Call = makeHelperCall(TargetString, Dest, MaxSrcs);
Call->addArg(Inst->getSrc(0));
lowerCall(Call);
return;
} else {
// Zero-extend the operand.
// t1.i32 = movzx Src0RM; t2 = Cvt t1.i32; Dest = t2
Variable *T_1 = makeReg(IceType_i32);
Variable *T_2 = makeReg(Dest->getType());
if (Src0RM->getType() == IceType_i32)
_mov(T_1, Src0RM);
else
_movzx(T_1, Src0RM);
_cvt(T_2, T_1);
_mov(Dest, T_2);
}
break;
case InstCast::Bitcast:
if (Dest->getType() == Src0RM->getType()) {
InstAssign *Assign = InstAssign::create(Func, Dest, Src0RM);
lowerAssign(Assign);
return;
}
switch (Dest->getType()) {
default:
llvm_unreachable("Unexpected Bitcast dest type");
case IceType_i32:
case IceType_f32: {
Type DestType = Dest->getType();
Type SrcType = Src0RM->getType();
assert((DestType == IceType_i32 && SrcType == IceType_f32) ||
(DestType == IceType_f32 && SrcType == IceType_i32));
// a.i32 = bitcast b.f32 ==>
// t.f32 = b.f32
// s.f32 = spill t.f32
// a.i32 = s.f32
Variable *T = NULL;
// TODO: Should be able to force a spill setup by calling legalize() with
// Legal_Mem and not Legal_Reg or Legal_Imm.
Variable *Spill = Func->makeVariable(SrcType, Context.getNode());
Spill->setWeight(RegWeight::Zero);
Spill->setPreferredRegister(Dest, true);
_mov(T, Src0RM);
_mov(Spill, T);
_mov(Dest, Spill);
} break;
case IceType_i64: {
assert(Src0RM->getType() == IceType_f64);
// a.i64 = bitcast b.f64 ==>
// s.f64 = spill b.f64
// t_lo.i32 = lo(s.f64)
// a_lo.i32 = t_lo.i32
// t_hi.i32 = hi(s.f64)
// a_hi.i32 = t_hi.i32
Variable *Spill = Func->makeVariable(IceType_f64, Context.getNode());
Spill->setWeight(RegWeight::Zero);
Spill->setPreferredRegister(llvm::dyn_cast<Variable>(Src0RM), true);
_mov(Spill, Src0RM);
Variable *DestLo = llvm::cast<Variable>(loOperand(Dest));
Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest));
Variable *T_Lo = makeReg(IceType_i32);
Variable *T_Hi = makeReg(IceType_i32);
VariableSplit *SpillLo =
VariableSplit::create(Func, Spill, VariableSplit::Low);
VariableSplit *SpillHi =
VariableSplit::create(Func, Spill, VariableSplit::High);
_mov(T_Lo, SpillLo);
_mov(DestLo, T_Lo);
_mov(T_Hi, SpillHi);
_mov(DestHi, T_Hi);
} break;
case IceType_f64: {
assert(Src0RM->getType() == IceType_i64);
// a.f64 = bitcast b.i64 ==>
// t_lo.i32 = b_lo.i32
// lo(s.f64) = t_lo.i32
// FakeUse(s.f64)
// t_hi.i32 = b_hi.i32
// hi(s.f64) = t_hi.i32
// a.f64 = s.f64
Variable *Spill = Func->makeVariable(IceType_f64, Context.getNode());
Spill->setWeight(RegWeight::Zero);
Spill->setPreferredRegister(Dest, true);
Context.insert(InstFakeDef::create(Func, Spill));
Variable *T_Lo = NULL, *T_Hi = NULL;
VariableSplit *SpillLo =
VariableSplit::create(Func, Spill, VariableSplit::Low);
VariableSplit *SpillHi =
VariableSplit::create(Func, Spill, VariableSplit::High);
_mov(T_Lo, loOperand(Src0RM));
_store(T_Lo, SpillLo);
_mov(T_Hi, hiOperand(Src0RM));
_store(T_Hi, SpillHi);
_mov(Dest, Spill);
} break;
}
break;
}
}
void TargetX8632::lowerFcmp(const InstFcmp *Inst) {
Operand *Src0 = Inst->getSrc(0);
Operand *Src1 = Inst->getSrc(1);
Variable *Dest = Inst->getDest();
// Lowering a = fcmp cond, b, c
// ucomiss b, c /* only if C1 != Br_None */
// /* but swap b,c order if SwapOperands==true */
// mov a, <default>
// j<C1> label /* only if C1 != Br_None */
// j<C2> label /* only if C2 != Br_None */
// FakeUse(a) /* only if C1 != Br_None */
// mov a, !<default> /* only if C1 != Br_None */
// label: /* only if C1 != Br_None */
InstFcmp::FCond Condition = Inst->getCondition();
size_t Index = static_cast<size_t>(Condition);
assert(Index < TableFcmpSize);
if (TableFcmp[Index].SwapOperands) {
Operand *Tmp = Src0;
Src0 = Src1;
Src1 = Tmp;
}
bool HasC1 = (TableFcmp[Index].C1 != InstX8632Br::Br_None);
bool HasC2 = (TableFcmp[Index].C2 != InstX8632Br::Br_None);
if (HasC1) {
Src0 = legalize(Src0);
Operand *Src1RM = legalize(Src1, Legal_Reg | Legal_Mem);
Variable *T = NULL;
_mov(T, Src0);
_ucomiss(T, Src1RM);
}
Constant *Default =
Ctx->getConstantInt(IceType_i32, TableFcmp[Index].Default);
_mov(Dest, Default);
if (HasC1) {
InstX8632Label *Label = InstX8632Label::create(Func, this);
_br(TableFcmp[Index].C1, Label);
if (HasC2) {
_br(TableFcmp[Index].C2, Label);
}
Context.insert(InstFakeUse::create(Func, Dest));
Constant *NonDefault =
Ctx->getConstantInt(IceType_i32, !TableFcmp[Index].Default);
_mov(Dest, NonDefault);
Context.insert(Label);
}
}
void TargetX8632::lowerIcmp(const InstIcmp *Inst) {
Operand *Src0 = legalize(Inst->getSrc(0));
Operand *Src1 = legalize(Inst->getSrc(1));
Variable *Dest = Inst->getDest();
// a=icmp cond, b, c ==> cmp b,c; a=1; br cond,L1; FakeUse(a); a=0; L1:
Constant *Zero = Ctx->getConstantInt(IceType_i32, 0);
Constant *One = Ctx->getConstantInt(IceType_i32, 1);
if (Src0->getType() == IceType_i64) {
InstIcmp::ICond Condition = Inst->getCondition();
size_t Index = static_cast<size_t>(Condition);
assert(Index < TableIcmp64Size);
Operand *Src1LoRI = legalize(loOperand(Src1), Legal_Reg | Legal_Imm);
Operand *Src1HiRI = legalize(hiOperand(Src1), Legal_Reg | Legal_Imm);
if (Condition == InstIcmp::Eq || Condition == InstIcmp::Ne) {
InstX8632Label *Label = InstX8632Label::create(Func, this);
_mov(Dest, (Condition == InstIcmp::Eq ? Zero : One));
_cmp(loOperand(Src0), Src1LoRI);
_br(InstX8632Br::Br_ne, Label);
_cmp(hiOperand(Src0), Src1HiRI);
_br(InstX8632Br::Br_ne, Label);
Context.insert(InstFakeUse::create(Func, Dest));
_mov(Dest, (Condition == InstIcmp::Eq ? One : Zero));
Context.insert(Label);
} else {
InstX8632Label *LabelFalse = InstX8632Label::create(Func, this);
InstX8632Label *LabelTrue = InstX8632Label::create(Func, this);
_mov(Dest, One);
_cmp(hiOperand(Src0), Src1HiRI);
_br(TableIcmp64[Index].C1, LabelTrue);
_br(TableIcmp64[Index].C2, LabelFalse);
_cmp(loOperand(Src0), Src1LoRI);
_br(TableIcmp64[Index].C3, LabelTrue);
Context.insert(LabelFalse);
Context.insert(InstFakeUse::create(Func, Dest));
_mov(Dest, Zero);
Context.insert(LabelTrue);
}
return;
}
// If Src1 is an immediate, or known to be a physical register, we can
// allow Src0 to be a memory operand. Otherwise, Src0 must be copied into
// a physical register. (Actually, either Src0 or Src1 can be chosen for
// the physical register, but unfortunately we have to commit to one or
// the other before register allocation.)
bool IsSrc1ImmOrReg = false;
if (llvm::isa<Constant>(Src1)) {
IsSrc1ImmOrReg = true;
} else if (Variable *Var = llvm::dyn_cast<Variable>(Src1)) {
if (Var->hasReg())
IsSrc1ImmOrReg = true;
}
// cmp b, c
Operand *Src0New =
legalize(Src0, IsSrc1ImmOrReg ? Legal_All : Legal_Reg, true);
InstX8632Label *Label = InstX8632Label::create(Func, this);
_cmp(Src0New, Src1);
_mov(Dest, One);
_br(getIcmp32Mapping(Inst->getCondition()), Label);
Context.insert(InstFakeUse::create(Func, Dest));
_mov(Dest, Zero);
Context.insert(Label);
}
void TargetX8632::lowerLoad(const InstLoad *Inst) {
// A Load instruction can be treated the same as an Assign
// instruction, after the source operand is transformed into an
// OperandX8632Mem operand. Note that the address mode
// optimization already creates an OperandX8632Mem operand, so it
// doesn't need another level of transformation.
Type Ty = Inst->getDest()->getType();
Operand *Src0 = Inst->getSourceAddress();
// Address mode optimization already creates an OperandX8632Mem
// operand, so it doesn't need another level of transformation.
if (!llvm::isa<OperandX8632Mem>(Src0)) {
Variable *Base = llvm::dyn_cast<Variable>(Src0);
Constant *Offset = llvm::dyn_cast<Constant>(Src0);
assert(Base || Offset);
Src0 = OperandX8632Mem::create(Func, Ty, Base, Offset);
}
InstAssign *Assign = InstAssign::create(Func, Inst->getDest(), Src0);
lowerAssign(Assign);
}
void TargetX8632::lowerPhi(const InstPhi * /*Inst*/) {
Func->setError("Phi found in regular instruction list");
}
void TargetX8632::lowerRet(const InstRet *Inst) {
Variable *Reg = NULL;
if (Inst->hasRetValue()) {
Operand *Src0 = legalize(Inst->getRetValue());
if (Src0->getType() == IceType_i64) {
Variable *eax = legalizeToVar(loOperand(Src0), false, Reg_eax);
Variable *edx = legalizeToVar(hiOperand(Src0), false, Reg_edx);
Reg = eax;
Context.insert(InstFakeUse::create(Func, edx));
} else if (Src0->getType() == IceType_f32 ||
Src0->getType() == IceType_f64) {
_fld(Src0);
} else {
_mov(Reg, Src0, Reg_eax);
}
}
_ret(Reg);
// Add a fake use of esp to make sure esp stays alive for the entire
// function. Otherwise post-call esp adjustments get dead-code
// eliminated. TODO: Are there more places where the fake use
// should be inserted? E.g. "void f(int n){while(1) g(n);}" may not
// have a ret instruction.
Variable *esp = Func->getTarget()->getPhysicalRegister(Reg_esp);
Context.insert(InstFakeUse::create(Func, esp));
}
void TargetX8632::lowerSelect(const InstSelect *Inst) {
// a=d?b:c ==> cmp d,0; a=b; jne L1; FakeUse(a); a=c; L1:
Variable *Dest = Inst->getDest();
Operand *SrcT = Inst->getTrueOperand();
Operand *SrcF = Inst->getFalseOperand();
Operand *Condition = legalize(Inst->getCondition());
Constant *Zero = Ctx->getConstantInt(IceType_i32, 0);
InstX8632Label *Label = InstX8632Label::create(Func, this);
if (Dest->getType() == IceType_i64) {
Variable *DestLo = llvm::cast<Variable>(loOperand(Dest));
Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest));
Operand *SrcLoRI = legalize(loOperand(SrcT), Legal_Reg | Legal_Imm, true);
Operand *SrcHiRI = legalize(hiOperand(SrcT), Legal_Reg | Legal_Imm, true);
_cmp(Condition, Zero);
_mov(DestLo, SrcLoRI);
_mov(DestHi, SrcHiRI);
_br(InstX8632Br::Br_ne, Label);
Context.insert(InstFakeUse::create(Func, DestLo));
Context.insert(InstFakeUse::create(Func, DestHi));
Operand *SrcFLo = loOperand(SrcF);
Operand *SrcFHi = hiOperand(SrcF);
SrcLoRI = legalize(SrcFLo, Legal_Reg | Legal_Imm, true);
SrcHiRI = legalize(SrcFHi, Legal_Reg | Legal_Imm, true);
_mov(DestLo, SrcLoRI);
_mov(DestHi, SrcHiRI);
} else {
_cmp(Condition, Zero);
SrcT = legalize(SrcT, Legal_Reg | Legal_Imm, true);
_mov(Dest, SrcT);
_br(InstX8632Br::Br_ne, Label);
Context.insert(InstFakeUse::create(Func, Dest));
SrcF = legalize(SrcF, Legal_Reg | Legal_Imm, true);
_mov(Dest, SrcF);
}
Context.insert(Label);
}
void TargetX8632::lowerStore(const InstStore *Inst) {
Operand *Value = Inst->getData();
Operand *Addr = Inst->getAddr();
OperandX8632Mem *NewAddr = llvm::dyn_cast<OperandX8632Mem>(Addr);
// Address mode optimization already creates an OperandX8632Mem
// operand, so it doesn't need another level of transformation.
if (!NewAddr) {
// The address will be either a constant (which represents a global
// variable) or a variable, so either the Base or Offset component
// of the OperandX8632Mem will be set.
Variable *Base = llvm::dyn_cast<Variable>(Addr);
Constant *Offset = llvm::dyn_cast<Constant>(Addr);
assert(Base || Offset);
NewAddr = OperandX8632Mem::create(Func, Value->getType(), Base, Offset);
}
NewAddr = llvm::cast<OperandX8632Mem>(legalize(NewAddr));
if (NewAddr->getType() == IceType_i64) {
Value = legalize(Value);
Operand *ValueHi = legalize(hiOperand(Value), Legal_Reg | Legal_Imm, true);
Operand *ValueLo = legalize(loOperand(Value), Legal_Reg | Legal_Imm, true);
_store(ValueHi, llvm::cast<OperandX8632Mem>(hiOperand(NewAddr)));
_store(ValueLo, llvm::cast<OperandX8632Mem>(loOperand(NewAddr)));
} else {
Value = legalize(Value, Legal_Reg | Legal_Imm, true);
_store(Value, NewAddr);
}
}
void TargetX8632::lowerSwitch(const InstSwitch *Inst) {
// This implements the most naive possible lowering.
// cmp a,val[0]; jeq label[0]; cmp a,val[1]; jeq label[1]; ... jmp default
Operand *Src0 = Inst->getComparison();
SizeT NumCases = Inst->getNumCases();
// OK, we'll be slightly less naive by forcing Src into a physical
// register if there are 2 or more uses.
if (NumCases >= 2)
Src0 = legalizeToVar(Src0, true);
else
Src0 = legalize(Src0, Legal_All, true);
for (SizeT I = 0; I < NumCases; ++I) {
Operand *Value = Ctx->getConstantInt(IceType_i32, Inst->getValue(I));
_cmp(Src0, Value);
_br(InstX8632Br::Br_e, Inst->getLabel(I));
}
_br(Inst->getLabelDefault());
}
void TargetX8632::lowerUnreachable(const InstUnreachable * /*Inst*/) {
const SizeT MaxSrcs = 0;
Variable *Dest = NULL;
InstCall *Call = makeHelperCall("ice_unreachable", Dest, MaxSrcs);
lowerCall(Call);
}
Operand *TargetX8632::legalize(Operand *From, LegalMask Allowed,
bool AllowOverlap, int32_t RegNum) {
// Assert that a physical register is allowed. To date, all calls
// to legalize() allow a physical register. If a physical register
// needs to be explicitly disallowed, then new code will need to be
// written to force a spill.
assert(Allowed & Legal_Reg);
// If we're asking for a specific physical register, make sure we're
// not allowing any other operand kinds. (This could be future
// work, e.g. allow the shl shift amount to be either an immediate
// or in ecx.)
assert(RegNum == Variable::NoRegister || Allowed == Legal_Reg);
if (OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(From)) {
// Before doing anything with a Mem operand, we need to ensure
// that the Base and Index components are in physical registers.
Variable *Base = Mem->getBase();
Variable *Index = Mem->getIndex();
Variable *RegBase = NULL;
Variable *RegIndex = NULL;
if (Base) {
RegBase = legalizeToVar(Base, true);
}
if (Index) {
RegIndex = legalizeToVar(Index, true);
}
if (Base != RegBase || Index != RegIndex) {
From =
OperandX8632Mem::create(Func, Mem->getType(), RegBase,
Mem->getOffset(), RegIndex, Mem->getShift());
}
if (!(Allowed & Legal_Mem)) {
Variable *Reg = makeReg(From->getType(), RegNum);
_mov(Reg, From, RegNum);
From = Reg;
}
return From;
}
if (llvm::isa<Constant>(From)) {
if (!(Allowed & Legal_Imm)) {
Variable *Reg = makeReg(From->getType(), RegNum);
_mov(Reg, From);
From = Reg;
}
return From;
}
if (Variable *Var = llvm::dyn_cast<Variable>(From)) {
// We need a new physical register for the operand if:
// Mem is not allowed and Var->getRegNum() is unknown, or
// RegNum is required and Var->getRegNum() doesn't match.
if ((!(Allowed & Legal_Mem) && !Var->hasReg()) ||
(RegNum != Variable::NoRegister && RegNum != Var->getRegNum())) {
Variable *Reg = makeReg(From->getType(), RegNum);
if (RegNum == Variable::NoRegister) {
Reg->setPreferredRegister(Var, AllowOverlap);
}
_mov(Reg, From);
From = Reg;
}
return From;
}
llvm_unreachable("Unhandled operand kind in legalize()");
return From;
}
// Provide a trivial wrapper to legalize() for this common usage.
Variable *TargetX8632::legalizeToVar(Operand *From, bool AllowOverlap,
int32_t RegNum) {
return llvm::cast<Variable>(legalize(From, Legal_Reg, AllowOverlap, RegNum));
}
Variable *TargetX8632::makeReg(Type Type, int32_t RegNum) {
Variable *Reg = Func->makeVariable(Type, Context.getNode());
if (RegNum == Variable::NoRegister)
Reg->setWeightInfinite();
else
Reg->setRegNum(RegNum);
return Reg;
}
void TargetX8632::postLower() {
if (Ctx->getOptLevel() != Opt_m1)
return;
// TODO: Avoid recomputing WhiteList every instruction.
llvm::SmallBitVector WhiteList = getRegisterSet(RegSet_All, RegSet_None);
// Make one pass to black-list pre-colored registers. TODO: If
// there was some prior register allocation pass that made register
// assignments, those registers need to be black-listed here as
// well.
for (InstList::iterator I = Context.getCur(), E = Context.getEnd(); I != E;
++I) {
const Inst *Inst = *I;
if (Inst->isDeleted())
continue;
if (llvm::isa<InstFakeKill>(Inst))
continue;
SizeT VarIndex = 0;
for (SizeT SrcNum = 0; SrcNum < Inst->getSrcSize(); ++SrcNum) {
Operand *Src = Inst->getSrc(SrcNum);
SizeT NumVars = Src->getNumVars();
for (SizeT J = 0; J < NumVars; ++J, ++VarIndex) {
const Variable *Var = Src->getVar(J);
if (!Var->hasReg())
continue;
WhiteList[Var->getRegNum()] = false;
}
}
}
// The second pass colors infinite-weight variables.
llvm::SmallBitVector AvailableRegisters = WhiteList;
for (InstList::iterator I = Context.getCur(), E = Context.getEnd(); I != E;
++I) {
const Inst *Inst = *I;
if (Inst->isDeleted())
continue;
SizeT VarIndex = 0;
for (SizeT SrcNum = 0; SrcNum < Inst->getSrcSize(); ++SrcNum) {
Operand *Src = Inst->getSrc(SrcNum);
SizeT NumVars = Src->getNumVars();
for (SizeT J = 0; J < NumVars; ++J, ++VarIndex) {
Variable *Var = Src->getVar(J);
if (Var->hasReg())
continue;
if (!Var->getWeight().isInf())
continue;
llvm::SmallBitVector AvailableTypedRegisters =
AvailableRegisters & getRegisterSetForType(Var->getType());
if (!AvailableTypedRegisters.any()) {
// This is a hack in case we run out of physical registers
// due to an excessive number of "push" instructions from
// lowering a call.
AvailableRegisters = WhiteList;
AvailableTypedRegisters =
AvailableRegisters & getRegisterSetForType(Var->getType());
}
assert(AvailableTypedRegisters.any());
int32_t RegNum = AvailableTypedRegisters.find_first();
Var->setRegNum(RegNum);
AvailableRegisters[RegNum] = false;
}
}
}
}
} // end of namespace Ice