blob: 38184de66007d0badb4485707d0dac55dcb845c0 [file] [log] [blame]
//===- subzero/src/IceTargetLoweringX8632.h - x86-32 lowering ---*- C++ -*-===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the TargetLoweringX8632 class, which
// implements the TargetLowering interface for the x86-32
// architecture.
//
//===----------------------------------------------------------------------===//
#ifndef SUBZERO_SRC_ICETARGETLOWERINGX8632_H
#define SUBZERO_SRC_ICETARGETLOWERINGX8632_H
#include "IceDefs.h"
#include "IceTargetLowering.h"
#include "IceInstX8632.h"
namespace Ice {
class TargetX8632 : public TargetLowering {
public:
static TargetX8632 *create(Cfg *Func) { return new TargetX8632(Func); }
virtual void translateOm1();
virtual Variable *getPhysicalRegister(SizeT RegNum);
virtual IceString getRegName(SizeT RegNum, Type Ty) const;
virtual llvm::SmallBitVector getRegisterSet(RegSetMask Include,
RegSetMask Exclude) const;
virtual const llvm::SmallBitVector &getRegisterSetForType(Type Ty) const {
return TypeToRegisterSet[Ty];
}
virtual bool hasFramePointer() const { return IsEbpBasedFrame; }
virtual SizeT getFrameOrStackReg() const {
return IsEbpBasedFrame ? Reg_ebp : Reg_esp;
}
virtual size_t typeWidthInBytesOnStack(Type Ty) {
// Round up to the next multiple of 4 bytes. In particular, i1,
// i8, and i16 are rounded up to 4 bytes.
return (typeWidthInBytes(Ty) + 3) & ~3;
}
virtual void emitVariable(const Variable *Var, const Cfg *Func) const;
virtual void addProlog(CfgNode *Node);
virtual void addEpilog(CfgNode *Node);
SizeT makeNextLabelNumber() { return NextLabelNumber++; }
// Ensure that a 64-bit Variable has been split into 2 32-bit
// Variables, creating them if necessary. This is needed for all
// I64 operations, and it is needed for pushing F64 arguments for
// function calls using the 32-bit push instruction (though the
// latter could be done by directly writing to the stack).
void split64(Variable *Var);
void setArgOffsetAndCopy(Variable *Arg, Variable *FramePtr,
int32_t BasicFrameOffset, int32_t &InArgsSizeBytes);
Operand *loOperand(Operand *Operand);
Operand *hiOperand(Operand *Operand);
enum Registers {
#define X(val, init, name, name16, name8, scratch, preserved, stackptr, \
frameptr, isI8, isInt, isFP) \
val init,
REGX8632_TABLE
#undef X
Reg_NUM
};
protected:
TargetX8632(Cfg *Func);
virtual void postLower();
virtual void lowerAlloca(const InstAlloca *Inst);
virtual void lowerArithmetic(const InstArithmetic *Inst);
virtual void lowerAssign(const InstAssign *Inst);
virtual void lowerBr(const InstBr *Inst);
virtual void lowerCall(const InstCall *Inst);
virtual void lowerCast(const InstCast *Inst);
virtual void lowerFcmp(const InstFcmp *Inst);
virtual void lowerIcmp(const InstIcmp *Inst);
virtual void lowerLoad(const InstLoad *Inst);
virtual void lowerPhi(const InstPhi *Inst);
virtual void lowerRet(const InstRet *Inst);
virtual void lowerSelect(const InstSelect *Inst);
virtual void lowerStore(const InstStore *Inst);
virtual void lowerSwitch(const InstSwitch *Inst);
virtual void lowerUnreachable(const InstUnreachable *Inst);
// Operand legalization helpers. To deal with address mode
// constraints, the helpers will create a new Operand and emit
// instructions that guarantee that the Operand kind is one of those
// indicated by the LegalMask (a bitmask of allowed kinds). If the
// input Operand is known to already meet the constraints, it may be
// simply returned as the result, without creating any new
// instructions or operands.
enum OperandLegalization {
Legal_None = 0,
Legal_Reg = 1 << 0, // physical register, not stack location
Legal_Imm = 1 << 1,
Legal_Mem = 1 << 2, // includes [eax+4*ecx] as well as [esp+12]
Legal_All = ~Legal_None
};
typedef uint32_t LegalMask;
Operand *legalize(Operand *From, LegalMask Allowed = Legal_All,
bool AllowOverlap = false,
int32_t RegNum = Variable::NoRegister);
Variable *legalizeToVar(Operand *From, bool AllowOverlap = false,
int32_t RegNum = Variable::NoRegister);
Variable *makeReg(Type Ty, int32_t RegNum = Variable::NoRegister);
InstCall *makeHelperCall(const IceString &Name, Variable *Dest,
SizeT MaxSrcs) {
bool SuppressMangling = true;
Type Ty = Dest ? Dest->getType() : IceType_void;
Constant *CallTarget = Ctx->getConstantSym(Ty, 0, Name, SuppressMangling);
InstCall *Call = InstCall::create(Func, MaxSrcs, Dest, CallTarget);
return Call;
}
// The following are helpers that insert lowered x86 instructions
// with minimal syntactic overhead, so that the lowering code can
// look as close to assembly as practical.
void _adc(Variable *Dest, Operand *Src0) {
Context.insert(InstX8632Adc::create(Func, Dest, Src0));
}
void _add(Variable *Dest, Operand *Src0) {
Context.insert(InstX8632Add::create(Func, Dest, Src0));
}
void _addss(Variable *Dest, Operand *Src0) {
Context.insert(InstX8632Addss::create(Func, Dest, Src0));
}
void _and(Variable *Dest, Operand *Src0) {
Context.insert(InstX8632And::create(Func, Dest, Src0));
}
void _br(InstX8632Br::BrCond Condition, CfgNode *TargetTrue,
CfgNode *TargetFalse) {
Context.insert(
InstX8632Br::create(Func, TargetTrue, TargetFalse, Condition));
}
void _br(CfgNode *Target) {
Context.insert(InstX8632Br::create(Func, Target));
}
void _br(InstX8632Br::BrCond Condition, CfgNode *Target) {
Context.insert(InstX8632Br::create(Func, Target, Condition));
}
void _br(InstX8632Br::BrCond Condition, InstX8632Label *Label) {
Context.insert(InstX8632Br::create(Func, Label, Condition));
}
void _cdq(Variable *Dest, Operand *Src0) {
Context.insert(InstX8632Cdq::create(Func, Dest, Src0));
}
void _cmp(Operand *Src0, Operand *Src1) {
Context.insert(InstX8632Icmp::create(Func, Src0, Src1));
}
void _cvt(Variable *Dest, Operand *Src0) {
Context.insert(InstX8632Cvt::create(Func, Dest, Src0));
}
void _div(Variable *Dest, Operand *Src0, Operand *Src1) {
Context.insert(InstX8632Div::create(Func, Dest, Src0, Src1));
}
void _divss(Variable *Dest, Operand *Src0) {
Context.insert(InstX8632Divss::create(Func, Dest, Src0));
}
void _fld(Operand *Src0) { Context.insert(InstX8632Fld::create(Func, Src0)); }
void _fstp(Variable *Dest) {
Context.insert(InstX8632Fstp::create(Func, Dest));
}
void _idiv(Variable *Dest, Operand *Src0, Operand *Src1) {
Context.insert(InstX8632Idiv::create(Func, Dest, Src0, Src1));
}
void _imul(Variable *Dest, Operand *Src0) {
Context.insert(InstX8632Imul::create(Func, Dest, Src0));
}
// If Dest=NULL is passed in, then a new variable is created, marked
// as infinite register allocation weight, and returned through the
// in/out Dest argument.
void _mov(Variable *&Dest, Operand *Src0,
int32_t RegNum = Variable::NoRegister) {
if (Dest == NULL) {
Dest = legalizeToVar(Src0, false, RegNum);
} else {
Context.insert(InstX8632Mov::create(Func, Dest, Src0));
}
}
void _movsx(Variable *Dest, Operand *Src0) {
Context.insert(InstX8632Movsx::create(Func, Dest, Src0));
}
void _movzx(Variable *Dest, Operand *Src0) {
Context.insert(InstX8632Movzx::create(Func, Dest, Src0));
}
void _mul(Variable *Dest, Variable *Src0, Operand *Src1) {
Context.insert(InstX8632Mul::create(Func, Dest, Src0, Src1));
}
void _mulss(Variable *Dest, Operand *Src0) {
Context.insert(InstX8632Mulss::create(Func, Dest, Src0));
}
void _or(Variable *Dest, Operand *Src0) {
Context.insert(InstX8632Or::create(Func, Dest, Src0));
}
void _pop(Variable *Dest) {
Context.insert(InstX8632Pop::create(Func, Dest));
}
void _push(Operand *Src0, bool SuppressStackAdjustment = false) {
Context.insert(InstX8632Push::create(Func, Src0, SuppressStackAdjustment));
}
void _ret(Variable *Src0 = NULL) {
Context.insert(InstX8632Ret::create(Func, Src0));
}
void _sar(Variable *Dest, Operand *Src0) {
Context.insert(InstX8632Sar::create(Func, Dest, Src0));
}
void _sbb(Variable *Dest, Operand *Src0) {
Context.insert(InstX8632Sbb::create(Func, Dest, Src0));
}
void _shl(Variable *Dest, Operand *Src0) {
Context.insert(InstX8632Shl::create(Func, Dest, Src0));
}
void _shld(Variable *Dest, Variable *Src0, Variable *Src1) {
Context.insert(InstX8632Shld::create(Func, Dest, Src0, Src1));
}
void _shr(Variable *Dest, Operand *Src0) {
Context.insert(InstX8632Shr::create(Func, Dest, Src0));
}
void _shrd(Variable *Dest, Variable *Src0, Variable *Src1) {
Context.insert(InstX8632Shrd::create(Func, Dest, Src0, Src1));
}
void _store(Operand *Value, OperandX8632 *Mem) {
Context.insert(InstX8632Store::create(Func, Value, Mem));
}
void _sub(Variable *Dest, Operand *Src0) {
Context.insert(InstX8632Sub::create(Func, Dest, Src0));
}
void _subss(Variable *Dest, Operand *Src0) {
Context.insert(InstX8632Subss::create(Func, Dest, Src0));
}
void _test(Operand *Src0, Operand *Src1) {
Context.insert(InstX8632Test::create(Func, Src0, Src1));
}
void _ucomiss(Operand *Src0, Operand *Src1) {
Context.insert(InstX8632Ucomiss::create(Func, Src0, Src1));
}
void _xor(Variable *Dest, Operand *Src0) {
Context.insert(InstX8632Xor::create(Func, Dest, Src0));
}
bool IsEbpBasedFrame;
int32_t FrameSizeLocals;
int32_t LocalsSizeBytes;
llvm::SmallBitVector TypeToRegisterSet[IceType_NUM];
llvm::SmallBitVector ScratchRegs;
llvm::SmallBitVector RegsUsed;
SizeT NextLabelNumber;
bool ComputedLiveRanges;
VarList PhysicalRegisters;
static IceString RegNames[];
private:
TargetX8632(const TargetX8632 &) LLVM_DELETED_FUNCTION;
TargetX8632 &operator=(const TargetX8632 &) LLVM_DELETED_FUNCTION;
virtual ~TargetX8632() {}
};
} // end of namespace Ice
#endif // SUBZERO_SRC_ICETARGETLOWERINGX8632_H