| //===- subzero/src/IceOperand.h - High-level operands -----------*- C++ -*-===// |
| // |
| // The Subzero Code Generator |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file declares the Operand class and its target-independent |
| // subclasses. The main classes are Variable, which represents an |
| // LLVM variable that is either register- or stack-allocated, and the |
| // Constant hierarchy, which represents integer, floating-point, |
| // and/or symbolic constants. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef SUBZERO_SRC_ICEOPERAND_H |
| #define SUBZERO_SRC_ICEOPERAND_H |
| |
| #include "IceCfg.h" |
| #include "IceDefs.h" |
| #include "IceGlobalContext.h" |
| #include "IceTypes.h" |
| |
| namespace Ice { |
| |
| class Operand { |
| public: |
| static const size_t MaxTargetKinds = 10; |
| enum OperandKind { |
| kConst_Base, |
| kConstInteger32, |
| kConstInteger64, |
| kConstFloat, |
| kConstDouble, |
| kConstRelocatable, |
| kConstUndef, |
| kConst_Target, // leave space for target-specific constant kinds |
| kConst_Num = kConst_Target + MaxTargetKinds, |
| kVariable, |
| kVariable_Target, // leave space for target-specific variable kinds |
| kVariable_Num = kVariable_Target + MaxTargetKinds, |
| // Target-specific operand classes use kTarget as the starting |
| // point for their Kind enum space. |
| kTarget |
| }; |
| OperandKind getKind() const { return Kind; } |
| Type getType() const { return Ty; } |
| |
| // Every Operand keeps an array of the Variables referenced in |
| // the operand. This is so that the liveness operations can get |
| // quick access to the variables of interest, without having to dig |
| // so far into the operand. |
| SizeT getNumVars() const { return NumVars; } |
| Variable *getVar(SizeT I) const { |
| assert(I < getNumVars()); |
| return Vars[I]; |
| } |
| virtual void emit(const Cfg *Func) const = 0; |
| // The dump(Func,Str) implementation must be sure to handle the |
| // situation where Func==NULL. |
| virtual void dump(const Cfg *Func, Ostream &Str) const = 0; |
| void dump(const Cfg *Func) const { |
| assert(Func); |
| dump(Func, Func->getContext()->getStrDump()); |
| } |
| void dump(Ostream &Str) const { dump(NULL, Str); } |
| |
| // Query whether this object was allocated in isolation, or added to |
| // some higher-level pool. This determines whether a containing |
| // object's destructor should delete this object. Generally, |
| // constants are pooled globally, variables are pooled per-CFG, and |
| // target-specific operands are not pooled. |
| virtual bool isPooled() const { return false; } |
| |
| virtual ~Operand() {} |
| |
| protected: |
| Operand(OperandKind Kind, Type Ty) |
| : Ty(Ty), Kind(Kind), NumVars(0), Vars(NULL) {} |
| Operand(Operand &&O) = default; |
| |
| const Type Ty; |
| const OperandKind Kind; |
| // Vars and NumVars are initialized by the derived class. |
| SizeT NumVars; |
| Variable **Vars; |
| |
| private: |
| Operand(const Operand &) = delete; |
| Operand &operator=(const Operand &) = delete; |
| }; |
| |
| template<class StreamType> |
| inline StreamType &operator<<(StreamType &Str, const Operand &Op) { |
| Op.dump(Str); |
| return Str; |
| } |
| |
| // Constant is the abstract base class for constants. All |
| // constants are allocated from a global arena and are pooled. |
| class Constant : public Operand { |
| public: |
| uint32_t getPoolEntryID() const { return PoolEntryID; } |
| using Operand::dump; |
| void emit(const Cfg *Func) const override { emit(Func->getContext()); } |
| virtual void emit(GlobalContext *Ctx) const = 0; |
| void dump(const Cfg *Func, Ostream &Str) const = 0; |
| |
| static bool classof(const Operand *Operand) { |
| OperandKind Kind = Operand->getKind(); |
| return Kind >= kConst_Base && Kind <= kConst_Num; |
| } |
| |
| protected: |
| Constant(OperandKind Kind, Type Ty, uint32_t PoolEntryID) |
| : Operand(Kind, Ty), PoolEntryID(PoolEntryID) { |
| Vars = NULL; |
| NumVars = 0; |
| } |
| ~Constant() override {} |
| // PoolEntryID is an integer that uniquely identifies the constant |
| // within its constant pool. It is used for building the constant |
| // pool in the object code and for referencing its entries. |
| const uint32_t PoolEntryID; |
| |
| private: |
| Constant(const Constant &) = delete; |
| Constant &operator=(const Constant &) = delete; |
| }; |
| |
| // ConstantPrimitive<> wraps a primitive type. |
| template <typename T, Operand::OperandKind K> |
| class ConstantPrimitive : public Constant { |
| public: |
| static ConstantPrimitive *create(GlobalContext *Ctx, Type Ty, T Value, |
| uint32_t PoolEntryID) { |
| return new (Ctx->allocate<ConstantPrimitive>()) |
| ConstantPrimitive(Ty, Value, PoolEntryID); |
| } |
| T getValue() const { return Value; } |
| using Constant::emit; |
| // The target needs to implement this for each ConstantPrimitive |
| // specialization. |
| void emit(GlobalContext *Ctx) const override; |
| using Constant::dump; |
| void dump(const Cfg *, Ostream &Str) const override { Str << getValue(); } |
| |
| static bool classof(const Operand *Operand) { |
| return Operand->getKind() == K; |
| } |
| |
| private: |
| ConstantPrimitive(Type Ty, T Value, uint32_t PoolEntryID) |
| : Constant(K, Ty, PoolEntryID), Value(Value) {} |
| ConstantPrimitive(const ConstantPrimitive &) = delete; |
| ConstantPrimitive &operator=(const ConstantPrimitive &) = delete; |
| ~ConstantPrimitive() override {} |
| const T Value; |
| }; |
| |
| typedef ConstantPrimitive<uint32_t, Operand::kConstInteger32> ConstantInteger32; |
| typedef ConstantPrimitive<uint64_t, Operand::kConstInteger64> ConstantInteger64; |
| typedef ConstantPrimitive<float, Operand::kConstFloat> ConstantFloat; |
| typedef ConstantPrimitive<double, Operand::kConstDouble> ConstantDouble; |
| |
| template <> inline void ConstantInteger32::dump(const Cfg *, Ostream &Str) const { |
| if (getType() == IceType_i1) |
| Str << (getValue() ? "true" : "false"); |
| else |
| Str << static_cast<int32_t>(getValue()); |
| } |
| |
| template <> inline void ConstantInteger64::dump(const Cfg *, Ostream &Str) const { |
| assert(getType() == IceType_i64); |
| Str << static_cast<int64_t>(getValue()); |
| } |
| |
| // RelocatableTuple bundles the parameters that are used to |
| // construct an ConstantRelocatable. It is done this way so that |
| // ConstantRelocatable can fit into the global constant pool |
| // template mechanism. |
| class RelocatableTuple { |
| RelocatableTuple &operator=(const RelocatableTuple &) = delete; |
| |
| public: |
| RelocatableTuple(const RelocOffsetT Offset, const IceString &Name, |
| bool SuppressMangling) |
| : Offset(Offset), Name(Name), SuppressMangling(SuppressMangling) {} |
| RelocatableTuple(const RelocatableTuple &Other) |
| : Offset(Other.Offset), Name(Other.Name), |
| SuppressMangling(Other.SuppressMangling) {} |
| |
| const RelocOffsetT Offset; |
| const IceString Name; |
| bool SuppressMangling; |
| }; |
| |
| bool operator<(const RelocatableTuple &A, const RelocatableTuple &B); |
| |
| // ConstantRelocatable represents a symbolic constant combined with |
| // a fixed offset. |
| class ConstantRelocatable : public Constant { |
| public: |
| static ConstantRelocatable *create(GlobalContext *Ctx, Type Ty, |
| const RelocatableTuple &Tuple, |
| uint32_t PoolEntryID) { |
| return new (Ctx->allocate<ConstantRelocatable>()) ConstantRelocatable( |
| Ty, Tuple.Offset, Tuple.Name, Tuple.SuppressMangling, PoolEntryID); |
| } |
| |
| RelocOffsetT getOffset() const { return Offset; } |
| IceString getName() const { return Name; } |
| void setSuppressMangling(bool Value) { SuppressMangling = Value; } |
| bool getSuppressMangling() const { return SuppressMangling; } |
| using Constant::emit; |
| using Constant::dump; |
| void emit(GlobalContext *Ctx) const override; |
| void dump(const Cfg *Func, Ostream &Str) const override; |
| |
| static bool classof(const Operand *Operand) { |
| OperandKind Kind = Operand->getKind(); |
| return Kind == kConstRelocatable; |
| } |
| |
| private: |
| ConstantRelocatable(Type Ty, RelocOffsetT Offset, const IceString &Name, |
| bool SuppressMangling, uint32_t PoolEntryID) |
| : Constant(kConstRelocatable, Ty, PoolEntryID), Offset(Offset), |
| Name(Name), SuppressMangling(SuppressMangling) {} |
| ConstantRelocatable(const ConstantRelocatable &) = delete; |
| ConstantRelocatable &operator=(const ConstantRelocatable &) = delete; |
| ~ConstantRelocatable() override {} |
| const RelocOffsetT Offset; // fixed offset to add |
| const IceString Name; // optional for debug/dump |
| bool SuppressMangling; |
| }; |
| |
| // ConstantUndef represents an unspecified bit pattern. Although it is |
| // legal to lower ConstantUndef to any value, backends should try to |
| // make code generation deterministic by lowering ConstantUndefs to 0. |
| class ConstantUndef : public Constant { |
| public: |
| static ConstantUndef *create(GlobalContext *Ctx, Type Ty, |
| uint32_t PoolEntryID) { |
| return new (Ctx->allocate<ConstantUndef>()) ConstantUndef(Ty, PoolEntryID); |
| } |
| |
| using Constant::emit; |
| using Constant::dump; |
| // The target needs to implement this. |
| void emit(GlobalContext *Ctx) const override; |
| void dump(const Cfg *, Ostream &Str) const override { Str << "undef"; } |
| |
| static bool classof(const Operand *Operand) { |
| return Operand->getKind() == kConstUndef; |
| } |
| |
| private: |
| ConstantUndef(Type Ty, uint32_t PoolEntryID) |
| : Constant(kConstUndef, Ty, PoolEntryID) {} |
| ConstantUndef(const ConstantUndef &) = delete; |
| ConstantUndef &operator=(const ConstantUndef &) = delete; |
| ~ConstantUndef() override {} |
| }; |
| |
| // RegWeight is a wrapper for a uint32_t weight value, with a |
| // special value that represents infinite weight, and an addWeight() |
| // method that ensures that W+infinity=infinity. |
| class RegWeight { |
| public: |
| RegWeight() : Weight(0) {} |
| RegWeight(uint32_t Weight) : Weight(Weight) {} |
| const static uint32_t Inf = ~0; // Force regalloc to give a register |
| const static uint32_t Zero = 0; // Force regalloc NOT to give a register |
| void addWeight(uint32_t Delta) { |
| if (Delta == Inf) |
| Weight = Inf; |
| else if (Weight != Inf) |
| Weight += Delta; |
| } |
| void addWeight(const RegWeight &Other) { addWeight(Other.Weight); } |
| void setWeight(uint32_t Val) { Weight = Val; } |
| uint32_t getWeight() const { return Weight; } |
| bool isInf() const { return Weight == Inf; } |
| |
| private: |
| uint32_t Weight; |
| }; |
| Ostream &operator<<(Ostream &Str, const RegWeight &W); |
| bool operator<(const RegWeight &A, const RegWeight &B); |
| bool operator<=(const RegWeight &A, const RegWeight &B); |
| bool operator==(const RegWeight &A, const RegWeight &B); |
| |
| // LiveRange is a set of instruction number intervals representing |
| // a variable's live range. Generally there is one interval per basic |
| // block where the variable is live, but adjacent intervals get |
| // coalesced into a single interval. LiveRange also includes a |
| // weight, in case e.g. we want a live range to have higher weight |
| // inside a loop. |
| class LiveRange { |
| public: |
| LiveRange() : Weight(0), IsNonpoints(false) {} |
| |
| void reset() { |
| Range.clear(); |
| Weight.setWeight(0); |
| untrim(); |
| IsNonpoints = false; |
| } |
| void addSegment(InstNumberT Start, InstNumberT End); |
| |
| bool endsBefore(const LiveRange &Other) const; |
| bool overlaps(const LiveRange &Other, bool UseTrimmed = false) const; |
| bool overlapsInst(InstNumberT OtherBegin, bool UseTrimmed = false) const; |
| bool containsValue(InstNumberT Value, bool IsDest) const; |
| bool isEmpty() const { return Range.empty(); } |
| bool isNonpoints() const { return IsNonpoints; } |
| InstNumberT getStart() const { |
| return Range.empty() ? -1 : Range.begin()->first; |
| } |
| |
| void untrim() { TrimmedBegin = Range.begin(); } |
| void trim(InstNumberT Lower); |
| |
| RegWeight getWeight() const { return Weight; } |
| void setWeight(const RegWeight &NewWeight) { Weight = NewWeight; } |
| void addWeight(uint32_t Delta) { Weight.addWeight(Delta); } |
| void dump(Ostream &Str) const; |
| |
| // Defining USE_SET uses std::set to hold the segments instead of |
| // std::list. Using std::list will be slightly faster, but is more |
| // restrictive because new segments cannot be added in the middle. |
| |
| //#define USE_SET |
| |
| private: |
| typedef std::pair<InstNumberT, InstNumberT> RangeElementType; |
| #ifdef USE_SET |
| typedef std::set<RangeElementType> RangeType; |
| #else |
| typedef std::list<RangeElementType> RangeType; |
| #endif |
| RangeType Range; |
| RegWeight Weight; |
| // TrimmedBegin is an optimization for the overlaps() computation. |
| // Since the linear-scan algorithm always calls it as overlaps(Cur) |
| // and Cur advances monotonically according to live range start, we |
| // can optimize overlaps() by ignoring all segments that end before |
| // the start of Cur's range. The linear-scan code enables this by |
| // calling trim() on the ranges of interest as Cur advances. Note |
| // that linear-scan also has to initialize TrimmedBegin at the |
| // beginning by calling untrim(). |
| RangeType::const_iterator TrimmedBegin; |
| // IsNonpoints keeps track of whether the live range contains at |
| // least one interval where Start!=End. If it is empty or has the |
| // form [x,x),[y,y),...,[z,z), then overlaps(InstNumberT) is |
| // trivially false. |
| bool IsNonpoints; |
| }; |
| |
| Ostream &operator<<(Ostream &Str, const LiveRange &L); |
| |
| // Variable represents an operand that is register-allocated or |
| // stack-allocated. If it is register-allocated, it will ultimately |
| // have a non-negative RegNum field. |
| class Variable : public Operand { |
| Variable(const Variable &) = delete; |
| Variable &operator=(const Variable &) = delete; |
| Variable(Variable &&V) = default; |
| |
| public: |
| static Variable *create(Cfg *Func, Type Ty, SizeT Index, |
| const IceString &Name) { |
| return new (Func->allocate<Variable>()) |
| Variable(kVariable, Ty, Index, Name); |
| } |
| |
| SizeT getIndex() const { return Number; } |
| IceString getName() const; |
| void setName(IceString &NewName) { |
| // Make sure that the name can only be set once. |
| assert(Name.empty()); |
| Name = NewName; |
| } |
| |
| bool getIsArg() const { return IsArgument; } |
| void setIsArg(bool Val = true) { IsArgument = Val; } |
| bool getIsImplicitArg() const { return IsImplicitArgument; } |
| void setIsImplicitArg(bool Val = true) { IsImplicitArgument = Val; } |
| |
| void setIgnoreLiveness() { IgnoreLiveness = true; } |
| bool getIgnoreLiveness() const { return IgnoreLiveness; } |
| |
| int32_t getStackOffset() const { return StackOffset; } |
| void setStackOffset(int32_t Offset) { StackOffset = Offset; } |
| |
| static const int32_t NoRegister = -1; |
| bool hasReg() const { return getRegNum() != NoRegister; } |
| int32_t getRegNum() const { return RegNum; } |
| void setRegNum(int32_t NewRegNum) { |
| // Regnum shouldn't be set more than once. |
| assert(!hasReg() || RegNum == NewRegNum); |
| RegNum = NewRegNum; |
| } |
| bool hasRegTmp() const { return getRegNumTmp() != NoRegister; } |
| int32_t getRegNumTmp() const { return RegNumTmp; } |
| void setRegNumTmp(int32_t NewRegNum) { RegNumTmp = NewRegNum; } |
| |
| RegWeight getWeight() const { return Weight; } |
| void setWeight(uint32_t NewWeight) { Weight = NewWeight; } |
| void setWeightInfinite() { Weight = RegWeight::Inf; } |
| |
| LiveRange &getLiveRange() { return Live; } |
| const LiveRange &getLiveRange() const { return Live; } |
| void setLiveRange(const LiveRange &Range) { Live = Range; } |
| void resetLiveRange() { Live.reset(); } |
| void addLiveRange(InstNumberT Start, InstNumberT End, uint32_t WeightDelta) { |
| assert(WeightDelta != RegWeight::Inf); |
| Live.addSegment(Start, End); |
| if (Weight.isInf()) |
| Live.setWeight(RegWeight::Inf); |
| else |
| Live.addWeight(WeightDelta * Weight.getWeight()); |
| } |
| void setLiveRangeInfiniteWeight() { Live.setWeight(RegWeight::Inf); } |
| void trimLiveRange(InstNumberT Start) { Live.trim(Start); } |
| void untrimLiveRange() { Live.untrim(); } |
| bool rangeEndsBefore(const Variable *Other) const { |
| return Live.endsBefore(Other->Live); |
| } |
| bool rangeOverlaps(const Variable *Other) const { |
| const bool UseTrimmed = true; |
| return Live.overlaps(Other->Live, UseTrimmed); |
| } |
| bool rangeOverlapsStart(const Variable *Other) const { |
| const bool UseTrimmed = true; |
| return Live.overlapsInst(Other->Live.getStart(), UseTrimmed); |
| } |
| |
| Variable *getLo() const { return LoVar; } |
| Variable *getHi() const { return HiVar; } |
| void setLoHi(Variable *Lo, Variable *Hi) { |
| assert(LoVar == NULL); |
| assert(HiVar == NULL); |
| LoVar = Lo; |
| HiVar = Hi; |
| } |
| // Creates a temporary copy of the variable with a different type. |
| // Used primarily for syntactic correctness of textual assembly |
| // emission. Note that only basic information is copied, in |
| // particular not DefInst, IsArgument, Weight, LoVar, HiVar, |
| // VarsReal. |
| Variable asType(Type Ty); |
| |
| void emit(const Cfg *Func) const override; |
| using Operand::dump; |
| void dump(const Cfg *Func, Ostream &Str) const override; |
| |
| static bool classof(const Operand *Operand) { |
| OperandKind Kind = Operand->getKind(); |
| return Kind >= kVariable && Kind <= kVariable_Num; |
| } |
| |
| // The destructor is public because of the asType() method. |
| ~Variable() override {} |
| |
| protected: |
| Variable(OperandKind K, Type Ty, SizeT Index, const IceString &Name) |
| : Operand(K, Ty), Number(Index), Name(Name), IsArgument(false), |
| IsImplicitArgument(false), IgnoreLiveness(false), StackOffset(0), |
| RegNum(NoRegister), RegNumTmp(NoRegister), Weight(1), LoVar(NULL), |
| HiVar(NULL) { |
| Vars = VarsReal; |
| Vars[0] = this; |
| NumVars = 1; |
| } |
| // Number is unique across all variables, and is used as a |
| // (bit)vector index for liveness analysis. |
| const SizeT Number; |
| // Name is optional. |
| IceString Name; |
| bool IsArgument; |
| bool IsImplicitArgument; |
| // IgnoreLiveness means that the variable should be ignored when |
| // constructing and validating live ranges. This is usually |
| // reserved for the stack pointer. |
| bool IgnoreLiveness; |
| // StackOffset is the canonical location on stack (only if |
| // RegNum==NoRegister || IsArgument). |
| int32_t StackOffset; |
| // RegNum is the allocated register, or NoRegister if it isn't |
| // register-allocated. |
| int32_t RegNum; |
| // RegNumTmp is the tentative assignment during register allocation. |
| int32_t RegNumTmp; |
| RegWeight Weight; // Register allocation priority |
| LiveRange Live; |
| // LoVar and HiVar are needed for lowering from 64 to 32 bits. When |
| // lowering from I64 to I32 on a 32-bit architecture, we split the |
| // variable into two machine-size pieces. LoVar is the low-order |
| // machine-size portion, and HiVar is the remaining high-order |
| // portion. TODO: It's wasteful to penalize all variables on all |
| // targets this way; use a sparser representation. It's also |
| // wasteful for a 64-bit target. |
| Variable *LoVar; |
| Variable *HiVar; |
| // VarsReal (and Operand::Vars) are set up such that Vars[0] == |
| // this. |
| Variable *VarsReal[1]; |
| }; |
| |
| typedef std::vector<const Inst *> InstDefList; |
| |
| // VariableTracking tracks the metadata for a single variable. It is |
| // only meant to be used internally by VariablesMetadata. |
| class VariableTracking { |
| public: |
| enum MultiDefState { |
| // TODO(stichnot): Consider using just a simple counter. |
| MDS_Unknown, |
| MDS_SingleDef, |
| MDS_MultiDefSingleBlock, |
| MDS_MultiDefMultiBlock |
| }; |
| enum MultiBlockState { |
| MBS_Unknown, |
| MBS_SingleBlock, |
| MBS_MultiBlock |
| }; |
| VariableTracking() |
| : MultiDef(MDS_Unknown), MultiBlock(MBS_Unknown), SingleUseNode(NULL), |
| SingleDefNode(NULL) {} |
| MultiDefState getMultiDef() const { return MultiDef; } |
| MultiBlockState getMultiBlock() const { return MultiBlock; } |
| const Inst *getFirstDefinition() const; |
| const Inst *getSingleDefinition() const; |
| const InstDefList &getDefinitions() const { return Definitions; } |
| const CfgNode *getNode() const { return SingleUseNode; } |
| void markUse(const Inst *Instr, const CfgNode *Node, bool IsFromDef, |
| bool IsImplicit); |
| void markDef(const Inst *Instr, const CfgNode *Node); |
| |
| private: |
| VariableTracking &operator=(const VariableTracking &) = delete; |
| MultiDefState MultiDef; |
| MultiBlockState MultiBlock; |
| const CfgNode *SingleUseNode; |
| const CfgNode *SingleDefNode; |
| // All definitions of the variable are collected here, in increasing |
| // order of instruction number. |
| InstDefList Definitions; |
| }; |
| |
| // VariablesMetadata analyzes and summarizes the metadata for the |
| // complete set of Variables. |
| class VariablesMetadata { |
| public: |
| VariablesMetadata(const Cfg *Func) : Func(Func) {} |
| // Initialize the state by traversing all instructions/variables in |
| // the CFG. |
| void init(); |
| // Returns whether the given Variable is tracked in this object. It |
| // should only return false if changes were made to the CFG after |
| // running init(), in which case the state is stale and the results |
| // shouldn't be trusted (but it may be OK e.g. for dumping). |
| bool isTracked(const Variable *Var) const { |
| return Var->getIndex() < Metadata.size(); |
| } |
| |
| // Returns whether the given Variable has multiple definitions. |
| bool isMultiDef(const Variable *Var) const; |
| // Returns the first definition instruction of the given Variable. |
| // This is only valid for variables whose definitions are all within |
| // the same block, e.g. T after the lowered sequence "T=B; T+=C; |
| // A=T", for which getFirstDefinition(T) would return the "T=B" |
| // instruction. For variables with definitions span multiple |
| // blocks, NULL is returned. |
| const Inst *getFirstDefinition(const Variable *Var) const; |
| // Returns the definition instruction of the given Variable, when |
| // the variable has exactly one definition. Otherwise, NULL is |
| // returned. |
| const Inst *getSingleDefinition(const Variable *Var) const; |
| // Returns the list of all definition instructions of the given |
| // Variable. |
| const InstDefList &getDefinitions(const Variable *Var) const; |
| |
| // Returns whether the given Variable is live across multiple |
| // blocks. Mainly, this is used to partition Variables into |
| // single-block versus multi-block sets for leveraging sparsity in |
| // liveness analysis, and for implementing simple stack slot |
| // coalescing. As a special case, function arguments are always |
| // considered multi-block because they are live coming into the |
| // entry block. |
| bool isMultiBlock(const Variable *Var) const; |
| // Returns the node that the given Variable is used in, assuming |
| // isMultiBlock() returns false. Otherwise, NULL is returned. |
| const CfgNode *getLocalUseNode(const Variable *Var) const; |
| |
| private: |
| const Cfg *Func; |
| std::vector<VariableTracking> Metadata; |
| const static InstDefList NoDefinitions; |
| VariablesMetadata(const VariablesMetadata &) = delete; |
| VariablesMetadata &operator=(const VariablesMetadata &) = delete; |
| }; |
| |
| } // end of namespace Ice |
| |
| #endif // SUBZERO_SRC_ICEOPERAND_H |