blob: 4d9598a2448b917379a42116f9665307e8034700 [file] [log] [blame]
//===- subzero/src/IceTargetLowering.h - Lowering interface -----*- C++ -*-===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the TargetLowering, LoweringContext, and
// TargetDataLowering classes. TargetLowering is an abstract class
// used to drive the translation/lowering process. LoweringContext
// maintains a context for lowering each instruction, offering
// conveniences such as iterating over non-deleted instructions.
// TargetDataLowering is an abstract class used to drive the
// lowering/emission of global initializers, external global
// declarations, and internal constant pools.
//
//===----------------------------------------------------------------------===//
#ifndef SUBZERO_SRC_ICETARGETLOWERING_H
#define SUBZERO_SRC_ICETARGETLOWERING_H
#include "IceDefs.h"
#include "IceInst.h" // for the names of the Inst subtypes
#include "IceOperand.h"
#include "IceTypes.h"
namespace Ice {
// LoweringContext makes it easy to iterate through non-deleted
// instructions in a node, and insert new (lowered) instructions at
// the current point. Along with the instruction list container and
// associated iterators, it holds the current node, which is needed
// when inserting new instructions in order to track whether variables
// are used as single-block or multi-block.
class LoweringContext {
LoweringContext(const LoweringContext &) = delete;
LoweringContext &operator=(const LoweringContext &) = delete;
public:
LoweringContext() : Node(nullptr), LastInserted(nullptr) {}
~LoweringContext() {}
void init(CfgNode *Node);
Inst *getNextInst() const {
if (Next == End)
return nullptr;
return Next;
}
Inst *getNextInst(InstList::iterator &Iter) const {
advanceForward(Iter);
if (Iter == End)
return nullptr;
return Iter;
}
CfgNode *getNode() const { return Node; }
bool atEnd() const { return Cur == End; }
InstList::iterator getCur() const { return Cur; }
InstList::iterator getNext() const { return Next; }
InstList::iterator getEnd() const { return End; }
void insert(Inst *Inst);
Inst *getLastInserted() const;
void advanceCur() { Cur = Next; }
void advanceNext() { advanceForward(Next); }
void rewind();
void setInsertPoint(const InstList::iterator &Position) { Next = Position; }
private:
// Node is the argument to Inst::updateVars().
CfgNode *Node;
Inst *LastInserted;
// Cur points to the current instruction being considered. It is
// guaranteed to point to a non-deleted instruction, or to be End.
InstList::iterator Cur;
// Next doubles as a pointer to the next valid instruction (if any),
// and the new-instruction insertion point. It is also updated for
// the caller in case the lowering consumes more than one high-level
// instruction. It is guaranteed to point to a non-deleted
// instruction after Cur, or to be End. TODO: Consider separating
// the notion of "next valid instruction" and "new instruction
// insertion point", to avoid confusion when previously-deleted
// instructions come between the two points.
InstList::iterator Next;
// Begin is a copy of Insts.begin(), used if iterators are moved backward.
InstList::iterator Begin;
// End is a copy of Insts.end(), used if Next needs to be advanced.
InstList::iterator End;
void skipDeleted(InstList::iterator &I) const;
void advanceForward(InstList::iterator &I) const;
};
class TargetLowering {
TargetLowering() = delete;
TargetLowering(const TargetLowering &) = delete;
TargetLowering &operator=(const TargetLowering &) = delete;
public:
// TODO(jvoung): return a unique_ptr like the other factory functions.
static TargetLowering *createLowering(TargetArch Target, Cfg *Func);
static std::unique_ptr<Assembler> createAssembler(TargetArch Target,
Cfg *Func);
void translate() {
switch (Ctx->getFlags().getOptLevel()) {
case Opt_m1:
translateOm1();
break;
case Opt_0:
translateO0();
break;
case Opt_1:
translateO1();
break;
case Opt_2:
translateO2();
break;
}
}
virtual void translateOm1() {
Func->setError("Target doesn't specify Om1 lowering steps.");
}
virtual void translateO0() {
Func->setError("Target doesn't specify O0 lowering steps.");
}
virtual void translateO1() {
Func->setError("Target doesn't specify O1 lowering steps.");
}
virtual void translateO2() {
Func->setError("Target doesn't specify O2 lowering steps.");
}
// Tries to do address mode optimization on a single instruction.
void doAddressOpt();
// Randomly insert NOPs.
void doNopInsertion();
// Lowers a single non-Phi instruction.
void lower();
// Does preliminary lowering of the set of Phi instructions in the
// current node. The main intention is to do what's needed to keep
// the unlowered Phi instructions consistent with the lowered
// non-Phi instructions, e.g. to lower 64-bit operands on a 32-bit
// target.
virtual void prelowerPhis() {}
// Lowers a list of "parallel" assignment instructions representing
// a topological sort of the Phi instructions.
virtual void lowerPhiAssignments(CfgNode *Node,
const AssignList &Assignments) = 0;
// Tries to do branch optimization on a single instruction. Returns
// true if some optimization was done.
virtual bool doBranchOpt(Inst * /*I*/, const CfgNode * /*NextNode*/) {
return false;
}
virtual SizeT getNumRegisters() const = 0;
// Returns a variable pre-colored to the specified physical
// register. This is generally used to get very direct access to
// the register such as in the prolog or epilog or for marking
// scratch registers as killed by a call. If a Type is not
// provided, a target-specific default type is used.
virtual Variable *getPhysicalRegister(SizeT RegNum,
Type Ty = IceType_void) = 0;
// Returns a printable name for the register.
virtual IceString getRegName(SizeT RegNum, Type Ty) const = 0;
virtual bool hasFramePointer() const { return false; }
virtual SizeT getFrameOrStackReg() const = 0;
virtual size_t typeWidthInBytesOnStack(Type Ty) const = 0;
bool hasComputedFrame() const { return HasComputedFrame; }
// Returns true if this function calls a function that has the
// "returns twice" attribute.
bool callsReturnsTwice() const { return CallsReturnsTwice; }
void setCallsReturnsTwice(bool RetTwice) { CallsReturnsTwice = RetTwice; }
int32_t getStackAdjustment() const { return StackAdjustment; }
void updateStackAdjustment(int32_t Offset) { StackAdjustment += Offset; }
void resetStackAdjustment() { StackAdjustment = 0; }
SizeT makeNextLabelNumber() { return NextLabelNumber++; }
LoweringContext &getContext() { return Context; }
enum RegSet {
RegSet_None = 0,
RegSet_CallerSave = 1 << 0,
RegSet_CalleeSave = 1 << 1,
RegSet_StackPointer = 1 << 2,
RegSet_FramePointer = 1 << 3,
RegSet_All = ~RegSet_None
};
typedef uint32_t RegSetMask;
virtual llvm::SmallBitVector getRegisterSet(RegSetMask Include,
RegSetMask Exclude) const = 0;
virtual const llvm::SmallBitVector &getRegisterSetForType(Type Ty) const = 0;
void regAlloc(RegAllocKind Kind);
virtual void makeRandomRegisterPermutation(
llvm::SmallVectorImpl<int32_t> &Permutation,
const llvm::SmallBitVector &ExcludeRegisters) const = 0;
// Save/restore any mutable state for the situation where code
// emission needs multiple passes, such as sandboxing or relaxation.
// Subclasses may provide their own implementation, but should be
// sure to also call the parent class's methods.
virtual void snapshotEmitState() {
SnapshotStackAdjustment = StackAdjustment;
}
virtual void rollbackEmitState() {
StackAdjustment = SnapshotStackAdjustment;
}
virtual void emitVariable(const Variable *Var) const = 0;
void emitWithoutPrefix(const ConstantRelocatable *CR) const;
void emit(const ConstantRelocatable *CR) const;
virtual const char *getConstantPrefix() const = 0;
virtual void emit(const ConstantUndef *C) const = 0;
virtual void emit(const ConstantInteger32 *C) const = 0;
virtual void emit(const ConstantInteger64 *C) const = 0;
virtual void emit(const ConstantFloat *C) const = 0;
virtual void emit(const ConstantDouble *C) const = 0;
// Performs target-specific argument lowering.
virtual void lowerArguments() = 0;
virtual void initNodeForLowering(CfgNode *) {}
virtual void addProlog(CfgNode *Node) = 0;
virtual void addEpilog(CfgNode *Node) = 0;
virtual ~TargetLowering() {}
protected:
explicit TargetLowering(Cfg *Func);
virtual void lowerAlloca(const InstAlloca *Inst) = 0;
virtual void lowerArithmetic(const InstArithmetic *Inst) = 0;
virtual void lowerAssign(const InstAssign *Inst) = 0;
virtual void lowerBr(const InstBr *Inst) = 0;
virtual void lowerCall(const InstCall *Inst) = 0;
virtual void lowerCast(const InstCast *Inst) = 0;
virtual void lowerFcmp(const InstFcmp *Inst) = 0;
virtual void lowerExtractElement(const InstExtractElement *Inst) = 0;
virtual void lowerIcmp(const InstIcmp *Inst) = 0;
virtual void lowerInsertElement(const InstInsertElement *Inst) = 0;
virtual void lowerIntrinsicCall(const InstIntrinsicCall *Inst) = 0;
virtual void lowerLoad(const InstLoad *Inst) = 0;
virtual void lowerPhi(const InstPhi *Inst) = 0;
virtual void lowerRet(const InstRet *Inst) = 0;
virtual void lowerSelect(const InstSelect *Inst) = 0;
virtual void lowerStore(const InstStore *Inst) = 0;
virtual void lowerSwitch(const InstSwitch *Inst) = 0;
virtual void lowerUnreachable(const InstUnreachable *Inst) = 0;
virtual void doAddressOptLoad() {}
virtual void doAddressOptStore() {}
virtual void randomlyInsertNop(float Probability) = 0;
// This gives the target an opportunity to post-process the lowered
// expansion before returning.
virtual void postLower() {}
// Find two-address non-SSA instructions and set the DestNonKillable flag
// to keep liveness analysis consistent.
void inferTwoAddress();
// Make a pass over the Cfg to determine which variables need stack slots
// and place them in a sorted list (SortedSpilledVariables). Among those,
// vars, classify the spill variables as local to the basic block vs
// global (multi-block) in order to compute the parameters GlobalsSize
// and SpillAreaSizeBytes (represents locals or general vars if the
// coalescing of locals is disallowed) along with alignments required
// for variables in each area. We rely on accurate VMetadata in order to
// classify a variable as global vs local (otherwise the variable is
// conservatively global). The in-args should be initialized to 0.
//
// This is only a pre-pass and the actual stack slot assignment is
// handled separately.
//
// There may be target-specific Variable types, which will be handled
// by TargetVarHook. If the TargetVarHook returns true, then the variable
// is skipped and not considered with the rest of the spilled variables.
void getVarStackSlotParams(VarList &SortedSpilledVariables,
llvm::SmallBitVector &RegsUsed,
size_t *GlobalsSize, size_t *SpillAreaSizeBytes,
uint32_t *SpillAreaAlignmentBytes,
uint32_t *LocalsSlotsAlignmentBytes,
std::function<bool(Variable *)> TargetVarHook);
// Calculate the amount of padding needed to align the local and global
// areas to the required alignment. This assumes the globals/locals layout
// used by getVarStackSlotParams and assignVarStackSlots.
void alignStackSpillAreas(uint32_t SpillAreaStartOffset,
uint32_t SpillAreaAlignmentBytes,
size_t GlobalsSize,
uint32_t LocalsSlotsAlignmentBytes,
uint32_t *SpillAreaPaddingBytes,
uint32_t *LocalsSlotsPaddingBytes);
// Make a pass through the SortedSpilledVariables and actually assign
// stack slots. SpillAreaPaddingBytes takes into account stack alignment
// padding. The SpillArea starts after that amount of padding.
// This matches the scheme in getVarStackSlotParams, where there may
// be a separate multi-block global var spill area and a local var
// spill area.
void assignVarStackSlots(VarList &SortedSpilledVariables,
size_t SpillAreaPaddingBytes,
size_t SpillAreaSizeBytes,
size_t GlobalsAndSubsequentPaddingSize,
bool UsesFramePointer);
// Sort the variables in Source based on required alignment.
// The variables with the largest alignment need are placed in the front
// of the Dest list.
void sortVarsByAlignment(VarList &Dest, const VarList &Source) const;
// Make a call to an external helper function.
InstCall *makeHelperCall(const IceString &Name, Variable *Dest,
SizeT MaxSrcs);
void
_bundle_lock(InstBundleLock::Option BundleOption = InstBundleLock::Opt_None) {
Context.insert(InstBundleLock::create(Func, BundleOption));
}
void _bundle_unlock() { Context.insert(InstBundleUnlock::create(Func)); }
Cfg *Func;
GlobalContext *Ctx;
bool HasComputedFrame;
bool CallsReturnsTwice;
// StackAdjustment keeps track of the current stack offset from its
// natural location, as arguments are pushed for a function call.
int32_t StackAdjustment;
SizeT NextLabelNumber;
LoweringContext Context;
// Runtime helper function names
const static constexpr char *H_bitcast_16xi1_i16 = "__Sz_bitcast_16xi1_i16";
const static constexpr char *H_bitcast_8xi1_i8 = "__Sz_bitcast_8xi1_i8";
const static constexpr char *H_bitcast_i16_16xi1 = "__Sz_bitcast_i16_16xi1";
const static constexpr char *H_bitcast_i8_8xi1 = "__Sz_bitcast_i8_8xi1";
const static constexpr char *H_call_ctpop_i32 = "__popcountsi2";
const static constexpr char *H_call_ctpop_i64 = "__popcountdi2";
const static constexpr char *H_call_longjmp = "longjmp";
const static constexpr char *H_call_memcpy = "memcpy";
const static constexpr char *H_call_memmove = "memmove";
const static constexpr char *H_call_memset = "memset";
const static constexpr char *H_call_read_tp = "__nacl_read_tp";
const static constexpr char *H_call_setjmp = "setjmp";
const static constexpr char *H_fptosi_f32_i64 = "__Sz_fptosi_f32_i64";
const static constexpr char *H_fptosi_f64_i64 = "__Sz_fptosi_f64_i64";
const static constexpr char *H_fptoui_4xi32_f32 = "__Sz_fptoui_4xi32_f32";
const static constexpr char *H_fptoui_f32_i32 = "__Sz_fptoui_f32_i32";
const static constexpr char *H_fptoui_f32_i64 = "__Sz_fptoui_f32_i64";
const static constexpr char *H_fptoui_f64_i32 = "__Sz_fptoui_f64_i32";
const static constexpr char *H_fptoui_f64_i64 = "__Sz_fptoui_f64_i64";
const static constexpr char *H_frem_f32 = "fmodf";
const static constexpr char *H_frem_f64 = "fmod";
const static constexpr char *H_sdiv_i64 = "__divdi3";
const static constexpr char *H_sitofp_i64_f32 = "__Sz_sitofp_i64_f32";
const static constexpr char *H_sitofp_i64_f64 = "__Sz_sitofp_i64_f64";
const static constexpr char *H_srem_i64 = "__moddi3";
const static constexpr char *H_udiv_i64 = "__udivdi3";
const static constexpr char *H_uitofp_4xi32_4xf32 = "__Sz_uitofp_4xi32_4xf32";
const static constexpr char *H_uitofp_i32_f32 = "__Sz_uitofp_i32_f32";
const static constexpr char *H_uitofp_i32_f64 = "__Sz_uitofp_i32_f64";
const static constexpr char *H_uitofp_i64_f32 = "__Sz_uitofp_i64_f32";
const static constexpr char *H_uitofp_i64_f64 = "__Sz_uitofp_i64_f64";
const static constexpr char *H_urem_i64 = "__umoddi3";
private:
int32_t SnapshotStackAdjustment;
};
// TargetDataLowering is used for "lowering" data including initializers
// for global variables, and the internal constant pools. It is separated
// out from TargetLowering because it does not require a Cfg.
class TargetDataLowering {
TargetDataLowering() = delete;
TargetDataLowering(const TargetDataLowering &) = delete;
TargetDataLowering &operator=(const TargetDataLowering &) = delete;
public:
static std::unique_ptr<TargetDataLowering> createLowering(GlobalContext *Ctx);
virtual ~TargetDataLowering();
virtual void lowerGlobals(std::unique_ptr<VariableDeclarationList> Vars) = 0;
virtual void lowerConstants() = 0;
protected:
void emitGlobal(const VariableDeclaration &Var);
// For now, we assume .long is the right directive for emitting 4 byte
// emit global relocations. However, LLVM MIPS usually uses .4byte instead.
// Perhaps there is some difference when the location is unaligned.
const char *getEmit32Directive() { return ".long"; }
explicit TargetDataLowering(GlobalContext *Ctx) : Ctx(Ctx) {}
GlobalContext *Ctx;
};
// TargetHeaderLowering is used to "lower" the header of an output file.
// It writes out the target-specific header attributes. E.g., for ARM
// this writes out the build attributes (float ABI, etc.).
class TargetHeaderLowering {
TargetHeaderLowering() = delete;
TargetHeaderLowering(const TargetHeaderLowering &) = delete;
TargetHeaderLowering &operator=(const TargetHeaderLowering &) = delete;
public:
static std::unique_ptr<TargetHeaderLowering>
createLowering(GlobalContext *Ctx);
virtual ~TargetHeaderLowering();
virtual void lower() {}
protected:
explicit TargetHeaderLowering(GlobalContext *Ctx) : Ctx(Ctx) {}
GlobalContext *Ctx;
};
} // end of namespace Ice
#endif // SUBZERO_SRC_ICETARGETLOWERING_H