blob: d1778919bd270378aa59965cd5009b0dedb832dd [file] [log] [blame]
//===- subzero/src/IceInstARM32.cpp - ARM32 instruction implementation ----===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Implements the InstARM32 and OperandARM32 classes, primarily the
/// constructors and the dump()/emit() methods.
///
//===----------------------------------------------------------------------===//
#include "IceInstARM32.h"
#include "IceAssemblerARM32.h"
#include "IceCfg.h"
#include "IceCfgNode.h"
#include "IceInst.h"
#include "IceOperand.h"
#include "IceRegistersARM32.h"
#include "IceTargetLoweringARM32.h"
namespace Ice {
namespace {
const struct TypeARM32Attributes_ {
const char *WidthString; // b, h, <blank>, or d
const char *VecWidthString; // i8, i16, i32, f32, f64
int8_t SExtAddrOffsetBits;
int8_t ZExtAddrOffsetBits;
} TypeARM32Attributes[] = {
#define X(tag, elementty, int_width, vec_width, sbits, ubits, rraddr, shaddr) \
{ int_width, vec_width, sbits, ubits } \
,
ICETYPEARM32_TABLE
#undef X
};
const struct InstARM32ShiftAttributes_ {
const char *EmitString;
} InstARM32ShiftAttributes[] = {
#define X(tag, emit) \
{ emit } \
,
ICEINSTARM32SHIFT_TABLE
#undef X
};
const struct InstARM32CondAttributes_ {
CondARM32::Cond Opposite;
const char *EmitString;
} InstARM32CondAttributes[] = {
#define X(tag, encode, opp, emit) \
{ CondARM32::opp, emit } \
,
ICEINSTARM32COND_TABLE
#undef X
};
} // end of anonymous namespace
const char *InstARM32::getWidthString(Type Ty) {
return TypeARM32Attributes[Ty].WidthString;
}
const char *InstARM32::getVecWidthString(Type Ty) {
return TypeARM32Attributes[Ty].VecWidthString;
}
const char *InstARM32Pred::predString(CondARM32::Cond Pred) {
return InstARM32CondAttributes[Pred].EmitString;
}
void InstARM32Pred::dumpOpcodePred(Ostream &Str, const char *Opcode,
Type Ty) const {
Str << Opcode << getPredicate() << "." << Ty;
}
CondARM32::Cond InstARM32::getOppositeCondition(CondARM32::Cond Cond) {
return InstARM32CondAttributes[Cond].Opposite;
}
void InstARM32::startNextInst(const Cfg *Func) const {
if (auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>())
Asm->incEmitTextSize(InstSize);
}
void InstARM32::emitUsingTextFixup(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
GlobalContext *Ctx = Func->getContext();
if (Ctx->getFlags().getDisableHybridAssembly()) {
UnimplementedError(Ctx->getFlags());
return;
}
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
std::string Buffer;
llvm::raw_string_ostream StrBuf(Buffer);
OstreamLocker L(Ctx);
Ostream &OldStr = Ctx->getStrEmit();
Ctx->setStrEmit(StrBuf);
// Start counting instructions here, so that emit() methods don't
// need to call this for the first instruction.
Asm->resetEmitTextSize();
Asm->incEmitTextSize(InstSize);
emit(Func);
Ctx->setStrEmit(OldStr);
Asm->emitTextInst(StrBuf.str(), Asm->getEmitTextSize());
}
void InstARM32::emitIAS(const Cfg *Func) const { emitUsingTextFixup(Func); }
void InstARM32Pred::emitUnaryopGPR(const char *Opcode,
const InstARM32Pred *Inst, const Cfg *Func,
bool NeedsWidthSuffix) {
Ostream &Str = Func->getContext()->getStrEmit();
assert(Inst->getSrcSize() == 1);
Type SrcTy = Inst->getSrc(0)->getType();
Str << "\t" << Opcode;
if (NeedsWidthSuffix)
Str << getWidthString(SrcTy);
Str << Inst->getPredicate() << "\t";
Inst->getDest()->emit(Func);
Str << ", ";
Inst->getSrc(0)->emit(Func);
}
void InstARM32Pred::emitUnaryopFP(const char *Opcode, const InstARM32Pred *Inst,
const Cfg *Func) {
Ostream &Str = Func->getContext()->getStrEmit();
assert(Inst->getSrcSize() == 1);
Type SrcTy = Inst->getSrc(0)->getType();
Str << "\t" << Opcode << Inst->getPredicate() << getVecWidthString(SrcTy)
<< "\t";
Inst->getDest()->emit(Func);
Str << ", ";
Inst->getSrc(0)->emit(Func);
}
void InstARM32Pred::emitTwoAddr(const char *Opcode, const InstARM32Pred *Inst,
const Cfg *Func) {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
assert(Inst->getSrcSize() == 2);
Variable *Dest = Inst->getDest();
assert(Dest == Inst->getSrc(0));
Str << "\t" << Opcode << Inst->getPredicate() << "\t";
Dest->emit(Func);
Str << ", ";
Inst->getSrc(1)->emit(Func);
}
void InstARM32Pred::emitThreeAddr(const char *Opcode, const InstARM32Pred *Inst,
const Cfg *Func, bool SetFlags) {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
assert(Inst->getSrcSize() == 2);
Str << "\t" << Opcode << (SetFlags ? "s" : "") << Inst->getPredicate()
<< "\t";
Inst->getDest()->emit(Func);
Str << ", ";
Inst->getSrc(0)->emit(Func);
Str << ", ";
Inst->getSrc(1)->emit(Func);
}
void InstARM32::emitThreeAddrFP(const char *Opcode, const InstARM32 *Inst,
const Cfg *Func) {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
assert(Inst->getSrcSize() == 2);
Str << "\t" << Opcode << getVecWidthString(Inst->getDest()->getType())
<< "\t";
Inst->getDest()->emit(Func);
Str << ", ";
Inst->getSrc(0)->emit(Func);
Str << ", ";
Inst->getSrc(1)->emit(Func);
}
void InstARM32Pred::emitFourAddr(const char *Opcode, const InstARM32Pred *Inst,
const Cfg *Func) {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
assert(Inst->getSrcSize() == 3);
Str << "\t" << Opcode << Inst->getPredicate() << "\t";
Inst->getDest()->emit(Func);
Str << ", ";
Inst->getSrc(0)->emit(Func);
Str << ", ";
Inst->getSrc(1)->emit(Func);
Str << ", ";
Inst->getSrc(2)->emit(Func);
}
template <InstARM32::InstKindARM32 K>
void InstARM32FourAddrGPR<K>::emitIAS(const Cfg *Func) const {
emitUsingTextFixup(Func);
}
template <> void InstARM32Mla::emitIAS(const Cfg *Func) const {
assert(getSrcSize() == 3);
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->mla(getDest(), getSrc(0), getSrc(1), getSrc(2), getPredicate());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
void InstARM32Pred::emitCmpLike(const char *Opcode, const InstARM32Pred *Inst,
const Cfg *Func) {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
assert(Inst->getSrcSize() == 2);
Str << "\t" << Opcode << Inst->getPredicate() << "\t";
Inst->getSrc(0)->emit(Func);
Str << ", ";
Inst->getSrc(1)->emit(Func);
}
OperandARM32Mem::OperandARM32Mem(Cfg * /* Func */, Type Ty, Variable *Base,
ConstantInteger32 *ImmOffset, AddrMode Mode)
: OperandARM32(kMem, Ty), Base(Base), ImmOffset(ImmOffset), Index(nullptr),
ShiftOp(kNoShift), ShiftAmt(0), Mode(Mode) {
// The Neg modes are only needed for Reg +/- Reg.
assert(!isNegAddrMode());
NumVars = 1;
Vars = &this->Base;
}
OperandARM32Mem::OperandARM32Mem(Cfg *Func, Type Ty, Variable *Base,
Variable *Index, ShiftKind ShiftOp,
uint16_t ShiftAmt, AddrMode Mode)
: OperandARM32(kMem, Ty), Base(Base), ImmOffset(0), Index(Index),
ShiftOp(ShiftOp), ShiftAmt(ShiftAmt), Mode(Mode) {
NumVars = 2;
Vars = Func->allocateArrayOf<Variable *>(2);
Vars[0] = Base;
Vars[1] = Index;
}
OperandARM32ShAmtImm::OperandARM32ShAmtImm(ConstantInteger32 *SA)
: OperandARM32(kShAmtImm, IceType_i8), ShAmt(SA) {}
bool OperandARM32Mem::canHoldOffset(Type Ty, bool SignExt, int32_t Offset) {
int32_t Bits = SignExt ? TypeARM32Attributes[Ty].SExtAddrOffsetBits
: TypeARM32Attributes[Ty].ZExtAddrOffsetBits;
if (Bits == 0)
return Offset == 0;
// Note that encodings for offsets are sign-magnitude for ARM, so we check
// with IsAbsoluteUint().
return Utils::IsAbsoluteUint(Bits, Offset);
}
OperandARM32FlexImm::OperandARM32FlexImm(Cfg * /* Func */, Type Ty,
uint32_t Imm, uint32_t RotateAmt)
: OperandARM32Flex(kFlexImm, Ty), Imm(Imm), RotateAmt(RotateAmt) {
NumVars = 0;
Vars = nullptr;
}
bool OperandARM32FlexImm::canHoldImm(uint32_t Immediate, uint32_t *RotateAmt,
uint32_t *Immed_8) {
// Avoid the more expensive test for frequent small immediate values.
if (Immediate <= 0xFF) {
*RotateAmt = 0;
*Immed_8 = Immediate;
return true;
}
// Note that immediate must be unsigned for the test to work correctly.
for (int Rot = 1; Rot < 16; Rot++) {
uint32_t Imm8 = Utils::rotateLeft32(Immediate, 2 * Rot);
if (Imm8 <= 0xFF) {
*RotateAmt = Rot;
*Immed_8 = Imm8;
return true;
}
}
return false;
}
OperandARM32FlexFpImm::OperandARM32FlexFpImm(Cfg * /*Func*/, Type Ty,
uint32_t ModifiedImm)
: OperandARM32Flex(kFlexFpImm, Ty), ModifiedImm(ModifiedImm) {}
bool OperandARM32FlexFpImm::canHoldImm(Operand *C, uint32_t *ModifiedImm) {
switch (C->getType()) {
default:
llvm::report_fatal_error("Unhandled fp constant type.");
case IceType_f32: {
// We violate llvm naming conventions a bit here so that the constants are
// named after the bit fields they represent. See "A7.5.1 Operation of
// modified immediate constants, Floating-point" in the ARM ARM.
static constexpr uint32_t a = 0x80000000u;
static constexpr uint32_t B = 0x40000000;
static constexpr uint32_t bbbbb = 0x3E000000;
static constexpr uint32_t cdefgh = 0x01F80000;
static constexpr uint32_t AllowedBits = a | B | bbbbb | cdefgh;
static_assert(AllowedBits == 0xFFF80000u,
"Invalid mask for f32 modified immediates.");
const float F32 = llvm::cast<ConstantFloat>(C)->getValue();
const uint32_t I32 = *reinterpret_cast<const uint32_t *>(&F32);
if (I32 & ~AllowedBits) {
// constant has disallowed bits.
return false;
}
if ((I32 & bbbbb) != bbbbb && (I32 & bbbbb)) {
// not all bbbbb bits are 0 or 1.
return false;
}
if (((I32 & B) != 0) == ((I32 & bbbbb) != 0)) {
// B ^ b = 0;
return false;
}
*ModifiedImm = ((I32 & a) ? 0x80 : 0x00) | ((I32 & bbbbb) ? 0x40 : 0x00) |
((I32 & cdefgh) >> 19);
return true;
}
case IceType_f64: {
static constexpr uint32_t a = 0x80000000u;
static constexpr uint32_t B = 0x40000000;
static constexpr uint32_t bbbbbbbb = 0x3FC00000;
static constexpr uint32_t cdefgh = 0x003F0000;
static constexpr uint32_t AllowedBits = a | B | bbbbbbbb | cdefgh;
static_assert(AllowedBits == 0xFFFF0000u,
"Invalid mask for f64 modified immediates.");
const double F64 = llvm::cast<ConstantDouble>(C)->getValue();
const uint64_t I64 = *reinterpret_cast<const uint64_t *>(&F64);
if (I64 & 0xFFFFFFFFu) {
// constant has disallowed bits.
return false;
}
const uint32_t I32 = I64 >> 32;
if (I32 & ~AllowedBits) {
// constant has disallowed bits.
return false;
}
if ((I32 & bbbbbbbb) != bbbbbbbb && (I32 & bbbbbbbb)) {
// not all bbbbb bits are 0 or 1.
return false;
}
if (((I32 & B) != 0) == ((I32 & bbbbbbbb) != 0)) {
// B ^ b = 0;
return false;
}
*ModifiedImm = ((I32 & a) ? 0x80 : 0x00) |
((I32 & bbbbbbbb) ? 0x40 : 0x00) | ((I32 & cdefgh) >> 16);
return true;
}
}
}
OperandARM32FlexFpZero::OperandARM32FlexFpZero(Cfg * /*Func*/, Type Ty)
: OperandARM32Flex(kFlexFpZero, Ty) {}
OperandARM32FlexReg::OperandARM32FlexReg(Cfg *Func, Type Ty, Variable *Reg,
ShiftKind ShiftOp, Operand *ShiftAmt)
: OperandARM32Flex(kFlexReg, Ty), Reg(Reg), ShiftOp(ShiftOp),
ShiftAmt(ShiftAmt) {
NumVars = 1;
Variable *ShiftVar = llvm::dyn_cast_or_null<Variable>(ShiftAmt);
if (ShiftVar)
++NumVars;
Vars = Func->allocateArrayOf<Variable *>(NumVars);
Vars[0] = Reg;
if (ShiftVar)
Vars[1] = ShiftVar;
}
InstARM32Br::InstARM32Br(Cfg *Func, const CfgNode *TargetTrue,
const CfgNode *TargetFalse,
const InstARM32Label *Label, CondARM32::Cond Pred)
: InstARM32Pred(Func, InstARM32::Br, 0, nullptr, Pred),
TargetTrue(TargetTrue), TargetFalse(TargetFalse), Label(Label) {}
bool InstARM32Br::optimizeBranch(const CfgNode *NextNode) {
// If there is no next block, then there can be no fallthrough to optimize.
if (NextNode == nullptr)
return false;
// Intra-block conditional branches can't be optimized.
if (Label)
return false;
// If there is no fallthrough node, such as a non-default case label for a
// switch instruction, then there is no opportunity to optimize.
if (getTargetFalse() == nullptr)
return false;
// Unconditional branch to the next node can be removed.
if (isUnconditionalBranch() && getTargetFalse() == NextNode) {
assert(getTargetTrue() == nullptr);
setDeleted();
return true;
}
// If the fallthrough is to the next node, set fallthrough to nullptr to
// indicate.
if (getTargetFalse() == NextNode) {
TargetFalse = nullptr;
return true;
}
// If TargetTrue is the next node, and TargetFalse is not nullptr (which was
// already tested above), then invert the branch condition, swap the targets,
// and set new fallthrough to nullptr.
if (getTargetTrue() == NextNode) {
assert(Predicate != CondARM32::AL);
setPredicate(getOppositeCondition(getPredicate()));
TargetTrue = getTargetFalse();
TargetFalse = nullptr;
return true;
}
return false;
}
bool InstARM32Br::repointEdges(CfgNode *OldNode, CfgNode *NewNode) {
bool Found = false;
if (TargetFalse == OldNode) {
TargetFalse = NewNode;
Found = true;
}
if (TargetTrue == OldNode) {
TargetTrue = NewNode;
Found = true;
}
return Found;
}
template <InstARM32::InstKindARM32 K>
void InstARM32ThreeAddrGPR<K>::emitIAS(const Cfg *Func) const {
emitUsingTextFixup(Func);
}
template <> void InstARM32Adc::emitIAS(const Cfg *Func) const {
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->adc(getDest(), getSrc(0), getSrc(1), SetFlags, getPredicate());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
template <> void InstARM32Add::emitIAS(const Cfg *Func) const {
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->add(getDest(), getSrc(0), getSrc(1), SetFlags, getPredicate());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
template <> void InstARM32And::emitIAS(const Cfg *Func) const {
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->and_(getDest(), getSrc(0), getSrc(1), SetFlags, getPredicate());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
template <> void InstARM32Bic::emitIAS(const Cfg *Func) const {
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->bic(getDest(), getSrc(0), getSrc(1), SetFlags, getPredicate());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
template <> void InstARM32Eor::emitIAS(const Cfg *Func) const {
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->eor(getDest(), getSrc(0), getSrc(1), SetFlags, getPredicate());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
template <> void InstARM32Lsl::emitIAS(const Cfg *Func) const {
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->lsl(getDest(), getSrc(0), getSrc(1), SetFlags, getPredicate());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
template <> void InstARM32Orr::emitIAS(const Cfg *Func) const {
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->orr(getDest(), getSrc(0), getSrc(1), SetFlags, getPredicate());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
template <> void InstARM32Mul::emitIAS(const Cfg *Func) const {
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->mul(getDest(), getSrc(0), getSrc(1), SetFlags, getPredicate());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
template <> void InstARM32Sbc::emitIAS(const Cfg *Func) const {
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->sbc(getDest(), getSrc(0), getSrc(1), SetFlags, getPredicate());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
template <> void InstARM32Sdiv::emitIAS(const Cfg *Func) const {
assert(!SetFlags);
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->sdiv(getDest(), getSrc(0), getSrc(1), getPredicate());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
template <> void InstARM32Sub::emitIAS(const Cfg *Func) const {
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->sub(getDest(), getSrc(0), getSrc(1), SetFlags, getPredicate());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
template <> void InstARM32Udiv::emitIAS(const Cfg *Func) const {
assert(!SetFlags);
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->udiv(getDest(), getSrc(0), getSrc(1), getPredicate());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
InstARM32Call::InstARM32Call(Cfg *Func, Variable *Dest, Operand *CallTarget)
: InstARM32(Func, InstARM32::Call, 1, Dest) {
HasSideEffects = true;
addSource(CallTarget);
}
InstARM32Label::InstARM32Label(Cfg *Func, TargetARM32 *Target)
: InstARM32(Func, InstARM32::Label, 0, nullptr),
Number(Target->makeNextLabelNumber()) {}
IceString InstARM32Label::getName(const Cfg *Func) const {
return ".L" + Func->getFunctionName() + "$local$__" + std::to_string(Number);
}
InstARM32Pop::InstARM32Pop(Cfg *Func, const VarList &Dests)
: InstARM32(Func, InstARM32::Pop, 0, nullptr), Dests(Dests) {
// Track modifications to Dests separately via FakeDefs. Also, a pop
// instruction affects the stack pointer and so it should not be allowed to
// be automatically dead-code eliminated. This is automatic since we leave
// the Dest as nullptr.
}
InstARM32Push::InstARM32Push(Cfg *Func, const VarList &Srcs)
: InstARM32(Func, InstARM32::Push, Srcs.size(), nullptr) {
for (Variable *Source : Srcs)
addSource(Source);
}
InstARM32Ret::InstARM32Ret(Cfg *Func, Variable *LR, Variable *Source)
: InstARM32(Func, InstARM32::Ret, Source ? 2 : 1, nullptr) {
addSource(LR);
if (Source)
addSource(Source);
}
InstARM32Str::InstARM32Str(Cfg *Func, Variable *Value, OperandARM32Mem *Mem,
CondARM32::Cond Predicate)
: InstARM32Pred(Func, InstARM32::Str, 2, nullptr, Predicate) {
addSource(Value);
addSource(Mem);
}
InstARM32Strex::InstARM32Strex(Cfg *Func, Variable *Dest, Variable *Value,
OperandARM32Mem *Mem, CondARM32::Cond Predicate)
: InstARM32Pred(Func, InstARM32::Strex, 2, Dest, Predicate) {
addSource(Value);
addSource(Mem);
}
InstARM32Trap::InstARM32Trap(Cfg *Func)
: InstARM32(Func, InstARM32::Trap, 0, nullptr) {}
InstARM32Umull::InstARM32Umull(Cfg *Func, Variable *DestLo, Variable *DestHi,
Variable *Src0, Variable *Src1,
CondARM32::Cond Predicate)
: InstARM32Pred(Func, InstARM32::Umull, 2, DestLo, Predicate),
// DestHi is expected to have a FakeDef inserted by the lowering code.
DestHi(DestHi) {
addSource(Src0);
addSource(Src1);
}
InstARM32Vcvt::InstARM32Vcvt(Cfg *Func, Variable *Dest, Variable *Src,
VcvtVariant Variant, CondARM32::Cond Predicate)
: InstARM32Pred(Func, InstARM32::Vcvt, 1, Dest, Predicate),
Variant(Variant) {
addSource(Src);
}
InstARM32Mov::InstARM32Mov(Cfg *Func, Variable *Dest, Operand *Src,
CondARM32::Cond Predicate)
: InstARM32Pred(Func, InstARM32::Mov, 2, Dest, Predicate) {
auto *Dest64 = llvm::dyn_cast<Variable64On32>(Dest);
auto *Src64 = llvm::dyn_cast<Variable64On32>(Src);
assert(Dest64 == nullptr || Src64 == nullptr);
if (Dest64 != nullptr) {
// this-> is needed below because there is a parameter named Dest.
this->Dest = Dest64->getLo();
DestHi = Dest64->getHi();
}
if (Src64 == nullptr) {
addSource(Src);
} else {
addSource(Src64->getLo());
addSource(Src64->getHi());
}
}
template <InstARM32::InstKindARM32 K>
void InstARM32CmpLike<K>::emitIAS(const Cfg *Func) const {
emitUsingTextFixup(Func);
}
template <> void InstARM32Cmp::emitIAS(const Cfg *Func) const {
assert(getSrcSize() == 2);
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->cmp(getSrc(0), getSrc(1), getPredicate());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
template <> void InstARM32Tst::emitIAS(const Cfg *Func) const {
assert(getSrcSize() == 2);
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->tst(getSrc(0), getSrc(1), getPredicate());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
InstARM32Vcmp::InstARM32Vcmp(Cfg *Func, Variable *Src0, Operand *Src1,
CondARM32::Cond Predicate)
: InstARM32Pred(Func, InstARM32::Vcmp, 2, nullptr, Predicate) {
HasSideEffects = true;
addSource(Src0);
addSource(Src1);
}
InstARM32Vmrs::InstARM32Vmrs(Cfg *Func, CondARM32::Cond Predicate)
: InstARM32Pred(Func, InstARM32::Vmrs, 0, nullptr, Predicate) {
HasSideEffects = true;
}
InstARM32Vabs::InstARM32Vabs(Cfg *Func, Variable *Dest, Variable *Src,
CondARM32::Cond Predicate)
: InstARM32Pred(Func, InstARM32::Vabs, 1, Dest, Predicate) {
addSource(Src);
}
InstARM32Dmb::InstARM32Dmb(Cfg *Func)
: InstARM32Pred(Func, InstARM32::Dmb, 0, nullptr, CondARM32::AL) {}
// ======================== Dump routines ======================== //
// Two-addr ops
template <> const char *InstARM32Movt::Opcode = "movt";
// Unary ops
template <> const char *InstARM32Movw::Opcode = "movw";
template <> const char *InstARM32Clz::Opcode = "clz";
template <> const char *InstARM32Mvn::Opcode = "mvn";
template <> const char *InstARM32Rbit::Opcode = "rbit";
template <> const char *InstARM32Rev::Opcode = "rev";
template <> const char *InstARM32Sxt::Opcode = "sxt"; // still requires b/h
template <> const char *InstARM32Uxt::Opcode = "uxt"; // still requires b/h
// FP
template <> const char *InstARM32Vsqrt::Opcode = "vsqrt";
// Mov-like ops
template <> const char *InstARM32Ldr::Opcode = "ldr";
template <> const char *InstARM32Ldrex::Opcode = "ldrex";
// Three-addr ops
template <> const char *InstARM32Adc::Opcode = "adc";
template <> const char *InstARM32Add::Opcode = "add";
template <> const char *InstARM32And::Opcode = "and";
template <> const char *InstARM32Asr::Opcode = "asr";
template <> const char *InstARM32Bic::Opcode = "bic";
template <> const char *InstARM32Eor::Opcode = "eor";
template <> const char *InstARM32Lsl::Opcode = "lsl";
template <> const char *InstARM32Lsr::Opcode = "lsr";
template <> const char *InstARM32Mul::Opcode = "mul";
template <> const char *InstARM32Orr::Opcode = "orr";
template <> const char *InstARM32Rsb::Opcode = "rsb";
template <> const char *InstARM32Rsc::Opcode = "rsc";
template <> const char *InstARM32Sbc::Opcode = "sbc";
template <> const char *InstARM32Sdiv::Opcode = "sdiv";
template <> const char *InstARM32Sub::Opcode = "sub";
template <> const char *InstARM32Udiv::Opcode = "udiv";
// FP
template <> const char *InstARM32Vadd::Opcode = "vadd";
template <> const char *InstARM32Vdiv::Opcode = "vdiv";
template <> const char *InstARM32Vmul::Opcode = "vmul";
template <> const char *InstARM32Veor::Opcode = "veor";
template <> const char *InstARM32Vsub::Opcode = "vsub";
// Four-addr ops
template <> const char *InstARM32Mla::Opcode = "mla";
template <> const char *InstARM32Mls::Opcode = "mls";
// Cmp-like ops
template <> const char *InstARM32Cmn::Opcode = "cmn";
template <> const char *InstARM32Cmp::Opcode = "cmp";
template <> const char *InstARM32Tst::Opcode = "tst";
void InstARM32::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
Str << "[ARM32] ";
Inst::dump(Func);
}
void InstARM32Mov::emitMultiDestSingleSource(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
Variable *DestLo = getDest();
Variable *DestHi = getDestHi();
auto *Src = llvm::cast<Variable>(getSrc(0));
assert(DestHi->hasReg());
assert(DestLo->hasReg());
assert(llvm::isa<Variable>(Src) && Src->hasReg());
Str << "\t"
<< "vmov" << getPredicate() << "\t";
DestLo->emit(Func);
Str << ", ";
DestHi->emit(Func);
Str << ", ";
Src->emit(Func);
}
void InstARM32Mov::emitSingleDestMultiSource(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
Variable *Dest = getDest();
Variable *SrcLo = llvm::cast<Variable>(getSrc(0));
Variable *SrcHi = llvm::cast<Variable>(getSrc(1));
assert(SrcHi->hasReg());
assert(SrcLo->hasReg());
assert(Dest->hasReg());
assert(getSrcSize() == 2);
Str << "\t"
<< "vmov" << getPredicate() << "\t";
Dest->emit(Func);
Str << ", ";
SrcLo->emit(Func);
Str << ", ";
SrcHi->emit(Func);
}
namespace {
bool isVariableWithoutRegister(const Operand *Op) {
if (const auto *OpV = llvm::dyn_cast<Variable>(Op)) {
return !OpV->hasReg();
}
return false;
}
bool isMemoryAccess(Operand *Op) {
return isVariableWithoutRegister(Op) || llvm::isa<OperandARM32Mem>(Op);
}
bool isMoveBetweenCoreAndVFPRegisters(Variable *Dest, Operand *Src) {
const Type DestTy = Dest->getType();
const Type SrcTy = Src->getType();
return !isVectorType(DestTy) && !isVectorType(SrcTy) &&
(isScalarIntegerType(DestTy) == isScalarFloatingType(SrcTy));
}
} // end of anonymous namespace
void InstARM32Mov::emitSingleDestSingleSource(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
Variable *Dest = getDest();
if (!Dest->hasReg()) {
llvm::report_fatal_error("mov can't store.");
}
Operand *Src0 = getSrc(0);
if (isMemoryAccess(Src0)) {
llvm::report_fatal_error("mov can't load.");
}
Type Ty = Dest->getType();
const bool IsVector = isVectorType(Ty);
const bool IsScalarFP = isScalarFloatingType(Ty);
const bool CoreVFPMove = isMoveBetweenCoreAndVFPRegisters(Dest, Src0);
const bool IsVMove = (IsVector || IsScalarFP || CoreVFPMove);
const char *Opcode = IsVMove ? "vmov" : "mov";
// when vmov{c}'ing, we need to emit a width string. Otherwise, the
// assembler might be tempted to assume we want a vector vmov{c}, and that
// is disallowed because ARM.
const char *WidthString = !CoreVFPMove ? getVecWidthString(Ty) : "";
Str << "\t" << Opcode;
if (IsVMove) {
Str << getPredicate() << WidthString;
} else {
Str << WidthString << getPredicate();
}
Str << "\t";
Dest->emit(Func);
Str << ", ";
Src0->emit(Func);
}
void InstARM32Mov::emitIASSingleDestSingleSource(const Cfg *Func) const {
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Variable *Dest = getDest();
Operand *Src0 = getSrc(0);
if (!Dest->hasReg()) {
llvm::report_fatal_error("mov can't store.");
}
if (isMemoryAccess(Src0)) {
llvm::report_fatal_error("mov can't load.");
}
const Type DestTy = Dest->getType();
const bool DestIsVector = isVectorType(DestTy);
const bool DestIsScalarFP = isScalarFloatingType(DestTy);
const bool CoreVFPMove = isMoveBetweenCoreAndVFPRegisters(Dest, Src0);
if (DestIsVector || DestIsScalarFP || CoreVFPMove)
return Asm->setNeedsTextFixup();
return Asm->mov(Dest, Src0, getPredicate());
}
void InstARM32Mov::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
assert(!(isMultiDest() && isMultiSource()) && "Invalid vmov type.");
if (isMultiDest()) {
emitMultiDestSingleSource(Func);
return;
}
if (isMultiSource()) {
emitSingleDestMultiSource(Func);
return;
}
emitSingleDestSingleSource(Func);
}
void InstARM32Mov::emitIAS(const Cfg *Func) const {
assert(!(isMultiDest() && isMultiSource()) && "Invalid vmov type.");
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
if (!(isMultiDest() || isMultiSource()))
// Must be single source/dest.
emitIASSingleDestSingleSource(Func);
else
Asm->setNeedsTextFixup();
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
void InstARM32Mov::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
assert(getSrcSize() == 1 || getSrcSize() == 2);
Ostream &Str = Func->getContext()->getStrDump();
Variable *Dest = getDest();
Variable *DestHi = getDestHi();
Dest->dump(Func);
if (DestHi) {
Str << ", ";
DestHi->dump(Func);
}
dumpOpcodePred(Str, " = mov", getDest()->getType());
Str << " ";
dumpSources(Func);
}
void InstARM32Br::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
Str << "\t"
<< "b" << getPredicate() << "\t";
if (Label) {
Str << Label->getName(Func);
} else {
if (isUnconditionalBranch()) {
Str << getTargetFalse()->getAsmName();
} else {
Str << getTargetTrue()->getAsmName();
if (getTargetFalse()) {
startNextInst(Func);
Str << "\n\t"
<< "b"
<< "\t" << getTargetFalse()->getAsmName();
}
}
}
}
void InstARM32Br::emitIAS(const Cfg *Func) const {
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
if (Label) {
Asm->b(Asm->getOrCreateLocalLabel(Label->getNumber()), getPredicate());
} else if (isUnconditionalBranch()) {
Asm->b(Asm->getOrCreateCfgNodeLabel(getTargetFalse()->getIndex()),
getPredicate());
} else {
Asm->b(Asm->getOrCreateCfgNodeLabel(getTargetTrue()->getIndex()),
getPredicate());
if (const CfgNode *False = getTargetFalse())
Asm->b(Asm->getOrCreateCfgNodeLabel(False->getIndex()), CondARM32::AL);
}
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
void InstARM32Br::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
Str << "br ";
if (getPredicate() == CondARM32::AL) {
Str << "label %"
<< (Label ? Label->getName(Func) : getTargetFalse()->getName());
return;
}
if (Label) {
Str << getPredicate() << ", label %" << Label->getName(Func);
} else {
Str << getPredicate() << ", label %" << getTargetTrue()->getName();
if (getTargetFalse()) {
Str << ", label %" << getTargetFalse()->getName();
}
}
}
void InstARM32Call::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
assert(getSrcSize() == 1);
if (llvm::isa<ConstantInteger32>(getCallTarget())) {
// This shouldn't happen (typically have to copy the full 32-bits to a
// register and do an indirect jump).
llvm::report_fatal_error("ARM32Call to ConstantInteger32");
} else if (const auto *CallTarget =
llvm::dyn_cast<ConstantRelocatable>(getCallTarget())) {
// Calls only have 24-bits, but the linker should insert veneers to extend
// the range if needed.
Str << "\t"
<< "bl"
<< "\t";
CallTarget->emitWithoutPrefix(Func->getTarget());
} else {
Str << "\t"
<< "blx"
<< "\t";
getCallTarget()->emit(Func);
}
}
void InstARM32Call::emitIAS(const Cfg *Func) const {
assert(getSrcSize() == 1);
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
if (llvm::isa<ConstantInteger32>(getCallTarget())) {
// This shouldn't happen (typically have to copy the full 32-bits to a
// register and do an indirect jump).
llvm::report_fatal_error("ARM32Call to ConstantInteger32");
} else if (const auto *CallTarget =
llvm::dyn_cast<ConstantRelocatable>(getCallTarget())) {
// Calls only have 24-bits, but the linker should insert veneers to extend
// the range if needed.
Asm->bl(CallTarget);
} else {
Asm->blx(getCallTarget());
}
if (Asm->needsTextFixup())
return emitUsingTextFixup(Func);
}
void InstARM32Call::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
if (getDest()) {
dumpDest(Func);
Str << " = ";
}
Str << "call ";
getCallTarget()->dump(Func);
}
void InstARM32Label::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
// A label is not really an instruction. Hence, we need to fix the
// emitted text size.
if (auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>())
Asm->decEmitTextSize(InstSize);
Ostream &Str = Func->getContext()->getStrEmit();
Str << getName(Func) << ":";
}
void InstARM32Label::emitIAS(const Cfg *Func) const {
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->bindLocalLabel(Func, this, Number);
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
void InstARM32Label::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
Str << getName(Func) << ":";
}
template <InstARM32::InstKindARM32 K>
void InstARM32LoadBase<K>::emitIAS(const Cfg *Func) const {
emitUsingTextFixup(Func);
}
template <> void InstARM32Ldr::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
assert(getSrcSize() == 1);
assert(getDest()->hasReg());
Variable *Dest = getDest();
Type Ty = Dest->getType();
const bool IsVector = isVectorType(Ty);
const bool IsScalarFloat = isScalarFloatingType(Ty);
const char *ActualOpcode =
IsVector ? "vld1" : (IsScalarFloat ? "vldr" : "ldr");
const char *VectorMarker = IsVector ? ".64" : "";
const char *WidthString = IsVector ? "" : getWidthString(Ty);
Str << "\t" << ActualOpcode;
const bool IsVInst = IsVector || IsScalarFloat;
if (IsVInst) {
Str << getPredicate() << WidthString;
} else {
Str << WidthString << getPredicate();
}
Str << VectorMarker << "\t";
getDest()->emit(Func);
Str << ", ";
getSrc(0)->emit(Func);
}
template <> void InstARM32Ldr::emitIAS(const Cfg *Func) const {
assert(getSrcSize() == 1);
Variable *Dest = getDest();
Type DestTy = Dest->getType();
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
if (isVectorType(DestTy) || isScalarFloatingType(DestTy))
// TODO(kschimpf) Handle case.
Asm->setNeedsTextFixup();
else
Asm->ldr(Dest, getSrc(0), getPredicate(), Func->getTarget());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
template <> void InstARM32Ldrex::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
assert(getSrcSize() == 1);
assert(getDest()->hasReg());
Variable *Dest = getDest();
Type DestTy = Dest->getType();
assert(isScalarIntegerType(DestTy));
const char *WidthString = getWidthString(DestTy);
Str << "\t" << Opcode << WidthString << getPredicate() << "\t";
getDest()->emit(Func);
Str << ", ";
getSrc(0)->emit(Func);
}
template <InstARM32::InstKindARM32 K>
void InstARM32TwoAddrGPR<K>::emitIAS(const Cfg *Func) const {
emitUsingTextFixup(Func);
}
template <InstARM32::InstKindARM32 K, bool Nws>
void InstARM32UnaryopGPR<K, Nws>::emitIAS(const Cfg *Func) const {
emitUsingTextFixup(Func);
}
template <> void InstARM32Movw::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
assert(getSrcSize() == 1);
Str << "\t" << Opcode << getPredicate() << "\t";
getDest()->emit(Func);
Str << ", ";
Constant *Src0 = llvm::cast<Constant>(getSrc(0));
if (auto *CR = llvm::dyn_cast<ConstantRelocatable>(Src0)) {
Str << "#:lower16:";
CR->emitWithoutPrefix(Func->getTarget());
} else {
Src0->emit(Func);
}
}
template <> void InstARM32Movw::emitIAS(const Cfg *Func) const {
assert(getSrcSize() == 1);
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->movw(getDest(), getSrc(0), getPredicate());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
template <> void InstARM32Movt::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
assert(getSrcSize() == 2);
Variable *Dest = getDest();
Constant *Src1 = llvm::cast<Constant>(getSrc(1));
Str << "\t" << Opcode << getPredicate() << "\t";
Dest->emit(Func);
Str << ", ";
if (auto *CR = llvm::dyn_cast<ConstantRelocatable>(Src1)) {
Str << "#:upper16:";
CR->emitWithoutPrefix(Func->getTarget());
} else {
Src1->emit(Func);
}
}
template <> void InstARM32Movt::emitIAS(const Cfg *Func) const {
assert(getSrcSize() == 2);
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->movt(getDest(), getSrc(1), getPredicate());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
template <> void InstARM32Mvn::emitIAS(const Cfg *Func) const {
assert(getSrcSize() == 1);
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->mvn(getDest(), getSrc(0), getPredicate());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
template <> void InstARM32Uxt::emitIAS(const Cfg *Func) const {
assert(getSrcSize() == 1);
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->uxt(getDest(), getSrc(0), getPredicate());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
void InstARM32Pop::emit(const Cfg *Func) const {
// TODO(jpp): Improve FP register save/restore.
if (!BuildDefs::dump())
return;
SizeT IntegerCount = 0;
for (const Operand *Op : Dests) {
if (isScalarIntegerType(Op->getType())) {
++IntegerCount;
}
}
Ostream &Str = Func->getContext()->getStrEmit();
bool NeedNewline = false;
if (IntegerCount != 0) {
Str << "\t"
<< "pop"
<< "\t{";
bool PrintComma = false;
for (const Operand *Op : Dests) {
if (isScalarIntegerType(Op->getType())) {
if (PrintComma)
Str << ", ";
Op->emit(Func);
PrintComma = true;
}
}
Str << "}";
NeedNewline = true;
}
for (const Operand *Op : Dests) {
if (isScalarIntegerType(Op->getType()))
continue;
if (NeedNewline) {
Str << "\n";
startNextInst(Func);
NeedNewline = false;
}
Str << "\t"
<< "vpop"
<< "\t{";
Op->emit(Func);
Str << "}";
NeedNewline = true;
}
assert(NeedNewline); // caller will add the newline
}
void InstARM32Pop::emitIAS(const Cfg *Func) const {
SizeT IntegerCount = 0;
ARM32::IValueT GPRegisters = 0;
const Variable *LastDest = nullptr;
for (const Variable *Var : Dests) {
if (!isScalarIntegerType(Var->getType()))
// TODO(kschimpf) Implement vpush.
return emitUsingTextFixup(Func);
assert((Var && Var->hasReg()) && "pop only applies to registers");
int32_t Reg = Var->getRegNum();
assert(Reg != RegARM32::Encoded_Not_GPR);
LastDest = Var;
GPRegisters |= (1 << Reg);
++IntegerCount;
}
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
switch (IntegerCount) {
case 0:
return;
case 1:
// Note: Can only apply pop register if single register is not sp.
assert((RegARM32::Encoded_Reg_sp != LastDest->getRegNum()) &&
"Effects of pop register SP is undefined!");
// TODO(kschimpf) ARM sandbox does not allow the single register form of
// pop, and the popList form expects multiple registers. Convert this
// assert to a conditional check once it has been shown that popList
// works.
assert(!Func->getContext()->getFlags().getUseSandboxing() &&
"pop register not in ARM sandbox!");
Asm->pop(LastDest, CondARM32::AL);
break;
default:
Asm->popList(GPRegisters, CondARM32::AL);
break;
}
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
void InstARM32Pop::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
Str << "pop"
<< " ";
for (SizeT I = 0; I < Dests.size(); ++I) {
if (I > 0)
Str << ", ";
Dests[I]->dump(Func);
}
}
void InstARM32Push::emit(const Cfg *Func) const {
// TODO(jpp): Improve FP register save/restore.
if (!BuildDefs::dump())
return;
SizeT IntegerCount = 0;
for (SizeT i = 0; i < getSrcSize(); ++i) {
if (isScalarIntegerType(getSrc(i)->getType())) {
++IntegerCount;
}
}
Ostream &Str = Func->getContext()->getStrEmit();
bool NeedNewline = false;
for (SizeT i = getSrcSize(); i > 0; --i) {
Operand *Op = getSrc(i - 1);
if (isScalarIntegerType(Op->getType()))
continue;
if (NeedNewline) {
Str << "\n";
startNextInst(Func);
NeedNewline = false;
}
Str << "\t"
<< "vpush"
<< "\t{";
Op->emit(Func);
Str << "}";
NeedNewline = true;
}
if (IntegerCount != 0) {
if (NeedNewline) {
Str << "\n";
startNextInst(Func);
NeedNewline = false;
}
Str << "\t"
<< "push"
<< "\t{";
bool PrintComma = false;
for (SizeT i = 0; i < getSrcSize(); ++i) {
Operand *Op = getSrc(i);
if (isScalarIntegerType(Op->getType())) {
if (PrintComma)
Str << ", ";
Op->emit(Func);
PrintComma = true;
}
}
Str << "}";
NeedNewline = true;
}
assert(NeedNewline); // caller will add the newline
}
void InstARM32Push::emitIAS(const Cfg *Func) const {
SizeT IntegerCount = 0;
ARM32::IValueT GPRegisters = 0;
const Variable *LastSrc = nullptr;
for (SizeT Index = 0; Index < getSrcSize(); ++Index) {
if (!isScalarIntegerType(getSrc(Index)->getType()))
// TODO(kschimpf) Implement vpush.
return emitUsingTextFixup(Func);
const auto *Var = llvm::dyn_cast<Variable>(getSrc(Index));
assert((Var && Var->hasReg()) && "push only applies to registers");
int32_t Reg = Var->getRegNum();
assert(Reg != RegARM32::Encoded_Not_GPR);
LastSrc = Var;
GPRegisters |= (1 << Reg);
++IntegerCount;
}
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
switch (IntegerCount) {
case 0:
return;
case 1: {
// Note: Can only apply push register if single register is not sp.
assert((RegARM32::Encoded_Reg_sp != LastSrc->getRegNum()) &&
"Effects of push register SP is undefined!");
// TODO(kschimpf) ARM sandbox does not allow the single register form of
// push, and the pushList form expects multiple registers. Convert this
// assert to a conditional check once it has been shown that pushList
// works.
assert(!Func->getContext()->getFlags().getUseSandboxing() &&
"push register not in ARM sandbox!");
Asm->push(LastSrc, CondARM32::AL);
break;
}
default:
// TODO(kschimpf) Implement pushList in assembler.
Asm->pushList(GPRegisters, CondARM32::AL);
break;
}
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
void InstARM32Push::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
Str << "push"
<< " ";
dumpSources(Func);
}
void InstARM32Ret::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
assert(getSrcSize() > 0);
Variable *LR = llvm::cast<Variable>(getSrc(0));
assert(LR->hasReg());
assert(LR->getRegNum() == RegARM32::Reg_lr);
Ostream &Str = Func->getContext()->getStrEmit();
Str << "\t"
<< "bx"
<< "\t";
LR->emit(Func);
}
void InstARM32Ret::emitIAS(const Cfg *Func) const {
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->bx(RegARM32::Encoded_Reg_lr);
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
void InstARM32Ret::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
Type Ty = (getSrcSize() == 1 ? IceType_void : getSrc(0)->getType());
Str << "ret." << Ty << " ";
dumpSources(Func);
}
void InstARM32Str::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
assert(getSrcSize() == 2);
Type Ty = getSrc(0)->getType();
const bool IsVectorStore = isVectorType(Ty);
const bool IsScalarFloat = isScalarFloatingType(Ty);
const char *Opcode =
IsVectorStore ? "vst1" : (IsScalarFloat ? "vstr" : "str");
const char *VecEltWidthString = IsVectorStore ? ".64" : "";
Str << "\t" << Opcode;
const bool IsVInst = IsVectorStore || IsScalarFloat;
if (IsVInst) {
Str << getPredicate() << getWidthString(Ty);
} else {
Str << getWidthString(Ty) << getPredicate();
}
Str << VecEltWidthString << "\t";
getSrc(0)->emit(Func);
Str << ", ";
getSrc(1)->emit(Func);
}
void InstARM32Str::emitIAS(const Cfg *Func) const {
assert(getSrcSize() == 2);
Type Ty = getSrc(0)->getType();
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
if (isVectorType(Ty) || isScalarFloatingType(Ty))
// TODO(kschimpf) Handle case.
Asm->setNeedsTextFixup();
else
Asm->str(getSrc(0), getSrc(1), getPredicate(), Func->getTarget());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
void InstARM32Str::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
Type Ty = getSrc(0)->getType();
dumpOpcodePred(Str, "str", Ty);
Str << " ";
getSrc(1)->dump(Func);
Str << ", ";
getSrc(0)->dump(Func);
}
void InstARM32Strex::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
assert(getSrcSize() == 2);
Type Ty = getSrc(0)->getType();
assert(isScalarIntegerType(Ty));
Variable *Dest = getDest();
Ostream &Str = Func->getContext()->getStrEmit();
static constexpr char Opcode[] = "strex";
const char *WidthString = getWidthString(Ty);
Str << "\t" << Opcode << WidthString << getPredicate() << "\t";
Dest->emit(Func);
Str << ", ";
emitSources(Func);
}
void InstARM32Strex::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
Variable *Dest = getDest();
Dest->dump(Func);
Str << " = ";
Type Ty = getSrc(0)->getType();
dumpOpcodePred(Str, "strex", Ty);
Str << " ";
getSrc(1)->dump(Func);
Str << ", ";
getSrc(0)->dump(Func);
}
void InstARM32Trap::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
assert(getSrcSize() == 0);
// There isn't a mnemonic for the special NaCl Trap encoding, so dump
// the raw bytes.
Str << "\t.long 0x";
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
for (uint8_t I : Asm->getNonExecBundlePadding()) {
Str.write_hex(I);
}
}
void InstARM32Trap::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
Str << "trap";
}
void InstARM32Umull::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
assert(getSrcSize() == 2);
assert(getDest()->hasReg());
Str << "\t"
<< "umull" << getPredicate() << "\t";
getDest()->emit(Func);
Str << ", ";
DestHi->emit(Func);
Str << ", ";
getSrc(0)->emit(Func);
Str << ", ";
getSrc(1)->emit(Func);
}
void InstARM32Umull::emitIAS(const Cfg *Func) const {
assert(getSrcSize() == 2);
auto *Asm = Func->getAssembler<ARM32::AssemblerARM32>();
Asm->umull(getDest(), DestHi, getSrc(0), getSrc(1), getPredicate());
if (Asm->needsTextFixup())
emitUsingTextFixup(Func);
}
void InstARM32Umull::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
dumpDest(Func);
Str << " = ";
dumpOpcodePred(Str, "umull", getDest()->getType());
Str << " ";
dumpSources(Func);
}
namespace {
const char *vcvtVariantSuffix(const InstARM32Vcvt::VcvtVariant Variant) {
switch (Variant) {
case InstARM32Vcvt::S2si:
return ".s32.f32";
case InstARM32Vcvt::S2ui:
return ".u32.f32";
case InstARM32Vcvt::Si2s:
return ".f32.s32";
case InstARM32Vcvt::Ui2s:
return ".f32.u32";
case InstARM32Vcvt::D2si:
return ".s32.f64";
case InstARM32Vcvt::D2ui:
return ".u32.f64";
case InstARM32Vcvt::Si2d:
return ".f64.s32";
case InstARM32Vcvt::Ui2d:
return ".f64.u32";
case InstARM32Vcvt::S2d:
return ".f64.f32";
case InstARM32Vcvt::D2s:
return ".f32.f64";
}
llvm::report_fatal_error("Invalid VcvtVariant enum.");
}
} // end of anonymous namespace
void InstARM32Vcvt::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
assert(getSrcSize() == 1);
assert(getDest()->hasReg());
Str << "\t"
<< "vcvt" << getPredicate() << vcvtVariantSuffix(Variant) << "\t";
getDest()->emit(Func);
Str << ", ";
getSrc(0)->emit(Func);
}
void InstARM32Vcvt::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
dumpDest(Func);
Str << " = "
<< "vcvt" << getPredicate() << vcvtVariantSuffix(Variant) << " ";
dumpSources(Func);
}
void InstARM32Vcmp::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
assert(getSrcSize() == 2);
Str << "\t"
"vcmp" << getPredicate() << getVecWidthString(getSrc(0)->getType())
<< "\t";
getSrc(0)->emit(Func);
Str << ", ";
getSrc(1)->emit(Func);
}
void InstARM32Vcmp::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
Str << "vcmp" << getPredicate() << getVecWidthString(getSrc(0)->getType());
dumpSources(Func);
}
void InstARM32Vmrs::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
assert(getSrcSize() == 0);
Str << "\t"
"vmrs" << getPredicate() << "\t"
"APSR_nzcv"
", "
"FPSCR";
}
void InstARM32Vmrs::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
Str << "APSR{n,z,v,c} = vmrs" << getPredicate() << "\t"
"FPSCR{n,z,c,v}";
}
void InstARM32Vabs::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
assert(getSrcSize() == 1);
Str << "\t"
"vabs" << getPredicate() << getVecWidthString(getSrc(0)->getType())
<< "\t";
getDest()->emit(Func);
Str << ", ";
getSrc(0)->emit(Func);
}
void InstARM32Vabs::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrDump();
dumpDest(Func);
Str << " = vabs" << getPredicate() << getVecWidthString(getSrc(0)->getType());
}
void InstARM32Dmb::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
assert(getSrcSize() == 0);
Str << "\t"
"dmb"
"\t"
"sy";
}
void InstARM32Dmb::dump(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Func->getContext()->getStrDump() << "dmb\tsy";
}
void OperandARM32Mem::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
Str << "[";
getBase()->emit(Func);
switch (getAddrMode()) {
case PostIndex:
case NegPostIndex:
Str << "]";
break;
default:
break;
}
if (isRegReg()) {
Str << ", ";
if (isNegAddrMode()) {
Str << "-";
}
getIndex()->emit(Func);
if (getShiftOp() != kNoShift) {
Str << ", " << InstARM32ShiftAttributes[getShiftOp()].EmitString << " #"
<< getShiftAmt();
}
} else {
ConstantInteger32 *Offset = getOffset();
if (Offset && Offset->getValue() != 0) {
Str << ", ";
Offset->emit(Func);
}
}
switch (getAddrMode()) {
case Offset:
case NegOffset:
Str << "]";
break;
case PreIndex:
case NegPreIndex:
Str << "]!";
break;
case PostIndex:
case NegPostIndex:
// Brace is already closed off.
break;
}
}
void OperandARM32Mem::dump(const Cfg *Func, Ostream &Str) const {
if (!BuildDefs::dump())
return;
Str << "[";
if (Func)
getBase()->dump(Func);
else
getBase()->dump(Str);
Str << ", ";
if (isRegReg()) {
if (isNegAddrMode()) {
Str << "-";
}
if (Func)
getIndex()->dump(Func);
else
getIndex()->dump(Str);
if (getShiftOp() != kNoShift) {
Str << ", " << InstARM32ShiftAttributes[getShiftOp()].EmitString << " #"
<< getShiftAmt();
}
} else {
getOffset()->dump(Func, Str);
}
Str << "] AddrMode==" << getAddrMode();
}
void OperandARM32ShAmtImm::emit(const Cfg *Func) const { ShAmt->emit(Func); }
void OperandARM32ShAmtImm::dump(const Cfg *, Ostream &Str) const {
ShAmt->dump(Str);
}
void OperandARM32FlexImm::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
uint32_t Imm = getImm();
uint32_t RotateAmt = getRotateAmt();
Str << "#" << Utils::rotateRight32(Imm, 2 * RotateAmt);
}
void OperandARM32FlexImm::dump(const Cfg * /* Func */, Ostream &Str) const {
if (!BuildDefs::dump())
return;
uint32_t Imm = getImm();
uint32_t RotateAmt = getRotateAmt();
Str << "#(" << Imm << " ror 2*" << RotateAmt << ")";
}
namespace {
static constexpr uint32_t a = 0x80;
static constexpr uint32_t b = 0x40;
static constexpr uint32_t cdefgh = 0x3F;
static constexpr uint32_t AllowedBits = a | b | cdefgh;
static_assert(AllowedBits == 0xFF,
"Invalid mask for f32/f64 constant rematerialization.");
// There's no loss in always returning the modified immediate as float.
// TODO(jpp): returning a double causes problems when outputting the constants
// for filetype=asm. Why?
float materializeFloatImmediate(uint32_t ModifiedImm) {
const uint32_t Ret = ((ModifiedImm & a) ? 0x80000000 : 0) |
((ModifiedImm & b) ? 0x3E000000 : 0x40000000) |
((ModifiedImm & cdefgh) << 19);
return *reinterpret_cast<const float *>(&Ret);
}
} // end of anonymous namespace
void OperandARM32FlexFpImm::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
switch (Ty) {
default:
llvm::report_fatal_error("Invalid flex fp imm type.");
case IceType_f64:
case IceType_f32:
Str << "#" << materializeFloatImmediate(ModifiedImm)
<< " @ Modified: " << ModifiedImm;
break;
}
}
void OperandARM32FlexFpImm::dump(const Cfg * /*Func*/, Ostream &Str) const {
if (!BuildDefs::dump())
return;
Str << "#" << materializeFloatImmediate(ModifiedImm)
<< InstARM32::getVecWidthString(Ty);
}
void OperandARM32FlexFpZero::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
switch (Ty) {
default:
llvm::report_fatal_error("Invalid flex fp imm type.");
case IceType_f64:
case IceType_f32:
Str << "#0.0";
}
}
void OperandARM32FlexFpZero::dump(const Cfg * /*Func*/, Ostream &Str) const {
if (!BuildDefs::dump())
return;
Str << "#0.0" << InstARM32::getVecWidthString(Ty);
}
void OperandARM32FlexReg::emit(const Cfg *Func) const {
if (!BuildDefs::dump())
return;
Ostream &Str = Func->getContext()->getStrEmit();
getReg()->emit(Func);
if (getShiftOp() != kNoShift) {
Str << ", " << InstARM32ShiftAttributes[getShiftOp()].EmitString << " ";
getShiftAmt()->emit(Func);
}
}
void OperandARM32FlexReg::dump(const Cfg *Func, Ostream &Str) const {
if (!BuildDefs::dump())
return;
Variable *Reg = getReg();
if (Func)
Reg->dump(Func);
else
Reg->dump(Str);
if (getShiftOp() != kNoShift) {
Str << ", " << InstARM32ShiftAttributes[getShiftOp()].EmitString << " ";
if (Func)
getShiftAmt()->dump(Func);
else
getShiftAmt()->dump(Str);
}
}
// Force instantition of template classes
template class InstARM32ThreeAddrGPR<InstARM32::Adc>;
template class InstARM32ThreeAddrGPR<InstARM32::Add>;
template class InstARM32ThreeAddrGPR<InstARM32::And>;
template class InstARM32ThreeAddrGPR<InstARM32::Asr>;
template class InstARM32ThreeAddrGPR<InstARM32::Bic>;
template class InstARM32ThreeAddrGPR<InstARM32::Eor>;
template class InstARM32ThreeAddrGPR<InstARM32::Lsl>;
template class InstARM32ThreeAddrGPR<InstARM32::Lsr>;
template class InstARM32ThreeAddrGPR<InstARM32::Mul>;
template class InstARM32ThreeAddrGPR<InstARM32::Orr>;
template class InstARM32ThreeAddrGPR<InstARM32::Rsb>;
template class InstARM32ThreeAddrGPR<InstARM32::Rsc>;
template class InstARM32ThreeAddrGPR<InstARM32::Sbc>;
template class InstARM32ThreeAddrGPR<InstARM32::Sdiv>;
template class InstARM32ThreeAddrGPR<InstARM32::Sub>;
template class InstARM32ThreeAddrGPR<InstARM32::Udiv>;
template class InstARM32ThreeAddrFP<InstARM32::Vadd>;
template class InstARM32ThreeAddrFP<InstARM32::Vdiv>;
template class InstARM32ThreeAddrFP<InstARM32::Vmul>;
template class InstARM32ThreeAddrFP<InstARM32::Veor>;
template class InstARM32ThreeAddrFP<InstARM32::Vsub>;
template class InstARM32LoadBase<InstARM32::Ldr>;
template class InstARM32LoadBase<InstARM32::Ldrex>;
template class InstARM32TwoAddrGPR<InstARM32::Movt>;
template class InstARM32UnaryopGPR<InstARM32::Movw, false>;
template class InstARM32UnaryopGPR<InstARM32::Clz, false>;
template class InstARM32UnaryopGPR<InstARM32::Mvn, false>;
template class InstARM32UnaryopGPR<InstARM32::Rbit, false>;
template class InstARM32UnaryopGPR<InstARM32::Rev, false>;
template class InstARM32UnaryopGPR<InstARM32::Sxt, true>;
template class InstARM32UnaryopGPR<InstARM32::Uxt, true>;
template class InstARM32UnaryopFP<InstARM32::Vsqrt>;
template class InstARM32FourAddrGPR<InstARM32::Mla>;
template class InstARM32FourAddrGPR<InstARM32::Mls>;
template class InstARM32CmpLike<InstARM32::Cmn>;
template class InstARM32CmpLike<InstARM32::Cmp>;
template class InstARM32CmpLike<InstARM32::Tst>;
} // end of namespace Ice