blob: 0d739ca4540415a91801169bf9aa169a0abbf440 [file] [log] [blame]
//===- subzero/src/IceOperand.cpp - High-level operand implementation -----===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the Operand class and its target-independent
/// subclasses, primarily for the methods of the Variable class.
///
//===----------------------------------------------------------------------===//
#include "IceOperand.h"
#include "IceCfg.h"
#include "IceCfgNode.h"
#include "IceInst.h"
#include "IceTargetLowering.h" // dumping stack/frame pointer register
namespace Ice {
bool operator==(const RelocatableTuple &A, const RelocatableTuple &B) {
return A.Offset == B.Offset && A.Name == B.Name;
}
bool operator<(const RegWeight &A, const RegWeight &B) {
return A.getWeight() < B.getWeight();
}
bool operator<=(const RegWeight &A, const RegWeight &B) { return !(B < A); }
bool operator==(const RegWeight &A, const RegWeight &B) {
return !(B < A) && !(A < B);
}
void LiveRange::addSegment(InstNumberT Start, InstNumberT End) {
if (!Range.empty()) {
// Check for merge opportunity.
InstNumberT CurrentEnd = Range.back().second;
assert(Start >= CurrentEnd);
if (Start == CurrentEnd) {
Range.back().second = End;
return;
}
}
Range.push_back(RangeElementType(Start, End));
}
// Returns true if this live range ends before Other's live range
// starts. This means that the highest instruction number in this
// live range is less than or equal to the lowest instruction number
// of the Other live range.
bool LiveRange::endsBefore(const LiveRange &Other) const {
// Neither range should be empty, but let's be graceful.
if (Range.empty() || Other.Range.empty())
return true;
InstNumberT MyEnd = (*Range.rbegin()).second;
InstNumberT OtherStart = (*Other.Range.begin()).first;
return MyEnd <= OtherStart;
}
// Returns true if there is any overlap between the two live ranges.
bool LiveRange::overlaps(const LiveRange &Other, bool UseTrimmed) const {
// Do a two-finger walk through the two sorted lists of segments.
auto I1 = (UseTrimmed ? TrimmedBegin : Range.begin()),
I2 = (UseTrimmed ? Other.TrimmedBegin : Other.Range.begin());
auto E1 = Range.end(), E2 = Other.Range.end();
while (I1 != E1 && I2 != E2) {
if (I1->second <= I2->first) {
++I1;
continue;
}
if (I2->second <= I1->first) {
++I2;
continue;
}
return true;
}
return false;
}
bool LiveRange::overlapsInst(InstNumberT OtherBegin, bool UseTrimmed) const {
bool Result = false;
for (auto I = (UseTrimmed ? TrimmedBegin : Range.begin()), E = Range.end();
I != E; ++I) {
if (OtherBegin < I->first) {
Result = false;
break;
}
if (OtherBegin < I->second) {
Result = true;
break;
}
}
// This is an equivalent but less inefficient implementation. It's
// expensive enough that we wouldn't want to run it under any build,
// but it could be enabled if e.g. the LiveRange implementation
// changes and extra testing is needed.
if (BuildDefs::extraValidation()) {
LiveRange Temp;
Temp.addSegment(OtherBegin, OtherBegin + 1);
bool Validation = overlaps(Temp);
(void)Validation;
assert(Result == Validation);
}
return Result;
}
// Returns true if the live range contains the given instruction
// number. This is only used for validating the live range
// calculation. The IsDest argument indicates whether the Variable
// being tested is used in the Dest position (as opposed to a Src
// position).
bool LiveRange::containsValue(InstNumberT Value, bool IsDest) const {
for (const RangeElementType &I : Range) {
if (I.first <= Value &&
(Value < I.second || (!IsDest && Value == I.second)))
return true;
}
return false;
}
void LiveRange::trim(InstNumberT Lower) {
while (TrimmedBegin != Range.end() && TrimmedBegin->second <= Lower)
++TrimmedBegin;
}
IceString Variable::getName(const Cfg *Func) const {
if (Func && NameIndex >= 0)
return Func->getIdentifierName(NameIndex);
return "__" + std::to_string(getIndex());
}
Variable *Variable::asType(Type Ty) {
// Note: This returns a Variable, even if the "this" object is a
// subclass of Variable.
if (!BuildDefs::dump() || getType() == Ty)
return this;
Variable *V = new (getCurrentCfgAllocator()->Allocate<Variable>())
Variable(kVariable, Ty, Number);
V->NameIndex = NameIndex;
V->RegNum = RegNum;
V->StackOffset = StackOffset;
return V;
}
void VariableTracking::markUse(MetadataKind TrackingKind, const Inst *Instr,
const CfgNode *Node, bool IsFromDef,
bool IsImplicit) {
(void)TrackingKind;
if (MultiBlock == MBS_MultiBlock)
return;
// TODO(stichnot): If the use occurs as a source operand in the
// first instruction of the block, and its definition is in this
// block's only predecessor, we might consider not marking this as a
// separate use. This may also apply if it's the first instruction
// of the block that actually uses a Variable.
assert(Node);
bool MakeMulti = false;
if (IsImplicit)
MakeMulti = true;
// A phi source variable conservatively needs to be marked as
// multi-block, even if its definition is in the same block. This
// is because there can be additional control flow before branching
// back to this node, and the variable is live throughout those
// nodes.
if (!IsFromDef && Instr && llvm::isa<InstPhi>(Instr))
MakeMulti = true;
if (!MakeMulti) {
switch (MultiBlock) {
case MBS_Unknown:
MultiBlock = MBS_SingleBlock;
SingleUseNode = Node;
break;
case MBS_SingleBlock:
if (SingleUseNode != Node)
MakeMulti = true;
break;
case MBS_MultiBlock:
break;
}
}
if (MakeMulti) {
MultiBlock = MBS_MultiBlock;
SingleUseNode = nullptr;
}
}
void VariableTracking::markDef(MetadataKind TrackingKind, const Inst *Instr,
const CfgNode *Node) {
// TODO(stichnot): If the definition occurs in the last instruction
// of the block, consider not marking this as a separate use. But
// be careful not to omit all uses of the variable if markDef() and
// markUse() both use this optimization.
assert(Node);
// Verify that instructions are added in increasing order.
#ifndef NDEBUG
if (TrackingKind == VMK_All) {
const Inst *LastInstruction =
Definitions.empty() ? FirstOrSingleDefinition : Definitions.back();
assert(LastInstruction == nullptr ||
Instr->getNumber() >= LastInstruction->getNumber());
}
#endif
const bool IsFromDef = true;
const bool IsImplicit = false;
markUse(TrackingKind, Instr, Node, IsFromDef, IsImplicit);
if (TrackingKind == VMK_Uses)
return;
if (FirstOrSingleDefinition == nullptr)
FirstOrSingleDefinition = Instr;
else if (TrackingKind == VMK_All)
Definitions.push_back(Instr);
switch (MultiDef) {
case MDS_Unknown:
assert(SingleDefNode == nullptr);
MultiDef = MDS_SingleDef;
SingleDefNode = Node;
break;
case MDS_SingleDef:
assert(SingleDefNode);
if (Node == SingleDefNode) {
MultiDef = MDS_MultiDefSingleBlock;
} else {
MultiDef = MDS_MultiDefMultiBlock;
SingleDefNode = nullptr;
}
break;
case MDS_MultiDefSingleBlock:
assert(SingleDefNode);
if (Node != SingleDefNode) {
MultiDef = MDS_MultiDefMultiBlock;
SingleDefNode = nullptr;
}
break;
case MDS_MultiDefMultiBlock:
assert(SingleDefNode == nullptr);
break;
}
}
const Inst *VariableTracking::getFirstDefinition() const {
switch (MultiDef) {
case MDS_Unknown:
case MDS_MultiDefMultiBlock:
return nullptr;
case MDS_SingleDef:
case MDS_MultiDefSingleBlock:
assert(FirstOrSingleDefinition);
return FirstOrSingleDefinition;
}
return nullptr;
}
const Inst *VariableTracking::getSingleDefinition() const {
switch (MultiDef) {
case MDS_Unknown:
case MDS_MultiDefMultiBlock:
case MDS_MultiDefSingleBlock:
return nullptr;
case MDS_SingleDef:
assert(FirstOrSingleDefinition);
return FirstOrSingleDefinition;
}
return nullptr;
}
void VariablesMetadata::init(MetadataKind TrackingKind) {
TimerMarker T(TimerStack::TT_vmetadata, Func);
Kind = TrackingKind;
Metadata.clear();
Metadata.resize(Func->getNumVariables());
// Mark implicit args as being used in the entry node.
for (Variable *Var : Func->getImplicitArgs()) {
const Inst *NoInst = nullptr;
const CfgNode *EntryNode = Func->getEntryNode();
const bool IsFromDef = false;
const bool IsImplicit = true;
Metadata[Var->getIndex()].markUse(Kind, NoInst, EntryNode, IsFromDef,
IsImplicit);
}
for (CfgNode *Node : Func->getNodes())
addNode(Node);
}
void VariablesMetadata::addNode(CfgNode *Node) {
if (Func->getNumVariables() >= Metadata.size())
Metadata.resize(Func->getNumVariables());
for (Inst &I : Node->getPhis()) {
if (I.isDeleted())
continue;
if (Variable *Dest = I.getDest()) {
SizeT DestNum = Dest->getIndex();
assert(DestNum < Metadata.size());
Metadata[DestNum].markDef(Kind, &I, Node);
}
for (SizeT SrcNum = 0; SrcNum < I.getSrcSize(); ++SrcNum) {
if (const Variable *Var = llvm::dyn_cast<Variable>(I.getSrc(SrcNum))) {
SizeT VarNum = Var->getIndex();
assert(VarNum < Metadata.size());
const bool IsFromDef = false;
const bool IsImplicit = false;
Metadata[VarNum].markUse(Kind, &I, Node, IsFromDef, IsImplicit);
}
}
}
for (Inst &I : Node->getInsts()) {
if (I.isDeleted())
continue;
// Note: The implicit definitions (and uses) from InstFakeKill are
// deliberately ignored.
if (Variable *Dest = I.getDest()) {
SizeT DestNum = Dest->getIndex();
assert(DestNum < Metadata.size());
Metadata[DestNum].markDef(Kind, &I, Node);
}
for (SizeT SrcNum = 0; SrcNum < I.getSrcSize(); ++SrcNum) {
Operand *Src = I.getSrc(SrcNum);
SizeT NumVars = Src->getNumVars();
for (SizeT J = 0; J < NumVars; ++J) {
const Variable *Var = Src->getVar(J);
SizeT VarNum = Var->getIndex();
assert(VarNum < Metadata.size());
const bool IsFromDef = false;
const bool IsImplicit = false;
Metadata[VarNum].markUse(Kind, &I, Node, IsFromDef, IsImplicit);
}
}
}
}
bool VariablesMetadata::isMultiDef(const Variable *Var) const {
assert(Kind != VMK_Uses);
if (Var->getIsArg())
return false;
if (!isTracked(Var))
return true; // conservative answer
SizeT VarNum = Var->getIndex();
// Conservatively return true if the state is unknown.
return Metadata[VarNum].getMultiDef() != VariableTracking::MDS_SingleDef;
}
bool VariablesMetadata::isMultiBlock(const Variable *Var) const {
if (Var->getIsArg())
return true;
if (!isTracked(Var))
return true; // conservative answer
SizeT VarNum = Var->getIndex();
// Conservatively return true if the state is unknown.
return Metadata[VarNum].getMultiBlock() != VariableTracking::MBS_SingleBlock;
}
const Inst *VariablesMetadata::getFirstDefinition(const Variable *Var) const {
assert(Kind != VMK_Uses);
if (!isTracked(Var))
return nullptr; // conservative answer
SizeT VarNum = Var->getIndex();
return Metadata[VarNum].getFirstDefinition();
}
const Inst *VariablesMetadata::getSingleDefinition(const Variable *Var) const {
assert(Kind != VMK_Uses);
if (!isTracked(Var))
return nullptr; // conservative answer
SizeT VarNum = Var->getIndex();
return Metadata[VarNum].getSingleDefinition();
}
const InstDefList &
VariablesMetadata::getLatterDefinitions(const Variable *Var) const {
assert(Kind == VMK_All);
if (!isTracked(Var))
return NoDefinitions;
SizeT VarNum = Var->getIndex();
return Metadata[VarNum].getLatterDefinitions();
}
const CfgNode *VariablesMetadata::getLocalUseNode(const Variable *Var) const {
if (!isTracked(Var))
return nullptr; // conservative answer
SizeT VarNum = Var->getIndex();
return Metadata[VarNum].getNode();
}
const InstDefList VariablesMetadata::NoDefinitions;
// ======================== dump routines ======================== //
void Variable::emit(const Cfg *Func) const {
if (BuildDefs::dump())
Func->getTarget()->emitVariable(this);
}
void Variable::dump(const Cfg *Func, Ostream &Str) const {
if (!BuildDefs::dump())
return;
if (Func == nullptr) {
Str << "%" << getName(Func);
return;
}
if (Func->isVerbose(IceV_RegOrigins) ||
(!hasReg() && !Func->getTarget()->hasComputedFrame()))
Str << "%" << getName(Func);
if (hasReg()) {
if (Func->isVerbose(IceV_RegOrigins))
Str << ":";
Str << Func->getTarget()->getRegName(RegNum, getType());
} else if (Func->getTarget()->hasComputedFrame()) {
if (Func->isVerbose(IceV_RegOrigins))
Str << ":";
Str << "["
<< Func->getTarget()->getRegName(
Func->getTarget()->getFrameOrStackReg(), IceType_i32);
int32_t Offset = getStackOffset();
if (Offset) {
if (Offset > 0)
Str << "+";
Str << Offset;
}
Str << "]";
}
}
template <> void ConstantInteger32::emit(TargetLowering *Target) const {
Target->emit(this);
}
template <> void ConstantInteger64::emit(TargetLowering *Target) const {
Target->emit(this);
}
template <> void ConstantFloat::emit(TargetLowering *Target) const {
Target->emit(this);
}
template <> void ConstantDouble::emit(TargetLowering *Target) const {
Target->emit(this);
}
void ConstantRelocatable::emit(TargetLowering *Target) const {
Target->emit(this);
}
void ConstantRelocatable::emitWithoutPrefix(TargetLowering *Target) const {
Target->emitWithoutPrefix(this);
}
void ConstantRelocatable::dump(const Cfg *Func, Ostream &Str) const {
if (!BuildDefs::dump())
return;
Str << "@";
if (Func && !SuppressMangling) {
Str << Func->getContext()->mangleName(Name);
} else {
Str << Name;
}
if (Offset)
Str << "+" << Offset;
}
void ConstantUndef::emit(TargetLowering *Target) const { Target->emit(this); }
void LiveRange::dump(Ostream &Str) const {
if (!BuildDefs::dump())
return;
Str << "(weight=" << Weight << ") ";
bool First = true;
for (const RangeElementType &I : Range) {
if (!First)
Str << ", ";
First = false;
Str << "[" << I.first << ":" << I.second << ")";
}
}
Ostream &operator<<(Ostream &Str, const LiveRange &L) {
if (!BuildDefs::dump())
return Str;
L.dump(Str);
return Str;
}
Ostream &operator<<(Ostream &Str, const RegWeight &W) {
if (!BuildDefs::dump())
return Str;
if (W.getWeight() == RegWeight::Inf)
Str << "Inf";
else
Str << W.getWeight();
return Str;
}
// =========== Immediate Randomization and Pooling routines ==============
// Specialization of the template member function for ConstantInteger32
// TODO(stichnot): try to move this specialization into a target-specific
// file.
template <>
bool ConstantInteger32::shouldBeRandomizedOrPooled(const GlobalContext *Ctx) {
uint32_t Threshold = Ctx->getFlags().getRandomizeAndPoolImmediatesThreshold();
if (Ctx->getFlags().getRandomizeAndPoolImmediatesOption() == RPI_None)
return false;
if (getType() != IceType_i32 && getType() != IceType_i16 &&
getType() != IceType_i8)
return false;
// The Following checks if the signed representation of Value is between
// -Threshold/2 and +Threshold/2
bool largerThanThreshold = Threshold / 2 + Value >= Threshold;
return largerThanThreshold;
}
} // end of namespace Ice