blob: 8aa3e11b5ae59b7c5f8bbe0b92b6378e52a96928 [file] [log] [blame]
//===- subzero/src/IceTargetLoweringARM32.h - ARM32 lowering ----*- C++ -*-===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file declares the TargetLoweringARM32 class, which implements the
/// TargetLowering interface for the ARM 32-bit architecture.
///
//===----------------------------------------------------------------------===//
#ifndef SUBZERO_SRC_ICETARGETLOWERINGARM32_H
#define SUBZERO_SRC_ICETARGETLOWERINGARM32_H
#include "IceDefs.h"
#include "IceInstARM32.h"
#include "IceRegistersARM32.h"
#include "IceTargetLowering.h"
namespace Ice {
// Class encapsulating ARM cpu features / instruction set.
class TargetARM32Features {
TargetARM32Features() = delete;
TargetARM32Features(const TargetARM32Features &) = delete;
TargetARM32Features &operator=(const TargetARM32Features &) = delete;
public:
explicit TargetARM32Features(const ClFlags &Flags);
enum ARM32InstructionSet {
Begin,
// Neon is the PNaCl baseline instruction set.
Neon = Begin,
HWDivArm, // HW divide in ARM mode (not just Thumb mode).
End
};
bool hasFeature(ARM32InstructionSet I) const { return I <= InstructionSet; }
private:
ARM32InstructionSet InstructionSet = ARM32InstructionSet::Begin;
};
// The target lowering logic for ARM32.
class TargetARM32 : public TargetLowering {
TargetARM32() = delete;
TargetARM32(const TargetARM32 &) = delete;
TargetARM32 &operator=(const TargetARM32 &) = delete;
public:
// TODO(jvoung): return a unique_ptr.
static TargetARM32 *create(Cfg *Func) { return new TargetARM32(Func); }
void translateOm1() override;
void translateO2() override;
bool doBranchOpt(Inst *I, const CfgNode *NextNode) override;
SizeT getNumRegisters() const override { return RegARM32::Reg_NUM; }
Variable *getPhysicalRegister(SizeT RegNum, Type Ty = IceType_void) override;
IceString getRegName(SizeT RegNum, Type Ty) const override;
llvm::SmallBitVector getRegisterSet(RegSetMask Include,
RegSetMask Exclude) const override;
const llvm::SmallBitVector &getRegisterSetForType(Type Ty) const override {
return TypeToRegisterSet[Ty];
}
bool hasFramePointer() const override { return UsesFramePointer; }
SizeT getFrameOrStackReg() const override {
return UsesFramePointer ? RegARM32::Reg_fp : RegARM32::Reg_sp;
}
size_t typeWidthInBytesOnStack(Type Ty) const override {
// Round up to the next multiple of 4 bytes. In particular, i1,
// i8, and i16 are rounded up to 4 bytes.
return (typeWidthInBytes(Ty) + 3) & ~3;
}
void emitVariable(const Variable *Var) const override;
const char *getConstantPrefix() const final { return "#"; }
void emit(const ConstantUndef *C) const final;
void emit(const ConstantInteger32 *C) const final;
void emit(const ConstantInteger64 *C) const final;
void emit(const ConstantFloat *C) const final;
void emit(const ConstantDouble *C) const final;
void lowerArguments() override;
void addProlog(CfgNode *Node) override;
void addEpilog(CfgNode *Node) override;
/// Ensure that a 64-bit Variable has been split into 2 32-bit
/// Variables, creating them if necessary. This is needed for all
/// I64 operations.
void split64(Variable *Var);
Operand *loOperand(Operand *Operand);
Operand *hiOperand(Operand *Operand);
void finishArgumentLowering(Variable *Arg, Variable *FramePtr,
size_t BasicFrameOffset, size_t &InArgsSizeBytes);
bool hasCPUFeature(TargetARM32Features::ARM32InstructionSet I) const {
return CPUFeatures.hasFeature(I);
}
protected:
explicit TargetARM32(Cfg *Func);
void postLower() override;
void lowerAlloca(const InstAlloca *Inst) override;
void lowerArithmetic(const InstArithmetic *Inst) override;
void lowerAssign(const InstAssign *Inst) override;
void lowerBr(const InstBr *Inst) override;
void lowerCall(const InstCall *Inst) override;
void lowerCast(const InstCast *Inst) override;
void lowerExtractElement(const InstExtractElement *Inst) override;
void lowerFcmp(const InstFcmp *Inst) override;
void lowerIcmp(const InstIcmp *Inst) override;
void lowerIntrinsicCall(const InstIntrinsicCall *Inst) override;
void lowerInsertElement(const InstInsertElement *Inst) override;
void lowerLoad(const InstLoad *Inst) override;
void lowerPhi(const InstPhi *Inst) override;
void lowerRet(const InstRet *Inst) override;
void lowerSelect(const InstSelect *Inst) override;
void lowerStore(const InstStore *Inst) override;
void lowerSwitch(const InstSwitch *Inst) override;
void lowerUnreachable(const InstUnreachable *Inst) override;
void prelowerPhis() override;
void lowerPhiAssignments(CfgNode *Node,
const AssignList &Assignments) override;
void doAddressOptLoad() override;
void doAddressOptStore() override;
void randomlyInsertNop(float Probability) override;
enum OperandLegalization {
Legal_None = 0,
Legal_Reg = 1 << 0, /// physical register, not stack location
Legal_Flex = 1 << 1, /// A flexible operand2, which can hold rotated
/// small immediates, or shifted registers.
Legal_Mem = 1 << 2, /// includes [r0, r1 lsl #2] as well as [sp, #12]
Legal_All = ~Legal_None
};
typedef uint32_t LegalMask;
Operand *legalize(Operand *From, LegalMask Allowed = Legal_All,
int32_t RegNum = Variable::NoRegister);
Variable *legalizeToVar(Operand *From, int32_t RegNum = Variable::NoRegister);
OperandARM32Mem *formMemoryOperand(Operand *Ptr, Type Ty);
Variable *makeReg(Type Ty, int32_t RegNum = Variable::NoRegister);
static Type stackSlotType();
Variable *copyToReg(Operand *Src, int32_t RegNum = Variable::NoRegister);
void alignRegisterPow2(Variable *Reg, uint32_t Align);
/// Returns a vector in a register with the given constant entries.
Variable *makeVectorOfZeros(Type Ty, int32_t RegNum = Variable::NoRegister);
void makeRandomRegisterPermutation(
llvm::SmallVectorImpl<int32_t> &Permutation,
const llvm::SmallBitVector &ExcludeRegisters) const override;
// If a divide-by-zero check is needed, inserts a:
// test; branch .LSKIP; trap; .LSKIP: <continuation>.
// If no check is needed nothing is inserted.
void div0Check(Type Ty, Operand *SrcLo, Operand *SrcHi);
typedef void (TargetARM32::*ExtInstr)(Variable *, Variable *,
CondARM32::Cond);
typedef void (TargetARM32::*DivInstr)(Variable *, Variable *, Variable *,
CondARM32::Cond);
void lowerIDivRem(Variable *Dest, Variable *T, Variable *Src0R, Operand *Src1,
ExtInstr ExtFunc, DivInstr DivFunc,
const char *DivHelperName, bool IsRemainder);
// The following are helpers that insert lowered ARM32 instructions
// with minimal syntactic overhead, so that the lowering code can
// look as close to assembly as practical.
void _add(Variable *Dest, Variable *Src0, Operand *Src1,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Add::create(Func, Dest, Src0, Src1, Pred));
}
void _adds(Variable *Dest, Variable *Src0, Operand *Src1,
CondARM32::Cond Pred = CondARM32::AL) {
const bool SetFlags = true;
Context.insert(
InstARM32Add::create(Func, Dest, Src0, Src1, Pred, SetFlags));
}
void _adc(Variable *Dest, Variable *Src0, Operand *Src1,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Adc::create(Func, Dest, Src0, Src1, Pred));
}
void _adjust_stack(int32_t Amount, Operand *SrcAmount) {
Context.insert(InstARM32AdjustStack::create(
Func, getPhysicalRegister(RegARM32::Reg_sp), Amount, SrcAmount));
}
void _and(Variable *Dest, Variable *Src0, Operand *Src1,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32And::create(Func, Dest, Src0, Src1, Pred));
}
void _asr(Variable *Dest, Variable *Src0, Operand *Src1,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Asr::create(Func, Dest, Src0, Src1, Pred));
}
void _bic(Variable *Dest, Variable *Src0, Operand *Src1,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Bic::create(Func, Dest, Src0, Src1, Pred));
}
void _br(CfgNode *TargetTrue, CfgNode *TargetFalse,
CondARM32::Cond Condition) {
Context.insert(
InstARM32Br::create(Func, TargetTrue, TargetFalse, Condition));
}
void _br(CfgNode *Target) {
Context.insert(InstARM32Br::create(Func, Target));
}
void _br(CfgNode *Target, CondARM32::Cond Condition) {
Context.insert(InstARM32Br::create(Func, Target, Condition));
}
void _br(InstARM32Label *Label, CondARM32::Cond Condition) {
Context.insert(InstARM32Br::create(Func, Label, Condition));
}
void _cmp(Variable *Src0, Operand *Src1,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Cmp::create(Func, Src0, Src1, Pred));
}
void _eor(Variable *Dest, Variable *Src0, Operand *Src1,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Eor::create(Func, Dest, Src0, Src1, Pred));
}
void _ldr(Variable *Dest, OperandARM32Mem *Addr,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Ldr::create(Func, Dest, Addr, Pred));
}
void _lsl(Variable *Dest, Variable *Src0, Operand *Src1,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Lsl::create(Func, Dest, Src0, Src1, Pred));
}
void _lsr(Variable *Dest, Variable *Src0, Operand *Src1,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Lsr::create(Func, Dest, Src0, Src1, Pred));
}
void _mla(Variable *Dest, Variable *Src0, Variable *Src1, Variable *Acc,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Mla::create(Func, Dest, Src0, Src1, Acc, Pred));
}
void _mls(Variable *Dest, Variable *Src0, Variable *Src1, Variable *Acc,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Mls::create(Func, Dest, Src0, Src1, Acc, Pred));
}
/// If Dest=nullptr is passed in, then a new variable is created,
/// marked as infinite register allocation weight, and returned
/// through the in/out Dest argument.
void _mov(Variable *&Dest, Operand *Src0,
CondARM32::Cond Pred = CondARM32::AL,
int32_t RegNum = Variable::NoRegister) {
if (Dest == nullptr)
Dest = makeReg(Src0->getType(), RegNum);
Context.insert(InstARM32Mov::create(Func, Dest, Src0, Pred));
}
void _mov_nonkillable(Variable *Dest, Operand *Src0,
CondARM32::Cond Pred = CondARM32::AL) {
Inst *NewInst = InstARM32Mov::create(Func, Dest, Src0, Pred);
NewInst->setDestNonKillable();
Context.insert(NewInst);
}
/// The Operand can only be a 16-bit immediate or a ConstantRelocatable
/// (with an upper16 relocation).
void _movt(Variable *Dest, Operand *Src0,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Movt::create(Func, Dest, Src0, Pred));
}
void _movw(Variable *Dest, Operand *Src0,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Movw::create(Func, Dest, Src0, Pred));
}
void _mul(Variable *Dest, Variable *Src0, Variable *Src1,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Mul::create(Func, Dest, Src0, Src1, Pred));
}
void _mvn(Variable *Dest, Operand *Src0,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Mvn::create(Func, Dest, Src0, Pred));
}
void _orr(Variable *Dest, Variable *Src0, Operand *Src1,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Orr::create(Func, Dest, Src0, Src1, Pred));
}
void _orrs(Variable *Dest, Variable *Src0, Operand *Src1,
CondARM32::Cond Pred = CondARM32::AL) {
const bool SetFlags = true;
Context.insert(
InstARM32Orr::create(Func, Dest, Src0, Src1, Pred, SetFlags));
}
void _push(const VarList &Sources) {
Context.insert(InstARM32Push::create(Func, Sources));
}
void _pop(const VarList &Dests) {
Context.insert(InstARM32Pop::create(Func, Dests));
// Mark dests as modified.
for (Variable *Dest : Dests)
Context.insert(InstFakeDef::create(Func, Dest));
}
void _ret(Variable *LR, Variable *Src0 = nullptr) {
Context.insert(InstARM32Ret::create(Func, LR, Src0));
}
void _rsb(Variable *Dest, Variable *Src0, Operand *Src1,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Rsb::create(Func, Dest, Src0, Src1, Pred));
}
void _sbc(Variable *Dest, Variable *Src0, Operand *Src1,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Sbc::create(Func, Dest, Src0, Src1, Pred));
}
void _sbcs(Variable *Dest, Variable *Src0, Operand *Src1,
CondARM32::Cond Pred = CondARM32::AL) {
const bool SetFlags = true;
Context.insert(
InstARM32Sbc::create(Func, Dest, Src0, Src1, Pred, SetFlags));
}
void _sdiv(Variable *Dest, Variable *Src0, Variable *Src1,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Sdiv::create(Func, Dest, Src0, Src1, Pred));
}
void _str(Variable *Value, OperandARM32Mem *Addr,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Str::create(Func, Value, Addr, Pred));
}
void _sub(Variable *Dest, Variable *Src0, Operand *Src1,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Sub::create(Func, Dest, Src0, Src1, Pred));
}
void _subs(Variable *Dest, Variable *Src0, Operand *Src1,
CondARM32::Cond Pred = CondARM32::AL) {
const bool SetFlags = true;
Context.insert(
InstARM32Sub::create(Func, Dest, Src0, Src1, Pred, SetFlags));
}
void _sxt(Variable *Dest, Variable *Src0,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Sxt::create(Func, Dest, Src0, Pred));
}
void _tst(Variable *Src0, Operand *Src1,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Tst::create(Func, Src0, Src1, Pred));
}
void _trap() { Context.insert(InstARM32Trap::create(Func)); }
void _udiv(Variable *Dest, Variable *Src0, Variable *Src1,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Udiv::create(Func, Dest, Src0, Src1, Pred));
}
void _umull(Variable *DestLo, Variable *DestHi, Variable *Src0,
Variable *Src1, CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(
InstARM32Umull::create(Func, DestLo, DestHi, Src0, Src1, Pred));
// Model the modification to the second dest as a fake def.
// Note that the def is not predicated.
Context.insert(InstFakeDef::create(Func, DestHi, DestLo));
}
void _uxt(Variable *Dest, Variable *Src0,
CondARM32::Cond Pred = CondARM32::AL) {
Context.insert(InstARM32Uxt::create(Func, Dest, Src0, Pred));
}
TargetARM32Features CPUFeatures;
bool UsesFramePointer = false;
bool NeedsStackAlignment = false;
bool MaybeLeafFunc = true;
size_t SpillAreaSizeBytes = 0;
llvm::SmallBitVector TypeToRegisterSet[IceType_NUM];
llvm::SmallBitVector ScratchRegs;
llvm::SmallBitVector RegsUsed;
VarList PhysicalRegisters[IceType_NUM];
static IceString RegNames[];
/// Helper class that understands the Calling Convention and register
/// assignments. The first few integer type parameters can use r0-r3,
/// regardless of their position relative to the floating-point/vector
/// arguments in the argument list. Floating-point and vector arguments
/// can use q0-q3 (aka d0-d7, s0-s15). Technically, arguments that can
/// start with registers but extend beyond the available registers can be
/// split between the registers and the stack. However, this is typically
/// for passing GPR structs by value, and PNaCl transforms expand this out.
///
/// Also, at the point before the call, the stack must be aligned.
class CallingConv {
CallingConv(const CallingConv &) = delete;
CallingConv &operator=(const CallingConv &) = delete;
public:
CallingConv() : NumGPRRegsUsed(0) {}
~CallingConv() = default;
bool I64InRegs(std::pair<int32_t, int32_t> *Regs);
bool I32InReg(int32_t *Reg);
static constexpr uint32_t ARM32_MAX_GPR_ARG = 4;
private:
uint32_t NumGPRRegsUsed;
};
private:
~TargetARM32() override = default;
};
class TargetDataARM32 final : public TargetDataLowering {
TargetDataARM32() = delete;
TargetDataARM32(const TargetDataARM32 &) = delete;
TargetDataARM32 &operator=(const TargetDataARM32 &) = delete;
public:
static std::unique_ptr<TargetDataLowering> create(GlobalContext *Ctx) {
return std::unique_ptr<TargetDataLowering>(new TargetDataARM32(Ctx));
}
void lowerGlobals(const VariableDeclarationList &Vars,
const IceString &SectionSuffix) override;
void lowerConstants() override;
protected:
explicit TargetDataARM32(GlobalContext *Ctx);
private:
~TargetDataARM32() override = default;
template <typename T> static void emitConstantPool(GlobalContext *Ctx);
};
class TargetHeaderARM32 final : public TargetHeaderLowering {
TargetHeaderARM32() = delete;
TargetHeaderARM32(const TargetHeaderARM32 &) = delete;
TargetHeaderARM32 &operator=(const TargetHeaderARM32 &) = delete;
public:
static std::unique_ptr<TargetHeaderLowering> create(GlobalContext *Ctx) {
return std::unique_ptr<TargetHeaderLowering>(new TargetHeaderARM32(Ctx));
}
void lower() override;
protected:
explicit TargetHeaderARM32(GlobalContext *Ctx);
private:
~TargetHeaderARM32() = default;
TargetARM32Features CPUFeatures;
};
} // end of namespace Ice
#endif // SUBZERO_SRC_ICETARGETLOWERINGARM32_H