blob: c6a72d6510ccbc64e13c4bb9f937901535df451e [file] [log] [blame]
//===- subzero/src/IceTargetLoweringX8632.cpp - x86-32 lowering -----------===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the TargetLoweringX8632 class, which
/// consists almost entirely of the lowering sequence for each
/// high-level instruction.
///
//===----------------------------------------------------------------------===//
#include "IceTargetLoweringX8632.h"
#include "IceTargetLoweringX8632Traits.h"
#include "IceTargetLoweringX86Base.h"
namespace Ice {
namespace X86Internal {
const MachineTraits<TargetX8632>::TableFcmpType
MachineTraits<TargetX8632>::TableFcmp[] = {
#define X(val, dflt, swapS, C1, C2, swapV, pred) \
{ \
dflt, swapS, X8632::Traits::Cond::C1, X8632::Traits::Cond::C2, swapV, \
X8632::Traits::Cond::pred \
} \
,
FCMPX8632_TABLE
#undef X
};
const size_t MachineTraits<TargetX8632>::TableFcmpSize =
llvm::array_lengthof(TableFcmp);
const MachineTraits<TargetX8632>::TableIcmp32Type
MachineTraits<TargetX8632>::TableIcmp32[] = {
#define X(val, C_32, C1_64, C2_64, C3_64) \
{ X8632::Traits::Cond::C_32 } \
,
ICMPX8632_TABLE
#undef X
};
const size_t MachineTraits<TargetX8632>::TableIcmp32Size =
llvm::array_lengthof(TableIcmp32);
const MachineTraits<TargetX8632>::TableIcmp64Type
MachineTraits<TargetX8632>::TableIcmp64[] = {
#define X(val, C_32, C1_64, C2_64, C3_64) \
{ \
X8632::Traits::Cond::C1_64, X8632::Traits::Cond::C2_64, \
X8632::Traits::Cond::C3_64 \
} \
,
ICMPX8632_TABLE
#undef X
};
const size_t MachineTraits<TargetX8632>::TableIcmp64Size =
llvm::array_lengthof(TableIcmp64);
const MachineTraits<TargetX8632>::TableTypeX8632AttributesType
MachineTraits<TargetX8632>::TableTypeX8632Attributes[] = {
#define X(tag, elementty, cvt, sdss, pack, width, fld) \
{ elementty } \
,
ICETYPEX8632_TABLE
#undef X
};
const size_t MachineTraits<TargetX8632>::TableTypeX8632AttributesSize =
llvm::array_lengthof(TableTypeX8632Attributes);
const uint32_t MachineTraits<TargetX8632>::X86_STACK_ALIGNMENT_BYTES = 16;
} // end of namespace X86Internal
TargetX8632 *TargetX8632::create(Cfg *Func) {
return X86Internal::TargetX86Base<TargetX8632>::create(Func);
}
TargetDataX8632::TargetDataX8632(GlobalContext *Ctx)
: TargetDataLowering(Ctx) {}
namespace {
template <typename T> struct PoolTypeConverter {};
template <> struct PoolTypeConverter<float> {
typedef uint32_t PrimitiveIntType;
typedef ConstantFloat IceType;
static const Type Ty = IceType_f32;
static const char *TypeName;
static const char *AsmTag;
static const char *PrintfString;
};
const char *PoolTypeConverter<float>::TypeName = "float";
const char *PoolTypeConverter<float>::AsmTag = ".long";
const char *PoolTypeConverter<float>::PrintfString = "0x%x";
template <> struct PoolTypeConverter<double> {
typedef uint64_t PrimitiveIntType;
typedef ConstantDouble IceType;
static const Type Ty = IceType_f64;
static const char *TypeName;
static const char *AsmTag;
static const char *PrintfString;
};
const char *PoolTypeConverter<double>::TypeName = "double";
const char *PoolTypeConverter<double>::AsmTag = ".quad";
const char *PoolTypeConverter<double>::PrintfString = "0x%llx";
// Add converter for int type constant pooling
template <> struct PoolTypeConverter<uint32_t> {
typedef uint32_t PrimitiveIntType;
typedef ConstantInteger32 IceType;
static const Type Ty = IceType_i32;
static const char *TypeName;
static const char *AsmTag;
static const char *PrintfString;
};
const char *PoolTypeConverter<uint32_t>::TypeName = "i32";
const char *PoolTypeConverter<uint32_t>::AsmTag = ".long";
const char *PoolTypeConverter<uint32_t>::PrintfString = "0x%x";
// Add converter for int type constant pooling
template <> struct PoolTypeConverter<uint16_t> {
typedef uint32_t PrimitiveIntType;
typedef ConstantInteger32 IceType;
static const Type Ty = IceType_i16;
static const char *TypeName;
static const char *AsmTag;
static const char *PrintfString;
};
const char *PoolTypeConverter<uint16_t>::TypeName = "i16";
const char *PoolTypeConverter<uint16_t>::AsmTag = ".short";
const char *PoolTypeConverter<uint16_t>::PrintfString = "0x%x";
// Add converter for int type constant pooling
template <> struct PoolTypeConverter<uint8_t> {
typedef uint32_t PrimitiveIntType;
typedef ConstantInteger32 IceType;
static const Type Ty = IceType_i8;
static const char *TypeName;
static const char *AsmTag;
static const char *PrintfString;
};
const char *PoolTypeConverter<uint8_t>::TypeName = "i8";
const char *PoolTypeConverter<uint8_t>::AsmTag = ".byte";
const char *PoolTypeConverter<uint8_t>::PrintfString = "0x%x";
} // end of anonymous namespace
template <typename T>
void TargetDataX8632::emitConstantPool(GlobalContext *Ctx) {
if (!BuildDefs::dump())
return;
Ostream &Str = Ctx->getStrEmit();
Type Ty = T::Ty;
SizeT Align = typeAlignInBytes(Ty);
ConstantList Pool = Ctx->getConstantPool(Ty);
Str << "\t.section\t.rodata.cst" << Align << ",\"aM\",@progbits," << Align
<< "\n";
Str << "\t.align\t" << Align << "\n";
// If reorder-pooled-constants option is set to true, we need to shuffle the
// constant pool before emitting it.
if (Ctx->getFlags().shouldReorderPooledConstants())
RandomShuffle(Pool.begin(), Pool.end(), [Ctx](uint64_t N) {
return (uint32_t)Ctx->getRNG().next(N);
});
for (Constant *C : Pool) {
if (!C->getShouldBePooled())
continue;
typename T::IceType *Const = llvm::cast<typename T::IceType>(C);
typename T::IceType::PrimType Value = Const->getValue();
// Use memcpy() to copy bits from Value into RawValue in a way
// that avoids breaking strict-aliasing rules.
typename T::PrimitiveIntType RawValue;
memcpy(&RawValue, &Value, sizeof(Value));
char buf[30];
int CharsPrinted =
snprintf(buf, llvm::array_lengthof(buf), T::PrintfString, RawValue);
assert(CharsPrinted >= 0 &&
(size_t)CharsPrinted < llvm::array_lengthof(buf));
(void)CharsPrinted; // avoid warnings if asserts are disabled
Const->emitPoolLabel(Str);
Str << ":\n\t" << T::AsmTag << "\t" << buf << "\t# " << T::TypeName << " "
<< Value << "\n";
}
}
void TargetDataX8632::lowerConstants() {
if (Ctx->getFlags().getDisableTranslation())
return;
// No need to emit constants from the int pool since (for x86) they
// are embedded as immediates in the instructions, just emit float/double.
switch (Ctx->getFlags().getOutFileType()) {
case FT_Elf: {
ELFObjectWriter *Writer = Ctx->getObjectWriter();
Writer->writeConstantPool<ConstantInteger32>(IceType_i8);
Writer->writeConstantPool<ConstantInteger32>(IceType_i16);
Writer->writeConstantPool<ConstantInteger32>(IceType_i32);
Writer->writeConstantPool<ConstantFloat>(IceType_f32);
Writer->writeConstantPool<ConstantDouble>(IceType_f64);
} break;
case FT_Asm:
case FT_Iasm: {
OstreamLocker L(Ctx);
emitConstantPool<PoolTypeConverter<uint8_t>>(Ctx);
emitConstantPool<PoolTypeConverter<uint16_t>>(Ctx);
emitConstantPool<PoolTypeConverter<uint32_t>>(Ctx);
emitConstantPool<PoolTypeConverter<float>>(Ctx);
emitConstantPool<PoolTypeConverter<double>>(Ctx);
} break;
}
}
void TargetDataX8632::lowerGlobals(const VariableDeclarationList &Vars,
const IceString &SectionSuffix) {
switch (Ctx->getFlags().getOutFileType()) {
case FT_Elf: {
ELFObjectWriter *Writer = Ctx->getObjectWriter();
Writer->writeDataSection(Vars, llvm::ELF::R_386_32, SectionSuffix);
} break;
case FT_Asm:
case FT_Iasm: {
const IceString &TranslateOnly = Ctx->getFlags().getTranslateOnly();
OstreamLocker L(Ctx);
for (const VariableDeclaration *Var : Vars) {
if (GlobalContext::matchSymbolName(Var->getName(), TranslateOnly)) {
emitGlobal(*Var, SectionSuffix);
}
}
} break;
}
}
TargetHeaderX8632::TargetHeaderX8632(GlobalContext *Ctx)
: TargetHeaderLowering(Ctx) {}
// In some cases, there are x-macros tables for both high-level and
// low-level instructions/operands that use the same enum key value.
// The tables are kept separate to maintain a proper separation
// between abstraction layers. There is a risk that the tables could
// get out of sync if enum values are reordered or if entries are
// added or deleted. The following dummy namespaces use
// static_asserts to ensure everything is kept in sync.
namespace {
// Validate the enum values in FCMPX8632_TABLE.
namespace dummy1 {
// Define a temporary set of enum values based on low-level table
// entries.
enum _tmp_enum {
#define X(val, dflt, swapS, C1, C2, swapV, pred) _tmp_##val,
FCMPX8632_TABLE
#undef X
_num
};
// Define a set of constants based on high-level table entries.
#define X(tag, str) static const int _table1_##tag = InstFcmp::tag;
ICEINSTFCMP_TABLE
#undef X
// Define a set of constants based on low-level table entries, and
// ensure the table entry keys are consistent.
#define X(val, dflt, swapS, C1, C2, swapV, pred) \
static const int _table2_##val = _tmp_##val; \
static_assert( \
_table1_##val == _table2_##val, \
"Inconsistency between FCMPX8632_TABLE and ICEINSTFCMP_TABLE");
FCMPX8632_TABLE
#undef X
// Repeat the static asserts with respect to the high-level table
// entries in case the high-level table has extra entries.
#define X(tag, str) \
static_assert( \
_table1_##tag == _table2_##tag, \
"Inconsistency between FCMPX8632_TABLE and ICEINSTFCMP_TABLE");
ICEINSTFCMP_TABLE
#undef X
} // end of namespace dummy1
// Validate the enum values in ICMPX8632_TABLE.
namespace dummy2 {
// Define a temporary set of enum values based on low-level table
// entries.
enum _tmp_enum {
#define X(val, C_32, C1_64, C2_64, C3_64) _tmp_##val,
ICMPX8632_TABLE
#undef X
_num
};
// Define a set of constants based on high-level table entries.
#define X(tag, str) static const int _table1_##tag = InstIcmp::tag;
ICEINSTICMP_TABLE
#undef X
// Define a set of constants based on low-level table entries, and
// ensure the table entry keys are consistent.
#define X(val, C_32, C1_64, C2_64, C3_64) \
static const int _table2_##val = _tmp_##val; \
static_assert( \
_table1_##val == _table2_##val, \
"Inconsistency between ICMPX8632_TABLE and ICEINSTICMP_TABLE");
ICMPX8632_TABLE
#undef X
// Repeat the static asserts with respect to the high-level table
// entries in case the high-level table has extra entries.
#define X(tag, str) \
static_assert( \
_table1_##tag == _table2_##tag, \
"Inconsistency between ICMPX8632_TABLE and ICEINSTICMP_TABLE");
ICEINSTICMP_TABLE
#undef X
} // end of namespace dummy2
// Validate the enum values in ICETYPEX8632_TABLE.
namespace dummy3 {
// Define a temporary set of enum values based on low-level table
// entries.
enum _tmp_enum {
#define X(tag, elementty, cvt, sdss, pack, width, fld) _tmp_##tag,
ICETYPEX8632_TABLE
#undef X
_num
};
// Define a set of constants based on high-level table entries.
#define X(tag, size, align, elts, elty, str) \
static const int _table1_##tag = tag;
ICETYPE_TABLE
#undef X
// Define a set of constants based on low-level table entries, and
// ensure the table entry keys are consistent.
#define X(tag, elementty, cvt, sdss, pack, width, fld) \
static const int _table2_##tag = _tmp_##tag; \
static_assert(_table1_##tag == _table2_##tag, \
"Inconsistency between ICETYPEX8632_TABLE and ICETYPE_TABLE");
ICETYPEX8632_TABLE
#undef X
// Repeat the static asserts with respect to the high-level table
// entries in case the high-level table has extra entries.
#define X(tag, size, align, elts, elty, str) \
static_assert(_table1_##tag == _table2_##tag, \
"Inconsistency between ICETYPEX8632_TABLE and ICETYPE_TABLE");
ICETYPE_TABLE
#undef X
} // end of namespace dummy3
} // end of anonymous namespace
} // end of namespace Ice