blob: eb312f9a8975bb8b17169fd818653f7e18d8c92b [file] [log] [blame]
//===- subzero/src/IceGlobalContext.cpp - Global context defs -------------===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines aspects of the compilation that persist across
// multiple functions.
//
//===----------------------------------------------------------------------===//
#include <ctype.h> // isdigit(), isupper()
#include <locale> // locale
#include <unordered_map>
#include "llvm/Support/Timer.h"
#include "IceCfg.h"
#include "IceClFlags.h"
#include "IceDefs.h"
#include "IceGlobalContext.h"
#include "IceGlobalInits.h"
#include "IceOperand.h"
#include "IceTargetLowering.h"
#include "IceTimerTree.h"
#include "IceTypes.h"
namespace std {
template <> struct hash<Ice::RelocatableTuple> {
size_t operator()(const Ice::RelocatableTuple &Key) const {
return hash<Ice::IceString>()(Key.Name) +
hash<Ice::RelocOffsetT>()(Key.Offset);
}
};
} // end of namespace std
namespace Ice {
// TypePool maps constants of type KeyType (e.g. float) to pointers to
// type ValueType (e.g. ConstantFloat).
template <Type Ty, typename KeyType, typename ValueType> class TypePool {
TypePool(const TypePool &) = delete;
TypePool &operator=(const TypePool &) = delete;
public:
TypePool() : NextPoolID(0) {}
ValueType *getOrAdd(GlobalContext *Ctx, KeyType Key) {
auto Iter = Pool.find(Key);
if (Iter != Pool.end())
return Iter->second;
ValueType *Result = ValueType::create(Ctx, Ty, Key, NextPoolID++);
Pool[Key] = Result;
return Result;
}
ConstantList getConstantPool() const {
ConstantList Constants;
Constants.reserve(Pool.size());
for (auto &I : Pool)
Constants.push_back(I.second);
return Constants;
}
private:
typedef std::unordered_map<KeyType, ValueType *> ContainerType;
ContainerType Pool;
uint32_t NextPoolID;
};
// UndefPool maps ICE types to the corresponding ConstantUndef values.
class UndefPool {
UndefPool(const UndefPool &) = delete;
UndefPool &operator=(const UndefPool &) = delete;
public:
UndefPool() : NextPoolID(0), Pool(IceType_NUM) {}
ConstantUndef *getOrAdd(GlobalContext *Ctx, Type Ty) {
if (Pool[Ty] == nullptr)
Pool[Ty] = ConstantUndef::create(Ctx, Ty, NextPoolID++);
return Pool[Ty];
}
private:
uint32_t NextPoolID;
std::vector<ConstantUndef *> Pool;
};
// The global constant pool bundles individual pools of each type of
// interest.
class ConstantPool {
ConstantPool(const ConstantPool &) = delete;
ConstantPool &operator=(const ConstantPool &) = delete;
public:
ConstantPool() {}
TypePool<IceType_f32, float, ConstantFloat> Floats;
TypePool<IceType_f64, double, ConstantDouble> Doubles;
TypePool<IceType_i1, int8_t, ConstantInteger32> Integers1;
TypePool<IceType_i8, int8_t, ConstantInteger32> Integers8;
TypePool<IceType_i16, int16_t, ConstantInteger32> Integers16;
TypePool<IceType_i32, int32_t, ConstantInteger32> Integers32;
TypePool<IceType_i64, int64_t, ConstantInteger64> Integers64;
TypePool<IceType_i32, RelocatableTuple, ConstantRelocatable> Relocatables;
UndefPool Undefs;
};
void CodeStats::dump(const IceString &Name, Ostream &Str) {
if (!ALLOW_DUMP)
return;
Str << "|" << Name << "|Inst Count |" << InstructionsEmitted << "\n";
Str << "|" << Name << "|Regs Saved |" << RegistersSaved << "\n";
Str << "|" << Name << "|Frame Bytes |" << FrameBytes << "\n";
Str << "|" << Name << "|Spills |" << Spills << "\n";
Str << "|" << Name << "|Fills |" << Fills << "\n";
Str << "|" << Name << "|Spills+Fills|" << Spills + Fills << "\n";
Str << "|" << Name << "|Memory Usage|";
if (ssize_t MemUsed = llvm::TimeRecord::getCurrentTime(false).getMemUsed())
Str << MemUsed;
else
Str << "(requires '-track-memory')";
Str << "\n";
}
GlobalContext::GlobalContext(Ostream *OsDump, Ostream *OsEmit,
ELFStreamer *ELFStr, VerboseMask Mask,
TargetArch Arch, OptLevel Opt,
IceString TestPrefix, const ClFlags &Flags)
: StrDump(OsDump), StrEmit(OsEmit), VMask(Mask),
ConstPool(new ConstantPool()), Arch(Arch), Opt(Opt),
TestPrefix(TestPrefix), Flags(Flags), HasEmittedFirstMethod(false),
RNG(""), ObjectWriter() {
// Pre-register built-in stack names.
if (ALLOW_DUMP) {
newTimerStackID("Total across all functions");
newTimerStackID("Per-function summary");
}
if (Flags.UseELFWriter) {
ObjectWriter.reset(new ELFObjectWriter(*this, *ELFStr));
}
}
// Scan a string for S[0-9A-Z]*_ patterns and replace them with
// S<num>_ where <num> is the next base-36 value. If a type name
// legitimately contains that pattern, then the substitution will be
// made in error and most likely the link will fail. In this case,
// the test classes can be rewritten not to use that pattern, which is
// much simpler and more reliable than implementing a full demangling
// parser. Another substitution-in-error may occur if a type
// identifier ends with the pattern S[0-9A-Z]*, because an immediately
// following substitution string like "S1_" or "PS1_" may be combined
// with the previous type.
void GlobalContext::incrementSubstitutions(ManglerVector &OldName) const {
const std::locale CLocale("C");
// Provide extra space in case the length of <num> increases.
ManglerVector NewName(OldName.size() * 2);
size_t OldPos = 0;
size_t NewPos = 0;
size_t OldLen = OldName.size();
for (; OldPos < OldLen; ++OldPos, ++NewPos) {
if (OldName[OldPos] == '\0')
break;
if (OldName[OldPos] == 'S') {
// Search forward until we find _ or invalid character (including \0).
bool AllZs = true;
bool Found = false;
size_t Last;
for (Last = OldPos + 1; Last < OldLen; ++Last) {
char Ch = OldName[Last];
if (Ch == '_') {
Found = true;
break;
} else if (std::isdigit(Ch) || std::isupper(Ch, CLocale)) {
if (Ch != 'Z')
AllZs = false;
} else {
// Invalid character, stop searching.
break;
}
}
if (Found) {
NewName[NewPos++] = OldName[OldPos++]; // 'S'
size_t Length = Last - OldPos;
// NewPos and OldPos point just past the 'S'.
assert(NewName[NewPos - 1] == 'S');
assert(OldName[OldPos - 1] == 'S');
assert(OldName[OldPos + Length] == '_');
if (AllZs) {
// Replace N 'Z' characters with a '0' (if N=0) or '1' (if
// N>0) followed by N '0' characters.
NewName[NewPos++] = (Length ? '1' : '0');
for (size_t i = 0; i < Length; ++i) {
NewName[NewPos++] = '0';
}
} else {
// Iterate right-to-left and increment the base-36 number.
bool Carry = true;
for (size_t i = 0; i < Length; ++i) {
size_t Offset = Length - 1 - i;
char Ch = OldName[OldPos + Offset];
if (Carry) {
Carry = false;
switch (Ch) {
case '9':
Ch = 'A';
break;
case 'Z':
Ch = '0';
Carry = true;
break;
default:
++Ch;
break;
}
}
NewName[NewPos + Offset] = Ch;
}
NewPos += Length;
}
OldPos = Last;
// Fall through and let the '_' be copied across.
}
}
NewName[NewPos] = OldName[OldPos];
}
assert(NewName[NewPos] == '\0');
OldName = NewName;
}
// In this context, name mangling means to rewrite a symbol using a
// given prefix. For a C++ symbol, nest the original symbol inside
// the "prefix" namespace. For other symbols, just prepend the
// prefix.
IceString GlobalContext::mangleName(const IceString &Name) const {
// An already-nested name like foo::bar() gets pushed down one
// level, making it equivalent to Prefix::foo::bar().
// _ZN3foo3barExyz ==> _ZN6Prefix3foo3barExyz
// A non-nested but mangled name like bar() gets nested, making it
// equivalent to Prefix::bar().
// _Z3barxyz ==> ZN6Prefix3barExyz
// An unmangled, extern "C" style name, gets a simple prefix:
// bar ==> Prefixbar
if (!ALLOW_DUMP || getTestPrefix().empty())
return Name;
unsigned PrefixLength = getTestPrefix().length();
ManglerVector NameBase(1 + Name.length());
const size_t BufLen = 30 + Name.length() + PrefixLength;
ManglerVector NewName(BufLen);
uint32_t BaseLength = 0; // using uint32_t due to sscanf format string
int ItemsParsed = sscanf(Name.c_str(), "_ZN%s", NameBase.data());
if (ItemsParsed == 1) {
// Transform _ZN3foo3barExyz ==> _ZN6Prefix3foo3barExyz
// (splice in "6Prefix") ^^^^^^^
snprintf(NewName.data(), BufLen, "_ZN%u%s%s", PrefixLength,
getTestPrefix().c_str(), NameBase.data());
// We ignore the snprintf return value (here and below). If we
// somehow miscalculated the output buffer length, the output will
// be truncated, but it will be truncated consistently for all
// mangleName() calls on the same input string.
incrementSubstitutions(NewName);
return NewName.data();
}
// Artificially limit BaseLength to 9 digits (less than 1 billion)
// because sscanf behavior is undefined on integer overflow. If
// there are more than 9 digits (which we test by looking at the
// beginning of NameBase), then we consider this a failure to parse
// a namespace mangling, and fall back to the simple prefixing.
ItemsParsed = sscanf(Name.c_str(), "_Z%9u%s", &BaseLength, NameBase.data());
if (ItemsParsed == 2 && BaseLength <= strlen(NameBase.data()) &&
!isdigit(NameBase[0])) {
// Transform _Z3barxyz ==> _ZN6Prefix3barExyz
// ^^^^^^^^ ^
// (splice in "N6Prefix", and insert "E" after "3bar")
// But an "I" after the identifier indicates a template argument
// list terminated with "E"; insert the new "E" before/after the
// old "E". E.g.:
// Transform _Z3barIabcExyz ==> _ZN6Prefix3barIabcEExyz
// ^^^^^^^^ ^
// (splice in "N6Prefix", and insert "E" after "3barIabcE")
ManglerVector OrigName(Name.length());
ManglerVector OrigSuffix(Name.length());
uint32_t ActualBaseLength = BaseLength;
if (NameBase[ActualBaseLength] == 'I') {
++ActualBaseLength;
while (NameBase[ActualBaseLength] != 'E' &&
NameBase[ActualBaseLength] != '\0')
++ActualBaseLength;
}
strncpy(OrigName.data(), NameBase.data(), ActualBaseLength);
OrigName[ActualBaseLength] = '\0';
strcpy(OrigSuffix.data(), NameBase.data() + ActualBaseLength);
snprintf(NewName.data(), BufLen, "_ZN%u%s%u%sE%s", PrefixLength,
getTestPrefix().c_str(), BaseLength, OrigName.data(),
OrigSuffix.data());
incrementSubstitutions(NewName);
return NewName.data();
}
// Transform bar ==> Prefixbar
// ^^^^^^
return getTestPrefix() + Name;
}
GlobalContext::~GlobalContext() {
llvm::DeleteContainerPointers(GlobalDeclarations);
}
Constant *GlobalContext::getConstantInt(Type Ty, int64_t Value) {
switch (Ty) {
case IceType_i1:
return getConstantInt1(Value);
case IceType_i8:
return getConstantInt8(Value);
case IceType_i16:
return getConstantInt16(Value);
case IceType_i32:
return getConstantInt32(Value);
case IceType_i64:
return getConstantInt64(Value);
default:
llvm_unreachable("Bad integer type for getConstant");
}
return nullptr;
}
Constant *GlobalContext::getConstantInt1(int8_t ConstantInt1) {
ConstantInt1 &= INT8_C(1);
return ConstPool->Integers1.getOrAdd(this, ConstantInt1);
}
Constant *GlobalContext::getConstantInt8(int8_t ConstantInt8) {
return ConstPool->Integers8.getOrAdd(this, ConstantInt8);
}
Constant *GlobalContext::getConstantInt16(int16_t ConstantInt16) {
return ConstPool->Integers16.getOrAdd(this, ConstantInt16);
}
Constant *GlobalContext::getConstantInt32(int32_t ConstantInt32) {
return ConstPool->Integers32.getOrAdd(this, ConstantInt32);
}
Constant *GlobalContext::getConstantInt64(int64_t ConstantInt64) {
return ConstPool->Integers64.getOrAdd(this, ConstantInt64);
}
Constant *GlobalContext::getConstantFloat(float ConstantFloat) {
return ConstPool->Floats.getOrAdd(this, ConstantFloat);
}
Constant *GlobalContext::getConstantDouble(double ConstantDouble) {
return ConstPool->Doubles.getOrAdd(this, ConstantDouble);
}
Constant *GlobalContext::getConstantSym(RelocOffsetT Offset,
const IceString &Name,
bool SuppressMangling) {
return ConstPool->Relocatables.getOrAdd(
this, RelocatableTuple(Offset, Name, SuppressMangling));
}
Constant *GlobalContext::getConstantUndef(Type Ty) {
return ConstPool->Undefs.getOrAdd(this, Ty);
}
Constant *GlobalContext::getConstantZero(Type Ty) {
switch (Ty) {
case IceType_i1:
return getConstantInt1(0);
case IceType_i8:
return getConstantInt8(0);
case IceType_i16:
return getConstantInt16(0);
case IceType_i32:
return getConstantInt32(0);
case IceType_i64:
return getConstantInt64(0);
case IceType_f32:
return getConstantFloat(0);
case IceType_f64:
return getConstantDouble(0);
case IceType_v4i1:
case IceType_v8i1:
case IceType_v16i1:
case IceType_v16i8:
case IceType_v8i16:
case IceType_v4i32:
case IceType_v4f32: {
IceString Str;
llvm::raw_string_ostream BaseOS(Str);
BaseOS << "Unsupported constant type: " << Ty;
llvm_unreachable(BaseOS.str().c_str());
} break;
case IceType_void:
case IceType_NUM:
break;
}
llvm_unreachable("Unknown type");
}
ConstantList GlobalContext::getConstantPool(Type Ty) const {
switch (Ty) {
case IceType_i1:
case IceType_i8:
case IceType_i16:
case IceType_i32:
return ConstPool->Integers32.getConstantPool();
case IceType_i64:
return ConstPool->Integers64.getConstantPool();
case IceType_f32:
return ConstPool->Floats.getConstantPool();
case IceType_f64:
return ConstPool->Doubles.getConstantPool();
case IceType_v4i1:
case IceType_v8i1:
case IceType_v16i1:
case IceType_v16i8:
case IceType_v8i16:
case IceType_v4i32:
case IceType_v4f32: {
IceString Str;
llvm::raw_string_ostream BaseOS(Str);
BaseOS << "Unsupported constant type: " << Ty;
llvm_unreachable(BaseOS.str().c_str());
} break;
case IceType_void:
case IceType_NUM:
break;
}
llvm_unreachable("Unknown type");
}
FunctionDeclaration *
GlobalContext::newFunctionDeclaration(const FuncSigType *Signature,
unsigned CallingConv, unsigned Linkage,
bool IsProto) {
FunctionDeclaration *Func = new FunctionDeclaration(
*Signature, static_cast<llvm::CallingConv::ID>(CallingConv),
static_cast<llvm::GlobalValue::LinkageTypes>(Linkage), IsProto);
GlobalDeclarations.push_back(Func);
return Func;
}
VariableDeclaration *GlobalContext::newVariableDeclaration() {
VariableDeclaration *Var = new VariableDeclaration();
GlobalDeclarations.push_back(Var);
return Var;
}
TimerIdT GlobalContext::getTimerID(TimerStackIdT StackID,
const IceString &Name) {
assert(StackID < Timers.size());
return Timers[StackID].getTimerID(Name);
}
TimerStackIdT GlobalContext::newTimerStackID(const IceString &Name) {
if (!ALLOW_DUMP)
return 0;
TimerStackIdT NewID = Timers.size();
Timers.push_back(TimerStack(Name));
return NewID;
}
void GlobalContext::pushTimer(TimerIdT ID, TimerStackIdT StackID) {
assert(StackID < Timers.size());
Timers[StackID].push(ID);
}
void GlobalContext::popTimer(TimerIdT ID, TimerStackIdT StackID) {
assert(StackID < Timers.size());
Timers[StackID].pop(ID);
}
void GlobalContext::resetTimer(TimerStackIdT StackID) {
assert(StackID < Timers.size());
Timers[StackID].reset();
}
void GlobalContext::setTimerName(TimerStackIdT StackID,
const IceString &NewName) {
assert(StackID < Timers.size());
Timers[StackID].setName(NewName);
}
void GlobalContext::dumpStats(const IceString &Name, bool Final) {
if (!ALLOW_DUMP)
return;
if (Flags.DumpStats) {
if (Final) {
StatsCumulative.dump(Name, getStrDump());
} else {
StatsFunction.dump(Name, getStrDump());
StatsCumulative.dump("_TOTAL_", getStrDump());
}
}
}
void GlobalContext::dumpTimers(TimerStackIdT StackID, bool DumpCumulative) {
if (!ALLOW_DUMP)
return;
assert(Timers.size() > StackID);
Timers[StackID].dump(getStrDump(), DumpCumulative);
}
TimerMarker::TimerMarker(TimerIdT ID, const Cfg *Func)
: ID(ID), Ctx(Func->getContext()), Active(false) {
if (ALLOW_DUMP) {
Active = Func->getFocusedTiming() || Ctx->getFlags().SubzeroTimingEnabled;
if (Active)
Ctx->pushTimer(ID);
}
}
} // end of namespace Ice