blob: d77a5ddb554c4e1f3ec68232da712a6cc72152d3 [file] [log] [blame]
//===- subzero/src/IceGlobalContext.cpp - Global context defs ---*- C++ -*-===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines aspects of the compilation that persist across
// multiple functions.
//
//===----------------------------------------------------------------------===//
#include <ctype.h> // isdigit()
#include "IceDefs.h"
#include "IceTypes.h"
#include "IceCfg.h"
#include "IceGlobalContext.h"
#include "IceOperand.h"
#include "IceTargetLowering.h"
namespace Ice {
// TypePool maps constants of type KeyType (e.g. float) to pointers to
// type ValueType (e.g. ConstantFloat). KeyType values are compared
// using memcmp() because of potential NaN values in KeyType values.
// KeyTypeHasFP indicates whether KeyType is a floating-point type
// whose values need to be compared using memcmp() for NaN
// correctness. TODO: use std::is_floating_point<KeyType> instead of
// KeyTypeHasFP with C++11.
template <typename KeyType, typename ValueType, bool KeyTypeHasFP = false>
class TypePool {
TypePool(const TypePool &) LLVM_DELETED_FUNCTION;
TypePool &operator=(const TypePool &) LLVM_DELETED_FUNCTION;
public:
TypePool() : NextPoolID(0) {}
ValueType *getOrAdd(GlobalContext *Ctx, Type Ty, KeyType Key) {
TupleType TupleKey = std::make_pair(Ty, Key);
typename ContainerType::const_iterator Iter = Pool.find(TupleKey);
if (Iter != Pool.end())
return Iter->second;
ValueType *Result = ValueType::create(Ctx, Ty, Key, NextPoolID++);
Pool[TupleKey] = Result;
return Result;
}
ConstantList getConstantPool() const {
ConstantList Constants;
Constants.reserve(Pool.size());
// TODO: replace the loop with std::transform + lambdas.
for (typename ContainerType::const_iterator I = Pool.begin(),
E = Pool.end();
I != E; ++I) {
Constants.push_back(I->second);
}
return Constants;
}
private:
typedef std::pair<Type, KeyType> TupleType;
struct TupleCompare {
bool operator()(const TupleType &A, const TupleType &B) {
if (A.first != B.first)
return A.first < B.first;
if (KeyTypeHasFP)
return memcmp(&A.second, &B.second, sizeof(KeyType)) < 0;
return A.second < B.second;
}
};
typedef std::map<const TupleType, ValueType *, TupleCompare> ContainerType;
ContainerType Pool;
uint32_t NextPoolID;
};
// The global constant pool bundles individual pools of each type of
// interest.
class ConstantPool {
ConstantPool(const ConstantPool &) LLVM_DELETED_FUNCTION;
ConstantPool &operator=(const ConstantPool &) LLVM_DELETED_FUNCTION;
public:
ConstantPool() {}
TypePool<float, ConstantFloat, true> Floats;
TypePool<double, ConstantDouble, true> Doubles;
TypePool<uint64_t, ConstantInteger> Integers;
TypePool<RelocatableTuple, ConstantRelocatable> Relocatables;
};
GlobalContext::GlobalContext(llvm::raw_ostream *OsDump,
llvm::raw_ostream *OsEmit, VerboseMask Mask,
TargetArch Arch, OptLevel Opt,
IceString TestPrefix)
: StrDump(OsDump), StrEmit(OsEmit), VMask(Mask),
ConstPool(new ConstantPool()), Arch(Arch), Opt(Opt),
TestPrefix(TestPrefix), HasEmittedFirstMethod(false) {}
// In this context, name mangling means to rewrite a symbol using a
// given prefix. For a C++ symbol, nest the original symbol inside
// the "prefix" namespace. For other symbols, just prepend the
// prefix.
IceString GlobalContext::mangleName(const IceString &Name) const {
// An already-nested name like foo::bar() gets pushed down one
// level, making it equivalent to Prefix::foo::bar().
// _ZN3foo3barExyz ==> _ZN6Prefix3foo3barExyz
// A non-nested but mangled name like bar() gets nested, making it
// equivalent to Prefix::bar().
// _Z3barxyz ==> ZN6Prefix3barExyz
// An unmangled, extern "C" style name, gets a simple prefix:
// bar ==> Prefixbar
if (getTestPrefix().empty())
return Name;
unsigned PrefixLength = getTestPrefix().length();
char NameBase[1 + Name.length()];
const size_t BufLen = 30 + Name.length() + PrefixLength;
char NewName[BufLen];
uint32_t BaseLength = 0; // using uint32_t due to sscanf format string
int ItemsParsed = sscanf(Name.c_str(), "_ZN%s", NameBase);
if (ItemsParsed == 1) {
// Transform _ZN3foo3barExyz ==> _ZN6Prefix3foo3barExyz
// (splice in "6Prefix") ^^^^^^^
snprintf(NewName, BufLen, "_ZN%u%s%s", PrefixLength,
getTestPrefix().c_str(), NameBase);
// We ignore the snprintf return value (here and below). If we
// somehow miscalculated the output buffer length, the output will
// be truncated, but it will be truncated consistently for all
// mangleName() calls on the same input string.
return NewName;
}
// Artificially limit BaseLength to 9 digits (less than 1 billion)
// because sscanf behavior is undefined on integer overflow. If
// there are more than 9 digits (which we test by looking at the
// beginning of NameBase), then we consider this a failure to parse
// a namespace mangling, and fall back to the simple prefixing.
ItemsParsed = sscanf(Name.c_str(), "_Z%9u%s", &BaseLength, NameBase);
if (ItemsParsed == 2 && BaseLength <= strlen(NameBase) &&
!isdigit(NameBase[0])) {
// Transform _Z3barxyz ==> _ZN6Prefix3barExyz
// ^^^^^^^^ ^
// (splice in "N6Prefix", and insert "E" after "3bar")
// But an "I" after the identifier indicates a template argument
// list terminated with "E"; insert the new "E" before/after the
// old "E". E.g.:
// Transform _Z3barIabcExyz ==> _ZN6Prefix3barIabcEExyz
// ^^^^^^^^ ^
// (splice in "N6Prefix", and insert "E" after "3barIabcE")
char OrigName[Name.length()];
char OrigSuffix[Name.length()];
uint32_t ActualBaseLength = BaseLength;
if (NameBase[ActualBaseLength] == 'I') {
++ActualBaseLength;
while (NameBase[ActualBaseLength] != 'E' &&
NameBase[ActualBaseLength] != '\0')
++ActualBaseLength;
}
strncpy(OrigName, NameBase, ActualBaseLength);
OrigName[ActualBaseLength] = '\0';
strcpy(OrigSuffix, NameBase + ActualBaseLength);
snprintf(NewName, BufLen, "_ZN%u%s%u%sE%s", PrefixLength,
getTestPrefix().c_str(), BaseLength, OrigName, OrigSuffix);
return NewName;
}
// Transform bar ==> Prefixbar
// ^^^^^^
return getTestPrefix() + Name;
}
GlobalContext::~GlobalContext() {}
Constant *GlobalContext::getConstantInt(Type Ty, uint64_t ConstantInt64) {
return ConstPool->Integers.getOrAdd(this, Ty, ConstantInt64);
}
Constant *GlobalContext::getConstantFloat(float ConstantFloat) {
return ConstPool->Floats.getOrAdd(this, IceType_f32, ConstantFloat);
}
Constant *GlobalContext::getConstantDouble(double ConstantDouble) {
return ConstPool->Doubles.getOrAdd(this, IceType_f64, ConstantDouble);
}
Constant *GlobalContext::getConstantSym(Type Ty, int64_t Offset,
const IceString &Name,
bool SuppressMangling) {
return ConstPool->Relocatables.getOrAdd(
this, Ty, RelocatableTuple(Offset, Name, SuppressMangling));
}
ConstantList GlobalContext::getConstantPool(Type Ty) const {
switch (Ty) {
case IceType_i1:
case IceType_i8:
case IceType_i16:
case IceType_i32:
case IceType_i64:
return ConstPool->Integers.getConstantPool();
case IceType_f32:
return ConstPool->Floats.getConstantPool();
case IceType_f64:
return ConstPool->Doubles.getConstantPool();
case IceType_void:
case IceType_NUM:
break;
}
llvm_unreachable("Unknown type");
}
void Timer::printElapsedUs(GlobalContext *Ctx, const IceString &Tag) const {
if (Ctx->isVerbose(IceV_Timing)) {
// Prefixing with '#' allows timing strings to be included
// without error in textual assembly output.
Ctx->getStrDump() << "# " << getElapsedUs() << " usec " << Tag << "\n";
}
}
} // end of namespace Ice