blob: 02e85c76854df1ade16f3f62de2a317209822e19 [file] [log] [blame]
//===- subzero/src/IceOperand.cpp - High-level operand implementation -----===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Operand class and its target-independent
// subclasses, primarily for the methods of the Variable class.
//
//===----------------------------------------------------------------------===//
#include "IceCfg.h"
#include "IceInst.h"
#include "IceOperand.h"
#include "IceTargetLowering.h" // dumping stack/frame pointer register
namespace Ice {
bool operator<(const RelocatableTuple &A, const RelocatableTuple &B) {
if (A.Offset != B.Offset)
return A.Offset < B.Offset;
if (A.SuppressMangling != B.SuppressMangling)
return A.SuppressMangling < B.SuppressMangling;
return A.Name < B.Name;
}
bool operator<(const RegWeight &A, const RegWeight &B) {
return A.getWeight() < B.getWeight();
}
bool operator<=(const RegWeight &A, const RegWeight &B) { return !(B < A); }
bool operator==(const RegWeight &A, const RegWeight &B) {
return !(B < A) && !(A < B);
}
void LiveRange::addSegment(InstNumberT Start, InstNumberT End) {
#ifdef USE_SET
RangeElementType Element(Start, End);
RangeType::iterator Next = Range.lower_bound(Element);
assert(Next == Range.upper_bound(Element)); // Element not already present
// Beginning of code that merges contiguous segments. TODO: change
// "if(true)" to "if(false)" to see if this extra optimization code
// gives any performance gain, or is just destabilizing.
if (true) {
RangeType::iterator FirstDelete = Next;
RangeType::iterator Prev = Next;
bool hasPrev = (Next != Range.begin());
bool hasNext = (Next != Range.end());
if (hasPrev)
--Prev;
// See if Element and Next should be joined.
if (hasNext && End == Next->first) {
Element.second = Next->second;
++Next;
}
// See if Prev and Element should be joined.
if (hasPrev && Prev->second == Start) {
Element.first = Prev->first;
FirstDelete = Prev;
}
Range.erase(FirstDelete, Next);
}
// End of code that merges contiguous segments.
Range.insert(Next, Element);
#else
if (Range.empty()) {
Range.push_back(RangeElementType(Start, End));
return;
}
// Special case for faking in-arg liveness.
if (End < Range.front().first) {
assert(Start < 0);
Range.push_front(RangeElementType(Start, End));
return;
}
InstNumberT CurrentEnd = Range.back().second;
assert(Start >= CurrentEnd);
// Check for merge opportunity.
if (Start == CurrentEnd) {
Range.back().second = End;
return;
}
Range.push_back(RangeElementType(Start, End));
#endif
}
// Returns true if this live range ends before Other's live range
// starts. This means that the highest instruction number in this
// live range is less than or equal to the lowest instruction number
// of the Other live range.
bool LiveRange::endsBefore(const LiveRange &Other) const {
// Neither range should be empty, but let's be graceful.
if (Range.empty() || Other.Range.empty())
return true;
InstNumberT MyEnd = (*Range.rbegin()).second;
InstNumberT OtherStart = (*Other.Range.begin()).first;
return MyEnd <= OtherStart;
}
// Returns true if there is any overlap between the two live ranges.
bool LiveRange::overlaps(const LiveRange &Other) const {
// Do a two-finger walk through the two sorted lists of segments.
RangeType::const_iterator I1 = Range.begin(), I2 = Other.Range.begin();
RangeType::const_iterator E1 = Range.end(), E2 = Other.Range.end();
while (I1 != E1 && I2 != E2) {
if (I1->second <= I2->first) {
++I1;
continue;
}
if (I2->second <= I1->first) {
++I2;
continue;
}
return true;
}
return false;
}
bool LiveRange::overlaps(InstNumberT OtherBegin) const {
LiveRange Temp;
Temp.addSegment(OtherBegin, OtherBegin + 1);
return overlaps(Temp);
}
// Returns true if the live range contains the given instruction
// number. This is only used for validating the live range
// calculation.
bool LiveRange::containsValue(InstNumberT Value) const {
for (RangeType::const_iterator I = Range.begin(), E = Range.end(); I != E;
++I) {
if (I->first <= Value && Value <= I->second)
return true;
}
return false;
}
void Variable::setUse(const Inst *Inst, const CfgNode *Node) {
if (DefNode == NULL)
return;
if (llvm::isa<InstPhi>(Inst) || Node != DefNode)
DefNode = NULL;
}
void Variable::setDefinition(Inst *Inst, const CfgNode *Node) {
if (DefNode == NULL)
return;
// Can first check preexisting DefInst if we care about multi-def vars.
DefInst = Inst;
if (Node != DefNode)
DefNode = NULL;
}
void Variable::replaceDefinition(Inst *Inst, const CfgNode *Node) {
DefInst = NULL;
setDefinition(Inst, Node);
}
void Variable::setIsArg(Cfg *Func) {
IsArgument = true;
if (DefNode == NULL)
return;
CfgNode *Entry = Func->getEntryNode();
if (DefNode == Entry)
return;
DefNode = NULL;
}
IceString Variable::getName() const {
if (!Name.empty())
return Name;
char buf[30];
snprintf(buf, llvm::array_lengthof(buf), "__%u", getIndex());
return buf;
}
Variable Variable::asType(Type Ty) {
Variable V(Ty, DefNode, Number, Name);
V.RegNum = RegNum;
V.StackOffset = StackOffset;
return V;
}
// ======================== dump routines ======================== //
void Variable::emit(const Cfg *Func) const {
Func->getTarget()->emitVariable(this, Func);
}
void Variable::dump(const Cfg *Func) const {
Ostream &Str = Func->getContext()->getStrDump();
const CfgNode *CurrentNode = Func->getCurrentNode();
(void)CurrentNode; // used only in assert()
assert(CurrentNode == NULL || DefNode == NULL || DefNode == CurrentNode);
if (Func->getContext()->isVerbose(IceV_RegOrigins) ||
(!hasReg() && !Func->getTarget()->hasComputedFrame()))
Str << "%" << getName();
if (hasReg()) {
if (Func->getContext()->isVerbose(IceV_RegOrigins))
Str << ":";
Str << Func->getTarget()->getRegName(RegNum, getType());
} else if (Func->getTarget()->hasComputedFrame()) {
if (Func->getContext()->isVerbose(IceV_RegOrigins))
Str << ":";
Str << "[" << Func->getTarget()->getRegName(
Func->getTarget()->getFrameOrStackReg(), IceType_i32);
int32_t Offset = getStackOffset();
if (Offset) {
if (Offset > 0)
Str << "+";
Str << Offset;
}
Str << "]";
}
}
void ConstantRelocatable::emit(GlobalContext *Ctx) const {
Ostream &Str = Ctx->getStrEmit();
if (SuppressMangling)
Str << Name;
else
Str << Ctx->mangleName(Name);
if (Offset) {
if (Offset > 0)
Str << "+";
Str << Offset;
}
}
void ConstantRelocatable::dump(GlobalContext *Ctx) const {
Ostream &Str = Ctx->getStrDump();
Str << "@" << Name;
if (Offset)
Str << "+" << Offset;
}
void LiveRange::dump(Ostream &Str) const {
Str << "(weight=" << Weight << ") ";
for (RangeType::const_iterator I = Range.begin(), E = Range.end(); I != E;
++I) {
if (I != Range.begin())
Str << ", ";
Str << "[" << (*I).first << ":" << (*I).second << ")";
}
}
Ostream &operator<<(Ostream &Str, const LiveRange &L) {
L.dump(Str);
return Str;
}
Ostream &operator<<(Ostream &Str, const RegWeight &W) {
if (W.getWeight() == RegWeight::Inf)
Str << "Inf";
else
Str << W.getWeight();
return Str;
}
} // end of namespace Ice