blob: f610d9668b6dc8711c642aaad2737c730207e880 [file] [log] [blame]
//===- subzero/src/IceRegAlloc.cpp - Linear-scan implementation -----------===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LinearScan class, which performs the
// linear-scan register allocation after liveness analysis has been
// performed.
//
//===----------------------------------------------------------------------===//
#include "IceCfg.h"
#include "IceInst.h"
#include "IceOperand.h"
#include "IceRegAlloc.h"
#include "IceTargetLowering.h"
namespace Ice {
// Implements the linear-scan algorithm. Based on "Linear Scan
// Register Allocation in the Context of SSA Form and Register
// Constraints" by Hanspeter Mössenböck and Michael Pfeiffer,
// ftp://ftp.ssw.uni-linz.ac.at/pub/Papers/Moe02.PDF . This
// implementation is modified to take affinity into account and allow
// two interfering variables to share the same register in certain
// cases.
//
// Requires running Cfg::liveness(Liveness_RangesFull) in
// preparation. Results are assigned to Variable::RegNum for each
// Variable.
void LinearScan::scan(const llvm::SmallBitVector &RegMaskFull) {
assert(RegMaskFull.any()); // Sanity check
Unhandled.clear();
Handled.clear();
Inactive.clear();
Active.clear();
Ostream &Str = Func->getContext()->getStrDump();
Func->setCurrentNode(NULL);
// Gather the live ranges of all variables and add them to the
// Unhandled set. TODO: Unhandled is a set<> which is based on a
// balanced binary tree, so inserting live ranges for N variables is
// O(N log N) complexity. N may be proportional to the number of
// instructions, thanks to temporary generation during lowering. As
// a result, it may be useful to design a better data structure for
// storing Func->getVariables().
const VarList &Vars = Func->getVariables();
for (VarList::const_iterator I = Vars.begin(), E = Vars.end(); I != E; ++I) {
Variable *Var = *I;
// Explicitly don't consider zero-weight variables, which are
// meant to be spill slots.
if (Var->getWeight() == RegWeight::Zero)
continue;
// Don't bother if the variable has a null live range, which means
// it was never referenced.
if (Var->getLiveRange().isEmpty())
continue;
Unhandled.insert(LiveRangeWrapper(Var));
if (Var->hasReg()) {
Var->setRegNumTmp(Var->getRegNum());
Var->setLiveRangeInfiniteWeight();
}
}
// RegUses[I] is the number of live ranges (variables) that register
// I is currently assigned to. It can be greater than 1 as a result
// of Variable::AllowRegisterOverlap.
std::vector<int> RegUses(RegMaskFull.size());
// Unhandled is already set to all ranges in increasing order of
// start points.
assert(Active.empty());
assert(Inactive.empty());
assert(Handled.empty());
UnorderedRanges::iterator Next;
while (!Unhandled.empty()) {
LiveRangeWrapper Cur = *Unhandled.begin();
Unhandled.erase(Unhandled.begin());
if (Func->getContext()->isVerbose(IceV_LinearScan)) {
Str << "\nConsidering ";
Cur.dump(Func);
Str << "\n";
}
const llvm::SmallBitVector RegMask =
RegMaskFull &
Func->getTarget()->getRegisterSetForType(Cur.Var->getType());
// Check for precolored ranges. If Cur is precolored, it
// definitely gets that register. Previously processed live
// ranges would have avoided that register due to it being
// precolored. Future processed live ranges won't evict that
// register because the live range has infinite weight.
if (Cur.Var->hasReg()) {
int32_t RegNum = Cur.Var->getRegNum();
// RegNumTmp should have already been set above.
assert(Cur.Var->getRegNumTmp() == RegNum);
if (Func->getContext()->isVerbose(IceV_LinearScan)) {
Str << "Precoloring ";
Cur.dump(Func);
Str << "\n";
}
Active.push_back(Cur);
assert(RegUses[RegNum] >= 0);
++RegUses[RegNum];
continue;
}
// Check for active ranges that have expired or become inactive.
for (UnorderedRanges::iterator I = Active.begin(), E = Active.end(); I != E;
I = Next) {
Next = I;
++Next;
LiveRangeWrapper Item = *I;
bool Moved = false;
if (Item.endsBefore(Cur)) {
// Move Item from Active to Handled list.
if (Func->getContext()->isVerbose(IceV_LinearScan)) {
Str << "Expiring ";
Item.dump(Func);
Str << "\n";
}
Active.erase(I);
Handled.push_back(Item);
Moved = true;
} else if (!Item.overlapsStart(Cur)) {
// Move Item from Active to Inactive list.
if (Func->getContext()->isVerbose(IceV_LinearScan)) {
Str << "Inactivating ";
Item.dump(Func);
Str << "\n";
}
Active.erase(I);
Inactive.push_back(Item);
Moved = true;
}
if (Moved) {
// Decrement Item from RegUses[].
assert(Item.Var->hasRegTmp());
int32_t RegNum = Item.Var->getRegNumTmp();
--RegUses[RegNum];
assert(RegUses[RegNum] >= 0);
}
}
// Check for inactive ranges that have expired or reactivated.
for (UnorderedRanges::iterator I = Inactive.begin(), E = Inactive.end();
I != E; I = Next) {
Next = I;
++Next;
LiveRangeWrapper Item = *I;
if (Item.endsBefore(Cur)) {
// Move Item from Inactive to Handled list.
if (Func->getContext()->isVerbose(IceV_LinearScan)) {
Str << "Expiring ";
Item.dump(Func);
Str << "\n";
}
Inactive.erase(I);
Handled.push_back(Item);
} else if (Item.overlapsStart(Cur)) {
// Move Item from Inactive to Active list.
if (Func->getContext()->isVerbose(IceV_LinearScan)) {
Str << "Reactivating ";
Item.dump(Func);
Str << "\n";
}
Inactive.erase(I);
Active.push_back(Item);
// Increment Item in RegUses[].
assert(Item.Var->hasRegTmp());
int32_t RegNum = Item.Var->getRegNumTmp();
assert(RegUses[RegNum] >= 0);
++RegUses[RegNum];
}
}
// Calculate available registers into Free[].
llvm::SmallBitVector Free = RegMask;
for (SizeT i = 0; i < RegMask.size(); ++i) {
if (RegUses[i] > 0)
Free[i] = false;
}
// Remove registers from the Free[] list where an Inactive range
// overlaps with the current range.
for (UnorderedRanges::const_iterator I = Inactive.begin(),
E = Inactive.end();
I != E; ++I) {
LiveRangeWrapper Item = *I;
if (Item.overlaps(Cur)) {
int32_t RegNum = Item.Var->getRegNumTmp();
// Don't assert(Free[RegNum]) because in theory (though
// probably never in practice) there could be two inactive
// variables that were allowed marked with
// AllowRegisterOverlap.
Free[RegNum] = false;
}
}
// Remove registers from the Free[] list where an Unhandled range
// overlaps with the current range and is precolored.
// Cur.endsBefore(*I) is an early exit check that turns a
// guaranteed O(N^2) algorithm into expected linear complexity.
for (OrderedRanges::const_iterator I = Unhandled.begin(),
E = Unhandled.end();
I != E && !Cur.endsBefore(*I); ++I) {
LiveRangeWrapper Item = *I;
if (Item.Var->hasReg() && Item.overlaps(Cur)) {
Free[Item.Var->getRegNum()] = false; // Note: getRegNum not getRegNumTmp
}
}
// Print info about physical register availability.
if (Func->getContext()->isVerbose(IceV_LinearScan)) {
for (SizeT i = 0; i < RegMask.size(); ++i) {
if (RegMask[i]) {
Str << Func->getTarget()->getRegName(i, IceType_i32)
<< "(U=" << RegUses[i] << ",F=" << Free[i] << ") ";
}
}
Str << "\n";
}
Variable *Prefer = Cur.Var->getPreferredRegister();
int32_t PreferReg = Prefer && Prefer->hasRegTmp() ? Prefer->getRegNumTmp()
: Variable::NoRegister;
if (PreferReg != Variable::NoRegister &&
(Cur.Var->getRegisterOverlap() || Free[PreferReg])) {
// First choice: a preferred register that is either free or is
// allowed to overlap with its linked variable.
Cur.Var->setRegNumTmp(PreferReg);
if (Func->getContext()->isVerbose(IceV_LinearScan)) {
Str << "Preferring ";
Cur.dump(Func);
Str << "\n";
}
assert(RegUses[PreferReg] >= 0);
++RegUses[PreferReg];
Active.push_back(Cur);
} else if (Free.any()) {
// Second choice: any free register. TODO: After explicit
// affinity is considered, is there a strategy better than just
// picking the lowest-numbered available register?
int32_t RegNum = Free.find_first();
Cur.Var->setRegNumTmp(RegNum);
if (Func->getContext()->isVerbose(IceV_LinearScan)) {
Str << "Allocating ";
Cur.dump(Func);
Str << "\n";
}
assert(RegUses[RegNum] >= 0);
++RegUses[RegNum];
Active.push_back(Cur);
} else {
// Fallback: there are no free registers, so we look for the
// lowest-weight register and see if Cur has higher weight.
std::vector<RegWeight> Weights(RegMask.size());
// Check Active ranges.
for (UnorderedRanges::const_iterator I = Active.begin(), E = Active.end();
I != E; ++I) {
LiveRangeWrapper Item = *I;
assert(Item.overlaps(Cur));
int32_t RegNum = Item.Var->getRegNumTmp();
assert(Item.Var->hasRegTmp());
Weights[RegNum].addWeight(Item.range().getWeight());
}
// Same as above, but check Inactive ranges instead of Active.
for (UnorderedRanges::const_iterator I = Inactive.begin(),
E = Inactive.end();
I != E; ++I) {
LiveRangeWrapper Item = *I;
int32_t RegNum = Item.Var->getRegNumTmp();
assert(Item.Var->hasRegTmp());
if (Item.overlaps(Cur))
Weights[RegNum].addWeight(Item.range().getWeight());
}
// Check Unhandled ranges that overlap Cur and are precolored.
// Cur.endsBefore(*I) is an early exit check that turns a
// guaranteed O(N^2) algorithm into expected linear complexity.
for (OrderedRanges::const_iterator I = Unhandled.begin(),
E = Unhandled.end();
I != E && !Cur.endsBefore(*I); ++I) {
LiveRangeWrapper Item = *I;
int32_t RegNum = Item.Var->getRegNumTmp();
if (RegNum < 0)
continue;
if (Item.overlaps(Cur))
Weights[RegNum].setWeight(RegWeight::Inf);
}
// All the weights are now calculated. Find the register with
// smallest weight.
int32_t MinWeightIndex = RegMask.find_first();
// MinWeightIndex must be valid because of the initial
// RegMask.any() test.
assert(MinWeightIndex >= 0);
for (SizeT i = MinWeightIndex + 1; i < Weights.size(); ++i) {
if (RegMask[i] && Weights[i] < Weights[MinWeightIndex])
MinWeightIndex = i;
}
if (Cur.range().getWeight() <= Weights[MinWeightIndex]) {
// Cur doesn't have priority over any other live ranges, so
// don't allocate any register to it, and move it to the
// Handled state.
Handled.push_back(Cur);
if (Cur.range().getWeight().isInf()) {
Func->setError("Unable to find a physical register for an "
"infinite-weight live range");
}
} else {
// Evict all live ranges in Active that register number
// MinWeightIndex is assigned to.
for (UnorderedRanges::iterator I = Active.begin(), E = Active.end();
I != E; I = Next) {
Next = I;
++Next;
LiveRangeWrapper Item = *I;
if (Item.Var->getRegNumTmp() == MinWeightIndex) {
if (Func->getContext()->isVerbose(IceV_LinearScan)) {
Str << "Evicting ";
Item.dump(Func);
Str << "\n";
}
--RegUses[MinWeightIndex];
assert(RegUses[MinWeightIndex] >= 0);
Item.Var->setRegNumTmp(Variable::NoRegister);
Active.erase(I);
Handled.push_back(Item);
}
}
// Do the same for Inactive.
for (UnorderedRanges::iterator I = Inactive.begin(), E = Inactive.end();
I != E; I = Next) {
Next = I;
++Next;
LiveRangeWrapper Item = *I;
if (Item.Var->getRegNumTmp() == MinWeightIndex) {
if (Func->getContext()->isVerbose(IceV_LinearScan)) {
Str << "Evicting ";
Item.dump(Func);
Str << "\n";
}
Item.Var->setRegNumTmp(Variable::NoRegister);
Inactive.erase(I);
Handled.push_back(Item);
}
}
// Assign the register to Cur.
Cur.Var->setRegNumTmp(MinWeightIndex);
assert(RegUses[MinWeightIndex] >= 0);
++RegUses[MinWeightIndex];
Active.push_back(Cur);
if (Func->getContext()->isVerbose(IceV_LinearScan)) {
Str << "Allocating ";
Cur.dump(Func);
Str << "\n";
}
}
}
dump(Func);
}
// Move anything Active or Inactive to Handled for easier handling.
for (UnorderedRanges::iterator I = Active.begin(), E = Active.end(); I != E;
I = Next) {
Next = I;
++Next;
Handled.push_back(*I);
Active.erase(I);
}
for (UnorderedRanges::iterator I = Inactive.begin(), E = Inactive.end();
I != E; I = Next) {
Next = I;
++Next;
Handled.push_back(*I);
Inactive.erase(I);
}
dump(Func);
// Finish up by assigning RegNumTmp->RegNum for each Variable.
for (UnorderedRanges::const_iterator I = Handled.begin(), E = Handled.end();
I != E; ++I) {
LiveRangeWrapper Item = *I;
int32_t RegNum = Item.Var->getRegNumTmp();
if (Func->getContext()->isVerbose(IceV_LinearScan)) {
if (!Item.Var->hasRegTmp()) {
Str << "Not assigning ";
Item.Var->dump(Func);
Str << "\n";
} else {
Str << (RegNum == Item.Var->getRegNum() ? "Reassigning " : "Assigning ")
<< Func->getTarget()->getRegName(RegNum, IceType_i32) << "(r"
<< RegNum << ") to ";
Item.Var->dump(Func);
Str << "\n";
}
}
Item.Var->setRegNum(Item.Var->getRegNumTmp());
}
// TODO: Consider running register allocation one more time, with
// infinite registers, for two reasons. First, evicted live ranges
// get a second chance for a register. Second, it allows coalescing
// of stack slots. If there is no time budget for the second
// register allocation run, each unallocated variable just gets its
// own slot.
//
// Another idea for coalescing stack slots is to initialize the
// Unhandled list with just the unallocated variables, saving time
// but not offering second-chance opportunities.
}
// ======================== Dump routines ======================== //
void LiveRangeWrapper::dump(const Cfg *Func) const {
Ostream &Str = Func->getContext()->getStrDump();
const static size_t BufLen = 30;
char buf[BufLen];
snprintf(buf, BufLen, "%2d", Var->getRegNumTmp());
Str << "R=" << buf << " V=";
Var->dump(Func);
Str << " Range=" << range();
}
void LinearScan::dump(Cfg *Func) const {
Ostream &Str = Func->getContext()->getStrDump();
if (!Func->getContext()->isVerbose(IceV_LinearScan))
return;
Func->setCurrentNode(NULL);
Str << "**** Current regalloc state:\n";
Str << "++++++ Handled:\n";
for (UnorderedRanges::const_iterator I = Handled.begin(), E = Handled.end();
I != E; ++I) {
I->dump(Func);
Str << "\n";
}
Str << "++++++ Unhandled:\n";
for (OrderedRanges::const_iterator I = Unhandled.begin(), E = Unhandled.end();
I != E; ++I) {
I->dump(Func);
Str << "\n";
}
Str << "++++++ Active:\n";
for (UnorderedRanges::const_iterator I = Active.begin(), E = Active.end();
I != E; ++I) {
I->dump(Func);
Str << "\n";
}
Str << "++++++ Inactive:\n";
for (UnorderedRanges::const_iterator I = Inactive.begin(), E = Inactive.end();
I != E; ++I) {
I->dump(Func);
Str << "\n";
}
}
} // end of namespace Ice