blob: de4dd869dab99a5e29d2cdbd2568fad7217c77d0 [file] [log] [blame]
//===- subzero/src/IceAssembler.h - Integrated assembler --------*- C++ -*-===//
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
//
// Modified by the Subzero authors.
//
//===----------------------------------------------------------------------===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the Assembler base class. Instructions are assembled
// by architecture-specific assemblers that derive from this base class.
// This base class manages buffers and fixups for emitting code, etc.
//
//===----------------------------------------------------------------------===//
#ifndef SUBZERO_SRC_ICEASSEMBLER_H
#define SUBZERO_SRC_ICEASSEMBLER_H
#include "IceDefs.h"
#include "IceFixups.h"
namespace Ice {
// Assembler buffers are used to emit binary code. They grow on demand.
class AssemblerBuffer {
AssemblerBuffer(const AssemblerBuffer &) = delete;
AssemblerBuffer &operator=(const AssemblerBuffer &) = delete;
public:
AssemblerBuffer(Assembler &);
~AssemblerBuffer();
// Basic support for emitting, loading, and storing.
template <typename T> void emit(T Value) {
assert(hasEnsuredCapacity());
*reinterpret_cast<T *>(Cursor) = Value;
Cursor += sizeof(T);
}
template <typename T> T load(intptr_t Position) const {
assert(Position >= 0 &&
Position <= (size() - static_cast<intptr_t>(sizeof(T))));
return *reinterpret_cast<T *>(Contents + Position);
}
template <typename T> void store(intptr_t Position, T Value) {
assert(Position >= 0 &&
Position <= (size() - static_cast<intptr_t>(sizeof(T))));
*reinterpret_cast<T *>(Contents + Position) = Value;
}
// Emit a fixup at the current location.
void emitFixup(AssemblerFixup *Fixup) { Fixup->set_position(size()); }
// Get the size of the emitted code.
intptr_t size() const { return Cursor - Contents; }
uintptr_t contents() const { return Contents; }
// To emit an instruction to the assembler buffer, the EnsureCapacity helper
// must be used to guarantee that the underlying data area is big enough to
// hold the emitted instruction. Usage:
//
// AssemblerBuffer buffer;
// AssemblerBuffer::EnsureCapacity ensured(&buffer);
// ... emit bytes for single instruction ...
#ifndef NDEBUG
class EnsureCapacity {
EnsureCapacity(const EnsureCapacity &) = delete;
EnsureCapacity &operator=(const EnsureCapacity &) = delete;
public:
explicit EnsureCapacity(AssemblerBuffer *Buffer);
~EnsureCapacity();
private:
AssemblerBuffer *Buffer;
intptr_t Gap;
intptr_t computeGap() { return Buffer->capacity() - Buffer->size(); }
};
bool HasEnsuredCapacity;
bool hasEnsuredCapacity() const { return HasEnsuredCapacity; }
#else // NDEBUG
class EnsureCapacity {
EnsureCapacity(const EnsureCapacity &) = delete;
EnsureCapacity &operator=(const EnsureCapacity &) = delete;
public:
explicit EnsureCapacity(AssemblerBuffer *Buffer) {
if (Buffer->cursor() >= Buffer->limit())
Buffer->extendCapacity();
}
};
// When building the C++ tests, assertion code is enabled. To allow
// asserting that the user of the assembler buffer has ensured the
// capacity needed for emitting, we add a dummy method in non-debug mode.
bool hasEnsuredCapacity() const { return true; }
#endif // NDEBUG
// Returns the position in the instruction stream.
intptr_t getPosition() const { return Cursor - Contents; }
// Create and track a fixup in the current function.
AssemblerFixup *createFixup(FixupKind Kind, const Constant *Value);
const FixupRefList &fixups() const { return Fixups; }
void setSize(intptr_t NewSize) {
assert(NewSize <= size());
Cursor = Contents + NewSize;
}
private:
// The limit is set to kMinimumGap bytes before the end of the data area.
// This leaves enough space for the longest possible instruction and allows
// for a single, fast space check per instruction.
static const intptr_t kMinimumGap = 32;
uintptr_t Contents;
uintptr_t Cursor;
uintptr_t Limit;
// The member variable is named Assemblr to avoid hiding the class Assembler.
Assembler &Assemblr;
// List of pool-allocated fixups relative to the current function.
FixupRefList Fixups;
uintptr_t cursor() const { return Cursor; }
uintptr_t limit() const { return Limit; }
intptr_t capacity() const {
assert(Limit >= Contents);
return (Limit - Contents) + kMinimumGap;
}
// Compute the limit based on the data area and the capacity. See
// description of kMinimumGap for the reasoning behind the value.
static uintptr_t computeLimit(uintptr_t Data, intptr_t Capacity) {
return Data + Capacity - kMinimumGap;
}
void extendCapacity();
};
class Assembler {
Assembler(const Assembler &) = delete;
Assembler &operator=(const Assembler &) = delete;
public:
Assembler() : Allocator(), Buffer(*this) {}
virtual ~Assembler() = default;
// Allocate a chunk of bytes using the per-Assembler allocator.
uintptr_t allocateBytes(size_t bytes) {
// For now, alignment is not related to NaCl bundle alignment, since
// the buffer's GetPosition is relative to the base. So NaCl bundle
// alignment checks can be relative to that base. Later, the buffer
// will be copied out to a ".text" section (or an in memory-buffer
// that can be mprotect'ed with executable permission), and that
// second buffer should be aligned for NaCl.
const size_t Alignment = 16;
return reinterpret_cast<uintptr_t>(Allocator.Allocate(bytes, Alignment));
}
// Allocate data of type T using the per-Assembler allocator.
template <typename T> T *allocate() { return Allocator.Allocate<T>(); }
// Align the tail end of the function to the required target alignment.
virtual void alignFunction() = 0;
// Add nop padding of a particular width to the current bundle.
virtual void padWithNop(intptr_t Padding) = 0;
virtual SizeT getBundleAlignLog2Bytes() const = 0;
virtual const char *getNonExecPadDirective() const = 0;
virtual llvm::ArrayRef<uint8_t> getNonExecBundlePadding() const = 0;
// Mark the current text location as the start of a CFG node
// (represented by NodeNumber).
virtual void bindCfgNodeLabel(SizeT NodeNumber) = 0;
virtual bool fixupIsPCRel(FixupKind Kind) const = 0;
// Return a view of all the bytes of code for the current function.
llvm::StringRef getBufferView() const;
const FixupRefList &fixups() const { return Buffer.fixups(); }
AssemblerFixup *createFixup(FixupKind Kind, const Constant *Value) {
return Buffer.createFixup(Kind, Value);
}
void emitIASBytes(GlobalContext *Ctx) const;
bool getInternal() const { return IsInternal; }
void setInternal(bool Internal) { IsInternal = Internal; }
const IceString &getFunctionName() { return FunctionName; }
void setFunctionName(const IceString &NewName) { FunctionName = NewName; }
intptr_t getBufferSize() const { return Buffer.size(); }
// Roll back to a (smaller) size.
void setBufferSize(intptr_t NewSize) { Buffer.setSize(NewSize); }
void setPreliminary(bool Value) { Preliminary = Value; }
bool getPreliminary() const { return Preliminary; }
private:
ArenaAllocator<32 * 1024> Allocator;
// FunctionName and IsInternal are transferred from the original Cfg
// object, since the Cfg object may be deleted by the time the
// assembler buffer is emitted.
IceString FunctionName = "";
bool IsInternal = false;
// Preliminary indicates whether a preliminary pass is being made
// for calculating bundle padding (Preliminary=true), versus the
// final pass where all changes to label bindings, label links, and
// relocation fixups are fully committed (Preliminary=false).
bool Preliminary = false;
protected:
// Buffer's constructor uses the Allocator, so it needs to appear after it.
// TODO(jpp): dependencies on construction order are a nice way of shooting
// yourself in the foot. Fix this.
AssemblerBuffer Buffer;
};
} // end of namespace Ice
#endif // SUBZERO_SRC_ICEASSEMBLER_H_