| //===- Parser.cpp - MLIR Parser Implementation ----------------------------===// |
| // |
| // Copyright 2019 The MLIR Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // ============================================================================= |
| // |
| // This file implements the parser for the MLIR textual form. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Parser.h" |
| #include "Lexer.h" |
| #include "mlir/IR/AffineExpr.h" |
| #include "mlir/IR/AffineMap.h" |
| #include "mlir/IR/Attributes.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/IR/MLFunction.h" |
| #include "mlir/IR/Module.h" |
| #include "mlir/IR/OperationSet.h" |
| #include "mlir/IR/Types.h" |
| #include "llvm/Support/SourceMgr.h" |
| using namespace mlir; |
| using llvm::SourceMgr; |
| using llvm::SMLoc; |
| |
| namespace { |
| class CFGFunctionParserState; |
| class AffineMapParserState; |
| |
| /// Simple enum to make code read better in cases that would otherwise return a |
| /// bool value. Failure is "true" in a boolean context. |
| enum ParseResult { |
| ParseSuccess, |
| ParseFailure |
| }; |
| |
| /// Lower precedence ops (all at the same precedence level). LNoOp is false in |
| /// the boolean sense. |
| enum AffineLowPrecOp { |
| /// Null value. |
| LNoOp, |
| Add, |
| Sub |
| }; |
| |
| /// Higher precedence ops - all at the same precedence level. HNoOp is false in |
| /// the boolean sense. |
| enum AffineHighPrecOp { |
| /// Null value. |
| HNoOp, |
| Mul, |
| FloorDiv, |
| CeilDiv, |
| Mod |
| }; |
| |
| /// Main parser implementation. |
| class Parser { |
| public: |
| Parser(llvm::SourceMgr &sourceMgr, MLIRContext *context, |
| SMDiagnosticHandlerTy errorReporter) |
| : builder(context), lex(sourceMgr, errorReporter), |
| curToken(lex.lexToken()), errorReporter(std::move(errorReporter)) { |
| module.reset(new Module(context)); |
| } |
| |
| Module *parseModule(); |
| private: |
| // State. |
| Builder builder; |
| |
| // The lexer for the source file we're parsing. |
| Lexer lex; |
| |
| // This is the next token that hasn't been consumed yet. |
| Token curToken; |
| |
| // The diagnostic error reporter. |
| SMDiagnosticHandlerTy errorReporter; |
| |
| // This is the result module we are parsing into. |
| std::unique_ptr<Module> module; |
| |
| // A map from affine map identifier to AffineMap. |
| llvm::StringMap<AffineMap*> affineMapDefinitions; |
| |
| private: |
| // Helper methods. |
| |
| /// Emit an error and return failure. |
| ParseResult emitError(const Twine &message) { |
| return emitError(curToken.getLoc(), message); |
| } |
| ParseResult emitError(SMLoc loc, const Twine &message); |
| |
| /// Advance the current lexer onto the next token. |
| void consumeToken() { |
| assert(curToken.isNot(Token::eof, Token::error) && |
| "shouldn't advance past EOF or errors"); |
| curToken = lex.lexToken(); |
| } |
| |
| /// Advance the current lexer onto the next token, asserting what the expected |
| /// current token is. This is preferred to the above method because it leads |
| /// to more self-documenting code with better checking. |
| void consumeToken(Token::Kind kind) { |
| assert(curToken.is(kind) && "consumed an unexpected token"); |
| consumeToken(); |
| } |
| |
| /// If the current token has the specified kind, consume it and return true. |
| /// If not, return false. |
| bool consumeIf(Token::Kind kind) { |
| if (curToken.isNot(kind)) |
| return false; |
| consumeToken(kind); |
| return true; |
| } |
| |
| // Binary affine op parsing |
| AffineLowPrecOp consumeIfLowPrecOp(); |
| AffineHighPrecOp consumeIfHighPrecOp(); |
| |
| ParseResult parseCommaSeparatedList(Token::Kind rightToken, |
| const std::function<ParseResult()> &parseElement, |
| bool allowEmptyList = true); |
| |
| // We have two forms of parsing methods - those that return a non-null |
| // pointer on success, and those that return a ParseResult to indicate whether |
| // they returned a failure. The second class fills in by-reference arguments |
| // as the results of their action. |
| |
| // Type parsing. |
| Type *parsePrimitiveType(); |
| Type *parseElementType(); |
| VectorType *parseVectorType(); |
| ParseResult parseDimensionListRanked(SmallVectorImpl<int> &dimensions); |
| Type *parseTensorType(); |
| Type *parseMemRefType(); |
| Type *parseFunctionType(); |
| Type *parseType(); |
| ParseResult parseTypeList(SmallVectorImpl<Type*> &elements); |
| |
| // Attribute parsing. |
| Attribute *parseAttribute(); |
| ParseResult parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes); |
| |
| // Parsing identifiers' lists for polyhedral structures. |
| ParseResult parseDimIdList(AffineMapParserState &state); |
| ParseResult parseSymbolIdList(AffineMapParserState &state); |
| ParseResult parseDimOrSymbolId(AffineMapParserState &state, bool dim); |
| |
| // Polyhedral structures. |
| ParseResult parseAffineMapDef(); |
| AffineMap *parseAffineMapInline(StringRef mapId); |
| AffineExpr *parseAffineExpr(const AffineMapParserState &state); |
| |
| AffineExpr *parseParentheticalExpr(const AffineMapParserState &state); |
| AffineExpr *parseIntegerExpr(const AffineMapParserState &state); |
| AffineExpr *parseBareIdExpr(const AffineMapParserState &state); |
| |
| AffineBinaryOpExpr *getBinaryAffineOpExpr(AffineHighPrecOp op, |
| AffineExpr *lhs, AffineExpr *rhs); |
| AffineBinaryOpExpr *getBinaryAffineOpExpr(AffineLowPrecOp op, AffineExpr *lhs, |
| AffineExpr *rhs); |
| ParseResult parseAffineOperandExpr(const AffineMapParserState &state, |
| AffineExpr *&result); |
| ParseResult parseAffineLowPrecOpExpr(AffineExpr *llhs, AffineLowPrecOp llhsOp, |
| const AffineMapParserState &state, |
| AffineExpr *&result); |
| ParseResult parseAffineHighPrecOpExpr(AffineExpr *llhs, |
| AffineHighPrecOp llhsOp, |
| const AffineMapParserState &state, |
| AffineExpr *&result); |
| |
| // SSA |
| ParseResult parseSSAUse(); |
| ParseResult parseOptionalSSAUseList(Token::Kind endToken); |
| ParseResult parseSSAUseAndType(); |
| ParseResult parseOptionalSSAUseAndTypeList(Token::Kind endToken); |
| |
| // Functions. |
| ParseResult parseFunctionSignature(StringRef &name, FunctionType *&type); |
| ParseResult parseExtFunc(); |
| ParseResult parseCFGFunc(); |
| ParseResult parseBasicBlock(CFGFunctionParserState &functionState); |
| Statement *parseStatement(ParentType parent); |
| |
| OperationInst *parseCFGOperation(CFGFunctionParserState &functionState); |
| TerminatorInst *parseTerminator(CFGFunctionParserState &functionState); |
| |
| ParseResult parseMLFunc(); |
| ForStmt *parseForStmt(ParentType parent); |
| IfStmt *parseIfStmt(ParentType parent); |
| ParseResult parseNestedStatements(NodeStmt *parent); |
| }; |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // Helper methods. |
| //===----------------------------------------------------------------------===// |
| |
| ParseResult Parser::emitError(SMLoc loc, const Twine &message) { |
| // If we hit a parse error in response to a lexer error, then the lexer |
| // already reported the error. |
| if (curToken.is(Token::error)) |
| return ParseFailure; |
| |
| errorReporter( |
| lex.getSourceMgr().GetMessage(loc, SourceMgr::DK_Error, message)); |
| return ParseFailure; |
| } |
| |
| /// Parse a comma-separated list of elements, terminated with an arbitrary |
| /// token. This allows empty lists if allowEmptyList is true. |
| /// |
| /// abstract-list ::= rightToken // if allowEmptyList == true |
| /// abstract-list ::= element (',' element)* rightToken |
| /// |
| ParseResult Parser:: |
| parseCommaSeparatedList(Token::Kind rightToken, |
| const std::function<ParseResult()> &parseElement, |
| bool allowEmptyList) { |
| // Handle the empty case. |
| if (curToken.is(rightToken)) { |
| if (!allowEmptyList) |
| return emitError("expected list element"); |
| consumeToken(rightToken); |
| return ParseSuccess; |
| } |
| |
| // Non-empty case starts with an element. |
| if (parseElement()) |
| return ParseFailure; |
| |
| // Otherwise we have a list of comma separated elements. |
| while (consumeIf(Token::comma)) { |
| if (parseElement()) |
| return ParseFailure; |
| } |
| |
| // Consume the end character. |
| if (!consumeIf(rightToken)) |
| return emitError("expected ',' or '" + Token::getTokenSpelling(rightToken) + |
| "'"); |
| |
| return ParseSuccess; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type Parsing |
| //===----------------------------------------------------------------------===// |
| |
| /// Parse the low-level fixed dtypes in the system. |
| /// |
| /// primitive-type ::= `f16` | `bf16` | `f32` | `f64` |
| /// primitive-type ::= integer-type |
| /// primitive-type ::= `affineint` |
| /// |
| Type *Parser::parsePrimitiveType() { |
| switch (curToken.getKind()) { |
| default: |
| return (emitError("expected type"), nullptr); |
| case Token::kw_bf16: |
| consumeToken(Token::kw_bf16); |
| return builder.getBF16Type(); |
| case Token::kw_f16: |
| consumeToken(Token::kw_f16); |
| return builder.getF16Type(); |
| case Token::kw_f32: |
| consumeToken(Token::kw_f32); |
| return builder.getF32Type(); |
| case Token::kw_f64: |
| consumeToken(Token::kw_f64); |
| return builder.getF64Type(); |
| case Token::kw_affineint: |
| consumeToken(Token::kw_affineint); |
| return builder.getAffineIntType(); |
| case Token::inttype: { |
| auto width = curToken.getIntTypeBitwidth(); |
| if (!width.hasValue()) |
| return (emitError("invalid integer width"), nullptr); |
| consumeToken(Token::inttype); |
| return builder.getIntegerType(width.getValue()); |
| } |
| } |
| } |
| |
| /// Parse the element type of a tensor or memref type. |
| /// |
| /// element-type ::= primitive-type | vector-type |
| /// |
| Type *Parser::parseElementType() { |
| if (curToken.is(Token::kw_vector)) |
| return parseVectorType(); |
| |
| return parsePrimitiveType(); |
| } |
| |
| /// Parse a vector type. |
| /// |
| /// vector-type ::= `vector` `<` const-dimension-list primitive-type `>` |
| /// const-dimension-list ::= (integer-literal `x`)+ |
| /// |
| VectorType *Parser::parseVectorType() { |
| consumeToken(Token::kw_vector); |
| |
| if (!consumeIf(Token::less)) |
| return (emitError("expected '<' in vector type"), nullptr); |
| |
| if (curToken.isNot(Token::integer)) |
| return (emitError("expected dimension size in vector type"), nullptr); |
| |
| SmallVector<unsigned, 4> dimensions; |
| while (curToken.is(Token::integer)) { |
| // Make sure this integer value is in bound and valid. |
| auto dimension = curToken.getUnsignedIntegerValue(); |
| if (!dimension.hasValue()) |
| return (emitError("invalid dimension in vector type"), nullptr); |
| dimensions.push_back(dimension.getValue()); |
| |
| consumeToken(Token::integer); |
| |
| // Make sure we have an 'x' or something like 'xbf32'. |
| if (curToken.isNot(Token::bare_identifier) || |
| curToken.getSpelling()[0] != 'x') |
| return (emitError("expected 'x' in vector dimension list"), nullptr); |
| |
| // If we had a prefix of 'x', lex the next token immediately after the 'x'. |
| if (curToken.getSpelling().size() != 1) |
| lex.resetPointer(curToken.getSpelling().data()+1); |
| |
| // Consume the 'x'. |
| consumeToken(Token::bare_identifier); |
| } |
| |
| // Parse the element type. |
| auto *elementType = parsePrimitiveType(); |
| if (!elementType) |
| return nullptr; |
| |
| if (!consumeIf(Token::greater)) |
| return (emitError("expected '>' in vector type"), nullptr); |
| |
| return VectorType::get(dimensions, elementType); |
| } |
| |
| /// Parse a dimension list of a tensor or memref type. This populates the |
| /// dimension list, returning -1 for the '?' dimensions. |
| /// |
| /// dimension-list-ranked ::= (dimension `x`)* |
| /// dimension ::= `?` | integer-literal |
| /// |
| ParseResult Parser::parseDimensionListRanked(SmallVectorImpl<int> &dimensions) { |
| while (curToken.isAny(Token::integer, Token::question)) { |
| if (consumeIf(Token::question)) { |
| dimensions.push_back(-1); |
| } else { |
| // Make sure this integer value is in bound and valid. |
| auto dimension = curToken.getUnsignedIntegerValue(); |
| if (!dimension.hasValue() || (int)dimension.getValue() < 0) |
| return emitError("invalid dimension"); |
| dimensions.push_back((int)dimension.getValue()); |
| consumeToken(Token::integer); |
| } |
| |
| // Make sure we have an 'x' or something like 'xbf32'. |
| if (curToken.isNot(Token::bare_identifier) || |
| curToken.getSpelling()[0] != 'x') |
| return emitError("expected 'x' in dimension list"); |
| |
| // If we had a prefix of 'x', lex the next token immediately after the 'x'. |
| if (curToken.getSpelling().size() != 1) |
| lex.resetPointer(curToken.getSpelling().data()+1); |
| |
| // Consume the 'x'. |
| consumeToken(Token::bare_identifier); |
| } |
| |
| return ParseSuccess; |
| } |
| |
| /// Parse a tensor type. |
| /// |
| /// tensor-type ::= `tensor` `<` dimension-list element-type `>` |
| /// dimension-list ::= dimension-list-ranked | `??` |
| /// |
| Type *Parser::parseTensorType() { |
| consumeToken(Token::kw_tensor); |
| |
| if (!consumeIf(Token::less)) |
| return (emitError("expected '<' in tensor type"), nullptr); |
| |
| bool isUnranked; |
| SmallVector<int, 4> dimensions; |
| |
| if (consumeIf(Token::questionquestion)) { |
| isUnranked = true; |
| } else { |
| isUnranked = false; |
| if (parseDimensionListRanked(dimensions)) |
| return nullptr; |
| } |
| |
| // Parse the element type. |
| auto elementType = parseElementType(); |
| if (!elementType) |
| return nullptr; |
| |
| if (!consumeIf(Token::greater)) |
| return (emitError("expected '>' in tensor type"), nullptr); |
| |
| if (isUnranked) |
| return builder.getTensorType(elementType); |
| return builder.getTensorType(dimensions, elementType); |
| } |
| |
| /// Parse a memref type. |
| /// |
| /// memref-type ::= `memref` `<` dimension-list-ranked element-type |
| /// (`,` semi-affine-map-composition)? (`,` memory-space)? `>` |
| /// |
| /// semi-affine-map-composition ::= (semi-affine-map `,` )* semi-affine-map |
| /// memory-space ::= integer-literal /* | TODO: address-space-id */ |
| /// |
| Type *Parser::parseMemRefType() { |
| consumeToken(Token::kw_memref); |
| |
| if (!consumeIf(Token::less)) |
| return (emitError("expected '<' in memref type"), nullptr); |
| |
| SmallVector<int, 4> dimensions; |
| if (parseDimensionListRanked(dimensions)) |
| return nullptr; |
| |
| // Parse the element type. |
| auto elementType = parseElementType(); |
| if (!elementType) |
| return nullptr; |
| |
| // TODO: Parse semi-affine-map-composition. |
| // TODO: Parse memory-space. |
| |
| if (!consumeIf(Token::greater)) |
| return (emitError("expected '>' in memref type"), nullptr); |
| |
| // FIXME: Add an IR representation for memref types. |
| return builder.getIntegerType(1); |
| } |
| |
| /// Parse a function type. |
| /// |
| /// function-type ::= type-list-parens `->` type-list |
| /// |
| Type *Parser::parseFunctionType() { |
| assert(curToken.is(Token::l_paren)); |
| |
| SmallVector<Type*, 4> arguments; |
| if (parseTypeList(arguments)) |
| return nullptr; |
| |
| if (!consumeIf(Token::arrow)) |
| return (emitError("expected '->' in function type"), nullptr); |
| |
| SmallVector<Type*, 4> results; |
| if (parseTypeList(results)) |
| return nullptr; |
| |
| return builder.getFunctionType(arguments, results); |
| } |
| |
| /// Parse an arbitrary type. |
| /// |
| /// type ::= primitive-type |
| /// | vector-type |
| /// | tensor-type |
| /// | memref-type |
| /// | function-type |
| /// element-type ::= primitive-type | vector-type |
| /// |
| Type *Parser::parseType() { |
| switch (curToken.getKind()) { |
| case Token::kw_memref: return parseMemRefType(); |
| case Token::kw_tensor: return parseTensorType(); |
| case Token::kw_vector: return parseVectorType(); |
| case Token::l_paren: return parseFunctionType(); |
| default: |
| return parsePrimitiveType(); |
| } |
| } |
| |
| /// Parse a "type list", which is a singular type, or a parenthesized list of |
| /// types. |
| /// |
| /// type-list ::= type-list-parens | type |
| /// type-list-parens ::= `(` `)` |
| /// | `(` type (`,` type)* `)` |
| /// |
| ParseResult Parser::parseTypeList(SmallVectorImpl<Type*> &elements) { |
| auto parseElt = [&]() -> ParseResult { |
| auto elt = parseType(); |
| elements.push_back(elt); |
| return elt ? ParseSuccess : ParseFailure; |
| }; |
| |
| // If there is no parens, then it must be a singular type. |
| if (!consumeIf(Token::l_paren)) |
| return parseElt(); |
| |
| if (parseCommaSeparatedList(Token::r_paren, parseElt)) |
| return ParseFailure; |
| |
| return ParseSuccess; |
| } |
| |
| namespace { |
| /// This class represents the transient parser state while parsing an affine |
| /// expression. |
| class AffineMapParserState { |
| public: |
| explicit AffineMapParserState() {} |
| |
| void addDim(StringRef sRef) { dims.insert({sRef, dims.size()}); } |
| void addSymbol(StringRef sRef) { symbols.insert({sRef, symbols.size()}); } |
| |
| unsigned getNumDims() const { return dims.size(); } |
| unsigned getNumSymbols() const { return symbols.size(); } |
| |
| // TODO(bondhugula): could just use an vector/ArrayRef and scan the numbers. |
| const llvm::StringMap<unsigned> &getDims() const { return dims; } |
| const llvm::StringMap<unsigned> &getSymbols() const { return symbols; } |
| |
| private: |
| llvm::StringMap<unsigned> dims; |
| llvm::StringMap<unsigned> symbols; |
| }; |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // Attribute parsing. |
| //===----------------------------------------------------------------------===// |
| |
| |
| /// Attribute parsing. |
| /// |
| /// attribute-value ::= bool-literal |
| /// | integer-literal |
| /// | float-literal |
| /// | string-literal |
| /// | `[` (attribute-value (`,` attribute-value)*)? `]` |
| /// |
| Attribute *Parser::parseAttribute() { |
| switch (curToken.getKind()) { |
| case Token::kw_true: |
| consumeToken(Token::kw_true); |
| return BoolAttr::get(true, builder.getContext()); |
| case Token::kw_false: |
| consumeToken(Token::kw_false); |
| return BoolAttr::get(false, builder.getContext()); |
| |
| case Token::integer: { |
| auto val = curToken.getUInt64IntegerValue(); |
| if (!val.hasValue() || (int64_t)val.getValue() < 0) |
| return (emitError("integer too large for attribute"), nullptr); |
| consumeToken(Token::integer); |
| return IntegerAttr::get((int64_t)val.getValue(), builder.getContext()); |
| } |
| |
| case Token::minus: { |
| consumeToken(Token::minus); |
| if (curToken.is(Token::integer)) { |
| auto val = curToken.getUInt64IntegerValue(); |
| if (!val.hasValue() || (int64_t)-val.getValue() >= 0) |
| return (emitError("integer too large for attribute"), nullptr); |
| consumeToken(Token::integer); |
| return IntegerAttr::get((int64_t)-val.getValue(), builder.getContext()); |
| } |
| |
| return (emitError("expected constant integer or floating point value"), |
| nullptr); |
| } |
| |
| case Token::string: { |
| auto val = curToken.getStringValue(); |
| consumeToken(Token::string); |
| return StringAttr::get(val, builder.getContext()); |
| } |
| |
| case Token::l_bracket: { |
| consumeToken(Token::l_bracket); |
| SmallVector<Attribute*, 4> elements; |
| |
| auto parseElt = [&]() -> ParseResult { |
| elements.push_back(parseAttribute()); |
| return elements.back() ? ParseSuccess : ParseFailure; |
| }; |
| |
| if (parseCommaSeparatedList(Token::r_bracket, parseElt)) |
| return nullptr; |
| return ArrayAttr::get(elements, builder.getContext()); |
| } |
| default: |
| // TODO: Handle floating point. |
| return (emitError("expected constant attribute value"), nullptr); |
| } |
| } |
| |
| |
| /// Attribute dictionary. |
| /// |
| /// attribute-dict ::= `{` `}` |
| /// | `{` attribute-entry (`,` attribute-entry)* `}` |
| /// attribute-entry ::= bare-id `:` attribute-value |
| /// |
| ParseResult Parser::parseAttributeDict( |
| SmallVectorImpl<NamedAttribute> &attributes) { |
| consumeToken(Token::l_brace); |
| |
| auto parseElt = [&]() -> ParseResult { |
| // We allow keywords as attribute names. |
| if (curToken.isNot(Token::bare_identifier, Token::inttype) && |
| !curToken.isKeyword()) |
| return emitError("expected attribute name"); |
| auto nameId = Identifier::get(curToken.getSpelling(), builder.getContext()); |
| consumeToken(); |
| |
| if (!consumeIf(Token::colon)) |
| return emitError("expected ':' in attribute list"); |
| |
| auto attr = parseAttribute(); |
| if (!attr) return ParseFailure; |
| |
| attributes.push_back({nameId, attr}); |
| return ParseSuccess; |
| }; |
| |
| if (parseCommaSeparatedList(Token::r_brace, parseElt)) |
| return ParseFailure; |
| |
| return ParseSuccess; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Polyhedral structures. |
| //===----------------------------------------------------------------------===// |
| |
| /// Affine map declaration. |
| /// |
| /// affine-map-def ::= affine-map-id `=` affine-map-inline |
| /// |
| ParseResult Parser::parseAffineMapDef() { |
| assert(curToken.is(Token::hash_identifier)); |
| |
| StringRef affineMapId = curToken.getSpelling().drop_front(); |
| |
| // Check for redefinitions. |
| auto *&entry = affineMapDefinitions[affineMapId]; |
| if (entry) |
| return emitError("redefinition of affine map id '" + affineMapId + "'"); |
| |
| consumeToken(Token::hash_identifier); |
| |
| // Parse the '=' |
| if (!consumeIf(Token::equal)) |
| return emitError("expected '=' in affine map outlined definition"); |
| |
| entry = parseAffineMapInline(affineMapId); |
| if (!entry) |
| return ParseFailure; |
| |
| module->affineMapList.push_back(entry); |
| return ParseSuccess; |
| } |
| |
| /// Create an affine op expression |
| AffineBinaryOpExpr *Parser::getBinaryAffineOpExpr(AffineHighPrecOp op, |
| AffineExpr *lhs, |
| AffineExpr *rhs) { |
| switch (op) { |
| case Mul: |
| return AffineMulExpr::get(lhs, rhs, builder.getContext()); |
| case FloorDiv: |
| return AffineFloorDivExpr::get(lhs, rhs, builder.getContext()); |
| case CeilDiv: |
| return AffineCeilDivExpr::get(lhs, rhs, builder.getContext()); |
| case Mod: |
| return AffineModExpr::get(lhs, rhs, builder.getContext()); |
| case HNoOp: |
| llvm_unreachable("can't create affine expression for null high prec op"); |
| return nullptr; |
| } |
| } |
| |
| AffineBinaryOpExpr *Parser::getBinaryAffineOpExpr(AffineLowPrecOp op, |
| AffineExpr *lhs, |
| AffineExpr *rhs) { |
| switch (op) { |
| case AffineLowPrecOp::Add: |
| return AffineAddExpr::get(lhs, rhs, builder.getContext()); |
| case AffineLowPrecOp::Sub: |
| return AffineSubExpr::get(lhs, rhs, builder.getContext()); |
| case AffineLowPrecOp::LNoOp: |
| llvm_unreachable("can't create affine expression for null low prec op"); |
| return nullptr; |
| } |
| } |
| |
| /// Parses an expression that can be a valid operand of an affine expression |
| /// (where associativity may not have been specified through parentheses). |
| // Eg: for an expression without parentheses (like i + j + k + l), each |
| // of the four identifiers is an operand. For: i + j*k + l, j*k is not an |
| // operand expression, it's an op expression and will be parsed via |
| // parseAffineLowPrecOpExpression(). |
| ParseResult Parser::parseAffineOperandExpr(const AffineMapParserState &state, |
| AffineExpr *&result) { |
| result = parseParentheticalExpr(state); |
| if (!result) |
| result = parseBareIdExpr(state); |
| if (!result) |
| result = parseIntegerExpr(state); |
| return result ? ParseSuccess : ParseFailure; |
| } |
| |
| /// Parse a high precedence op expression list: mul, div, and mod are high |
| /// precedence binary ops, i.e., parse a |
| /// expr_1 op_1 expr_2 op_2 ... expr_n |
| /// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod). |
| /// All affine binary ops are left associative. |
| /// Given llhs, returns (llhs * lhs) * rhs, or (lhs * rhs) if llhs is null. If |
| /// no rhs can be found, returns (llhs * lhs) or lhs if llhs is null. |
| // TODO(bondhugula): check whether mul is w.r.t. a constant - otherwise, the |
| /// map is semi-affine. |
| ParseResult Parser::parseAffineHighPrecOpExpr(AffineExpr *llhs, |
| AffineHighPrecOp llhsOp, |
| const AffineMapParserState &state, |
| AffineExpr *&result) { |
| // FIXME: Assume for now that llhsOp is mul. |
| AffineExpr *lhs = nullptr; |
| if (parseAffineOperandExpr(state, lhs)) { |
| return ParseFailure; |
| } |
| AffineHighPrecOp op = HNoOp; |
| // Found an LHS. Parse the remaining expression. |
| if ((op = consumeIfHighPrecOp())) { |
| if (llhs) { |
| // TODO(bondhugula): check whether 'lhs' here is a constant (for affine |
| // maps); semi-affine maps allow symbols. |
| AffineExpr *expr = getBinaryAffineOpExpr(llhsOp, llhs, lhs); |
| AffineExpr *subRes = nullptr; |
| if (parseAffineHighPrecOpExpr(expr, op, state, subRes)) { |
| if (!subRes) |
| emitError("missing right operand of multiply op"); |
| // In spite of the error, setting result to prevent duplicate errors |
| // messages as the call stack unwinds. All of this due to left |
| // associativity. |
| result = expr; |
| return ParseFailure; |
| } |
| result = subRes ? subRes : expr; |
| return ParseSuccess; |
| } |
| // No LLHS, get RHS |
| AffineExpr *subRes = nullptr; |
| if (parseAffineHighPrecOpExpr(lhs, op, state, subRes)) { |
| // 'product' needs to be checked to prevent duplicate errors messages as |
| // the call stack unwinds. All of this due to left associativity. |
| if (!subRes) |
| emitError("missing right operand of multiply op"); |
| return ParseFailure; |
| } |
| result = subRes; |
| return ParseSuccess; |
| } |
| |
| // This is the last operand in this expression. |
| if (llhs) { |
| // TODO(bondhugula): check whether lhs here is a constant (for affine |
| // maps); semi-affine maps allow symbols. |
| result = getBinaryAffineOpExpr(llhsOp, llhs, lhs); |
| return ParseSuccess; |
| } |
| |
| // No llhs, 'lhs' itself is the expression. |
| result = lhs; |
| return ParseSuccess; |
| } |
| |
| /// Consume this token if it is a lower precedence affine op (there are only two |
| /// precedence levels) |
| AffineLowPrecOp Parser::consumeIfLowPrecOp() { |
| switch (curToken.getKind()) { |
| case Token::plus: |
| consumeToken(Token::plus); |
| return AffineLowPrecOp::Add; |
| case Token::minus: |
| consumeToken(Token::minus); |
| return AffineLowPrecOp::Sub; |
| default: |
| return AffineLowPrecOp::LNoOp; |
| } |
| } |
| |
| /// Consume this token if it is a higher precedence affine op (there are only |
| /// two precedence levels) |
| AffineHighPrecOp Parser::consumeIfHighPrecOp() { |
| switch (curToken.getKind()) { |
| case Token::star: |
| consumeToken(Token::star); |
| return Mul; |
| case Token::kw_floordiv: |
| consumeToken(Token::kw_floordiv); |
| return FloorDiv; |
| case Token::kw_ceildiv: |
| consumeToken(Token::kw_ceildiv); |
| return CeilDiv; |
| case Token::kw_mod: |
| consumeToken(Token::kw_mod); |
| return Mod; |
| default: |
| return HNoOp; |
| } |
| } |
| |
| /// Parse affine expressions that are bare-id's, integer constants, |
| /// parenthetical affine expressions, and affine op expressions that are a |
| /// composition of those. |
| /// |
| /// All binary op's associate from left to right. |
| /// |
| /// {add, sub} have lower precedence than {mul, div, and mod}. |
| /// |
| /// Add, sub'are themselves at the same precedence level. mul, div, and mod are |
| /// at the same higher precedence level. |
| /// |
| /// llhs: the affine expression appearing on the left of the one being parsed. |
| /// This function will return ((llhs + lhs) + rhs) if llhs is non null, and |
| /// lhs + rhs otherwise; if there is no rhs, llhs + lhs is returned if llhs is |
| /// non-null; otherwise lhs is returned. This is to deal with left |
| /// associativity. |
| /// |
| /// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function |
| /// will return the affine expr equivalent of (e1 + (e2*e3)) + e4. |
| /// |
| // TODO(bondhugula): add support for unary op negation. Assuming for now that |
| // the op to associate with llhs is add. |
| ParseResult Parser::parseAffineLowPrecOpExpr(AffineExpr *llhs, |
| AffineLowPrecOp llhsOp, |
| const AffineMapParserState &state, |
| AffineExpr *&result) { |
| AffineExpr *lhs = nullptr; |
| if (parseAffineOperandExpr(state, lhs)) |
| return ParseFailure; |
| |
| // Found an LHS. Deal with the ops. |
| AffineLowPrecOp lOp; |
| AffineHighPrecOp rOp; |
| if ((lOp = consumeIfLowPrecOp())) { |
| if (llhs) { |
| AffineExpr *sum = getBinaryAffineOpExpr(llhsOp, llhs, lhs); |
| AffineExpr *recSum = nullptr; |
| parseAffineLowPrecOpExpr(sum, lOp, state, recSum); |
| result = recSum ? recSum : sum; |
| return ParseSuccess; |
| } |
| // No LLHS, get RHS and form the expression. |
| if (parseAffineLowPrecOpExpr(lhs, lOp, state, result)) { |
| if (!result) |
| emitError("missing right operand of add op"); |
| return ParseFailure; |
| } |
| return ParseSuccess; |
| } else if ((rOp = consumeIfHighPrecOp())) { |
| // We have a higher precedence op here. Get the rhs operand for the llhs |
| // through parseAffineHighPrecOpExpr. |
| AffineExpr *highRes = nullptr; |
| if (parseAffineHighPrecOpExpr(lhs, rOp, state, highRes)) { |
| // 'product' needs to be checked to prevent duplicate errors messages as |
| // the call stack unwinds. All of this due to left associativity. |
| if (!highRes) |
| emitError("missing right operand of binary op"); |
| return ParseFailure; |
| } |
| // If llhs is null, the product forms the first operand of the yet to be |
| // found expression. If non-null, assume for now that the op to associate |
| // with llhs is add. |
| AffineExpr *expr = |
| llhs ? getBinaryAffineOpExpr(llhsOp, llhs, highRes) : highRes; |
| // Recurse for subsequent add's after the affine mul expression |
| AffineLowPrecOp nextOp = consumeIfLowPrecOp(); |
| if (nextOp) { |
| AffineExpr *sumProd = nullptr; |
| parseAffineLowPrecOpExpr(expr, nextOp, state, sumProd); |
| result = sumProd ? sumProd : expr; |
| } else { |
| result = expr; |
| } |
| return ParseSuccess; |
| } else { |
| // Last operand in the expression list. |
| if (llhs) { |
| result = getBinaryAffineOpExpr(llhsOp, llhs, lhs); |
| return ParseSuccess; |
| } |
| // No llhs, 'lhs' itself is the expression. |
| result = lhs; |
| return ParseSuccess; |
| } |
| } |
| |
| /// Parse an affine expression inside parentheses. |
| /// affine-expr ::= `(` affine-expr `)` |
| AffineExpr *Parser::parseParentheticalExpr(const AffineMapParserState &state) { |
| if (!consumeIf(Token::l_paren)) { |
| return nullptr; |
| } |
| auto *expr = parseAffineExpr(state); |
| if (!consumeIf(Token::r_paren)) { |
| emitError("expected ')'"); |
| return nullptr; |
| } |
| if (!expr) |
| emitError("no expression inside parentheses"); |
| return expr; |
| } |
| |
| /// Parse a bare id that may appear in an affine expression. |
| /// affine-expr ::= bare-id |
| AffineExpr *Parser::parseBareIdExpr(const AffineMapParserState &state) { |
| if (curToken.is(Token::bare_identifier)) { |
| StringRef sRef = curToken.getSpelling(); |
| const auto &dims = state.getDims(); |
| const auto &symbols = state.getSymbols(); |
| if (dims.count(sRef)) { |
| consumeToken(Token::bare_identifier); |
| return AffineDimExpr::get(dims.lookup(sRef), builder.getContext()); |
| } |
| if (symbols.count(sRef)) { |
| consumeToken(Token::bare_identifier); |
| return AffineSymbolExpr::get(symbols.lookup(sRef), builder.getContext()); |
| } |
| return emitError("identifier is neither dimensional nor symbolic"), nullptr; |
| } |
| return nullptr; |
| } |
| |
| /// Parse an integral constant appearing in an affine expression. |
| /// affine-expr ::= `-`? integer-literal |
| /// TODO(bondhugula): handle negative numbers. |
| AffineExpr *Parser::parseIntegerExpr(const AffineMapParserState &state) { |
| if (curToken.is(Token::integer)) { |
| auto *expr = AffineConstantExpr::get( |
| curToken.getUnsignedIntegerValue().getValue(), builder.getContext()); |
| consumeToken(Token::integer); |
| return expr; |
| } |
| return nullptr; |
| } |
| |
| /// Parse an affine expression. |
| /// affine-expr ::= `(` affine-expr `)` |
| /// | affine-expr `+` affine-expr |
| /// | affine-expr `-` affine-expr |
| /// | `-`? integer-literal `*` affine-expr |
| /// | `ceildiv` `(` affine-expr `,` integer-literal `)` |
| /// | `floordiv` `(` affine-expr `,` integer-literal `)` |
| /// | affine-expr `mod` integer-literal |
| /// | bare-id |
| /// | `-`? integer-literal |
| /// Use 'state' to check if valid identifiers appear. |
| // TODO(bondhugula): check if mul, mod, div take integral constants |
| AffineExpr *Parser::parseAffineExpr(const AffineMapParserState &state) { |
| switch (curToken.getKind()) { |
| case Token::l_paren: |
| case Token::kw_ceildiv: |
| case Token::kw_floordiv: |
| case Token::bare_identifier: |
| case Token::integer: { |
| AffineExpr *result = nullptr; |
| parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp, state, result); |
| return result; |
| } |
| |
| case Token::plus: |
| case Token::minus: |
| case Token::star: |
| emitError("left operand of binary op missing"); |
| return nullptr; |
| |
| default: |
| return nullptr; |
| } |
| } |
| |
| /// Parse a dim or symbol from the lists appearing before the actual expressions |
| /// of the affine map. Update state to store the dimensional/symbolic |
| /// identifier. 'dim': whether it's the dim list or symbol list that is being |
| /// parsed. |
| ParseResult Parser::parseDimOrSymbolId(AffineMapParserState &state, bool dim) { |
| if (curToken.isNot(Token::bare_identifier)) |
| return emitError("expected bare identifier"); |
| auto sRef = curToken.getSpelling(); |
| consumeToken(Token::bare_identifier); |
| if (state.getDims().count(sRef) == 1) |
| return emitError("dimensional identifier name reused"); |
| if (state.getSymbols().count(sRef) == 1) |
| return emitError("symbolic identifier name reused"); |
| if (dim) |
| state.addDim(sRef); |
| else |
| state.addSymbol(sRef); |
| return ParseSuccess; |
| } |
| |
| /// Parse the list of symbolic identifiers to an affine map. |
| ParseResult Parser::parseSymbolIdList(AffineMapParserState &state) { |
| if (!consumeIf(Token::l_bracket)) return emitError("expected '['"); |
| |
| auto parseElt = [&]() -> ParseResult { |
| return parseDimOrSymbolId(state, false); |
| }; |
| return parseCommaSeparatedList(Token::r_bracket, parseElt); |
| } |
| |
| /// Parse the list of dimensional identifiers to an affine map. |
| ParseResult Parser::parseDimIdList(AffineMapParserState &state) { |
| if (!consumeIf(Token::l_paren)) |
| return emitError("expected '(' at start of dimensional identifiers list"); |
| |
| auto parseElt = [&]() -> ParseResult { |
| return parseDimOrSymbolId(state, true); |
| }; |
| return parseCommaSeparatedList(Token::r_paren, parseElt); |
| } |
| |
| /// Parse an affine map definition. |
| /// |
| /// affine-map-inline ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr |
| /// ( `size` `(` dim-size (`,` dim-size)* `)` )? |
| /// dim-size ::= affine-expr | `min` `(` affine-expr ( `,` affine-expr)+ `)` |
| /// |
| /// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `) |
| AffineMap *Parser::parseAffineMapInline(StringRef mapId) { |
| AffineMapParserState state; |
| |
| // List of dimensional identifiers. |
| if (parseDimIdList(state)) |
| return nullptr; |
| |
| // Symbols are optional. |
| if (curToken.is(Token::l_bracket)) { |
| if (parseSymbolIdList(state)) |
| return nullptr; |
| } |
| if (!consumeIf(Token::arrow)) { |
| return (emitError("expected '->' or '['"), nullptr); |
| } |
| if (!consumeIf(Token::l_paren)) { |
| emitError("expected '(' at start of affine map range"); |
| return nullptr; |
| } |
| |
| SmallVector<AffineExpr *, 4> exprs; |
| auto parseElt = [&]() -> ParseResult { |
| auto *elt = parseAffineExpr(state); |
| ParseResult res = elt ? ParseSuccess : ParseFailure; |
| exprs.push_back(elt); |
| return res; |
| }; |
| |
| // Parse a multi-dimensional affine expression (a comma-separated list of 1-d |
| // affine expressions); the list cannot be empty. |
| // Grammar: multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `) |
| if (parseCommaSeparatedList(Token::r_paren, parseElt, false)) |
| return nullptr; |
| |
| // Parsed a valid affine map. |
| return AffineMap::get(state.getNumDims(), state.getNumSymbols(), exprs, |
| builder.getContext()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SSA |
| //===----------------------------------------------------------------------===// |
| |
| /// Parse a SSA operand for an instruction or statement. |
| /// |
| /// ssa-use ::= ssa-id | ssa-constant |
| /// |
| ParseResult Parser::parseSSAUse() { |
| if (curToken.is(Token::percent_identifier)) { |
| StringRef name = curToken.getSpelling().drop_front(); |
| consumeToken(Token::percent_identifier); |
| // TODO: Return this use. |
| (void)name; |
| return ParseSuccess; |
| } |
| |
| // TODO: Parse SSA constants. |
| |
| return emitError("expected SSA operand"); |
| } |
| |
| /// Parse a (possibly empty) list of SSA operands. |
| /// |
| /// ssa-use-list ::= ssa-use (`,` ssa-use)* |
| /// ssa-use-list-opt ::= ssa-use-list? |
| /// |
| ParseResult Parser::parseOptionalSSAUseList(Token::Kind endToken) { |
| // TODO: Build and return this. |
| return parseCommaSeparatedList( |
| endToken, [&]() -> ParseResult { return parseSSAUse(); }); |
| } |
| |
| /// Parse an SSA use with an associated type. |
| /// |
| /// ssa-use-and-type ::= ssa-use `:` type |
| ParseResult Parser::parseSSAUseAndType() { |
| if (parseSSAUse()) |
| return ParseFailure; |
| |
| if (!consumeIf(Token::colon)) |
| return emitError("expected ':' and type for SSA operand"); |
| |
| if (!parseType()) |
| return ParseFailure; |
| |
| return ParseSuccess; |
| } |
| |
| /// Parse a (possibly empty) list of SSA operands with types. |
| /// |
| /// ssa-use-and-type-list ::= ssa-use-and-type (`,` ssa-use-and-type)* |
| /// |
| ParseResult Parser::parseOptionalSSAUseAndTypeList(Token::Kind endToken) { |
| // TODO: Build and return this. |
| return parseCommaSeparatedList( |
| endToken, [&]() -> ParseResult { return parseSSAUseAndType(); }); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Functions |
| //===----------------------------------------------------------------------===// |
| |
| /// Parse a function signature, starting with a name and including the parameter |
| /// list. |
| /// |
| /// argument-list ::= type (`,` type)* | /*empty*/ |
| /// function-signature ::= function-id `(` argument-list `)` (`->` type-list)? |
| /// |
| ParseResult Parser::parseFunctionSignature(StringRef &name, |
| FunctionType *&type) { |
| if (curToken.isNot(Token::at_identifier)) |
| return emitError("expected a function identifier like '@foo'"); |
| |
| name = curToken.getSpelling().drop_front(); |
| consumeToken(Token::at_identifier); |
| |
| if (curToken.isNot(Token::l_paren)) |
| return emitError("expected '(' in function signature"); |
| |
| SmallVector<Type*, 4> arguments; |
| if (parseTypeList(arguments)) |
| return ParseFailure; |
| |
| // Parse the return type if present. |
| SmallVector<Type*, 4> results; |
| if (consumeIf(Token::arrow)) { |
| if (parseTypeList(results)) |
| return ParseFailure; |
| } |
| type = builder.getFunctionType(arguments, results); |
| return ParseSuccess; |
| } |
| |
| /// External function declarations. |
| /// |
| /// ext-func ::= `extfunc` function-signature |
| /// |
| ParseResult Parser::parseExtFunc() { |
| consumeToken(Token::kw_extfunc); |
| |
| StringRef name; |
| FunctionType *type = nullptr; |
| if (parseFunctionSignature(name, type)) |
| return ParseFailure; |
| |
| // Okay, the external function definition was parsed correctly. |
| module->functionList.push_back(new ExtFunction(name, type)); |
| return ParseSuccess; |
| } |
| |
| |
| namespace { |
| /// This class represents the transient parser state for the internals of a |
| /// function as we are parsing it, e.g. the names for basic blocks. It handles |
| /// forward references. |
| class CFGFunctionParserState { |
| public: |
| CFGFunction *function; |
| llvm::StringMap<std::pair<BasicBlock*, SMLoc>> blocksByName; |
| CFGFuncBuilder builder; |
| |
| CFGFunctionParserState(CFGFunction *function) |
| : function(function), builder(function) {} |
| |
| /// Get the basic block with the specified name, creating it if it doesn't |
| /// already exist. The location specified is the point of use, which allows |
| /// us to diagnose references to blocks that are not defined precisely. |
| BasicBlock *getBlockNamed(StringRef name, SMLoc loc) { |
| auto &blockAndLoc = blocksByName[name]; |
| if (!blockAndLoc.first) { |
| blockAndLoc.first = new BasicBlock(); |
| blockAndLoc.second = loc; |
| } |
| return blockAndLoc.first; |
| } |
| }; |
| } // end anonymous namespace |
| |
| |
| /// CFG function declarations. |
| /// |
| /// cfg-func ::= `cfgfunc` function-signature `{` basic-block+ `}` |
| /// |
| ParseResult Parser::parseCFGFunc() { |
| consumeToken(Token::kw_cfgfunc); |
| |
| StringRef name; |
| FunctionType *type = nullptr; |
| if (parseFunctionSignature(name, type)) |
| return ParseFailure; |
| |
| if (!consumeIf(Token::l_brace)) |
| return emitError("expected '{' in CFG function"); |
| |
| // Okay, the CFG function signature was parsed correctly, create the function. |
| auto function = new CFGFunction(name, type); |
| |
| // Make sure we have at least one block. |
| if (curToken.is(Token::r_brace)) |
| return emitError("CFG functions must have at least one basic block"); |
| |
| CFGFunctionParserState functionState(function); |
| |
| // Parse the list of blocks. |
| while (!consumeIf(Token::r_brace)) |
| if (parseBasicBlock(functionState)) |
| return ParseFailure; |
| |
| // Verify that all referenced blocks were defined. Iteration over a |
| // StringMap isn't determinstic, but this is good enough for our purposes. |
| for (auto &elt : functionState.blocksByName) { |
| auto *bb = elt.second.first; |
| if (!bb->getFunction()) |
| return emitError(elt.second.second, |
| "reference to an undefined basic block '" + |
| elt.first() + "'"); |
| } |
| |
| module->functionList.push_back(function); |
| return ParseSuccess; |
| } |
| |
| /// Basic block declaration. |
| /// |
| /// basic-block ::= bb-label instruction* terminator-stmt |
| /// bb-label ::= bb-id bb-arg-list? `:` |
| /// bb-id ::= bare-id |
| /// bb-arg-list ::= `(` ssa-id-and-type-list? `)` |
| /// |
| ParseResult Parser::parseBasicBlock(CFGFunctionParserState &functionState) { |
| SMLoc nameLoc = curToken.getLoc(); |
| auto name = curToken.getSpelling(); |
| if (!consumeIf(Token::bare_identifier)) |
| return emitError("expected basic block name"); |
| |
| auto block = functionState.getBlockNamed(name, nameLoc); |
| |
| // If this block has already been parsed, then this is a redefinition with the |
| // same block name. |
| if (block->getFunction()) |
| return emitError(nameLoc, "redefinition of block '" + name.str() + "'"); |
| |
| // Add the block to the function. |
| functionState.function->push_back(block); |
| |
| // If an argument list is present, parse it. |
| if (consumeIf(Token::l_paren)) { |
| if (parseOptionalSSAUseAndTypeList(Token::r_paren)) |
| return ParseFailure; |
| |
| // TODO: attach it. |
| } |
| |
| if (!consumeIf(Token::colon)) |
| return emitError("expected ':' after basic block name"); |
| |
| // Set the insertion point to the block we want to insert new operations into. |
| functionState.builder.setInsertionPoint(block); |
| |
| // Parse the list of operations that make up the body of the block. |
| while (curToken.isNot(Token::kw_return, Token::kw_br)) { |
| auto loc = curToken.getLoc(); |
| auto *inst = parseCFGOperation(functionState); |
| if (!inst) |
| return ParseFailure; |
| |
| // We just parsed an operation. If it is a recognized one, verify that it |
| // is structurally as we expect. If not, produce an error with a reasonable |
| // source location. |
| if (auto *opInfo = inst->getAbstractOperation(builder.getContext())) |
| if (auto error = opInfo->verifyInvariants(inst)) |
| return emitError(loc, error); |
| } |
| |
| auto *term = parseTerminator(functionState); |
| if (!term) |
| return ParseFailure; |
| |
| return ParseSuccess; |
| } |
| |
| |
| /// Parse the CFG operation. |
| /// |
| /// TODO(clattner): This is a change from the MLIR spec as written, it is an |
| /// experiment that will eliminate "builtin" instructions as a thing. |
| /// |
| /// cfg-operation ::= |
| /// (ssa-id `=`)? string '(' ssa-use-list? ')' attribute-dict? |
| /// `:` function-type |
| /// |
| OperationInst *Parser:: |
| parseCFGOperation(CFGFunctionParserState &functionState) { |
| |
| StringRef resultID; |
| if (curToken.is(Token::percent_identifier)) { |
| resultID = curToken.getSpelling().drop_front(); |
| consumeToken(); |
| if (!consumeIf(Token::equal)) |
| return (emitError("expected '=' after SSA name"), nullptr); |
| } |
| |
| if (curToken.isNot(Token::string)) |
| return (emitError("expected operation name in quotes"), nullptr); |
| |
| auto name = curToken.getStringValue(); |
| if (name.empty()) |
| return (emitError("empty operation name is invalid"), nullptr); |
| |
| consumeToken(Token::string); |
| |
| if (!consumeIf(Token::l_paren)) |
| return (emitError("expected '(' to start operand list"), nullptr); |
| |
| // Parse the operand list. |
| parseOptionalSSAUseList(Token::r_paren); |
| |
| SmallVector<NamedAttribute, 4> attributes; |
| if (curToken.is(Token::l_brace)) { |
| if (parseAttributeDict(attributes)) |
| return nullptr; |
| } |
| |
| // TODO: Don't drop result name and operand names on the floor. |
| auto nameId = Identifier::get(name, builder.getContext()); |
| return functionState.builder.createOperation(nameId, attributes); |
| } |
| |
| |
| /// Parse the terminator instruction for a basic block. |
| /// |
| /// terminator-stmt ::= `br` bb-id branch-use-list? |
| /// branch-use-list ::= `(` ssa-use-and-type-list? `)` |
| /// terminator-stmt ::= |
| /// `cond_br` ssa-use `,` bb-id branch-use-list? `,` bb-id branch-use-list? |
| /// terminator-stmt ::= `return` ssa-use-and-type-list? |
| /// |
| TerminatorInst *Parser::parseTerminator(CFGFunctionParserState &functionState) { |
| switch (curToken.getKind()) { |
| default: |
| return (emitError("expected terminator at end of basic block"), nullptr); |
| |
| case Token::kw_return: |
| consumeToken(Token::kw_return); |
| return functionState.builder.createReturnInst(); |
| |
| case Token::kw_br: { |
| consumeToken(Token::kw_br); |
| auto destBB = functionState.getBlockNamed(curToken.getSpelling(), |
| curToken.getLoc()); |
| if (!consumeIf(Token::bare_identifier)) |
| return (emitError("expected basic block name"), nullptr); |
| return functionState.builder.createBranchInst(destBB); |
| } |
| // TODO: cond_br. |
| } |
| } |
| |
| /// ML function declarations. |
| /// |
| /// ml-func ::= `mlfunc` ml-func-signature `{` ml-stmt* ml-return-stmt `}` |
| /// |
| ParseResult Parser::parseMLFunc() { |
| consumeToken(Token::kw_mlfunc); |
| |
| StringRef name; |
| FunctionType *type = nullptr; |
| |
| // FIXME: Parse ML function signature (args + types) |
| // by passing pointer to SmallVector<identifier> into parseFunctionSignature |
| if (parseFunctionSignature(name, type)) |
| return ParseFailure; |
| |
| if (!consumeIf(Token::l_brace)) |
| return emitError("expected '{' in ML function"); |
| |
| // Okay, the ML function signature was parsed correctly, create the function. |
| auto function = new MLFunction(name, type); |
| |
| // Make sure we have at least one statement. |
| if (curToken.is(Token::r_brace)) |
| return emitError("ML function must end with return statement"); |
| |
| // Parse the list of instructions. |
| while (!consumeIf(Token::kw_return)) { |
| auto *stmt = parseStatement(function); |
| if (!stmt) |
| return ParseFailure; |
| function->stmtList.push_back(stmt); |
| } |
| |
| // TODO: parse return statement operands |
| if (!consumeIf(Token::r_brace)) |
| emitError("expected '}' in ML function"); |
| |
| module->functionList.push_back(function); |
| |
| return ParseSuccess; |
| } |
| |
| /// Statement. |
| /// |
| /// ml-stmt ::= instruction | ml-for-stmt | ml-if-stmt |
| /// TODO: fix terminology in MLSpec document. ML functions |
| /// contain operation statements, not instructions. |
| /// |
| Statement * Parser::parseStatement(ParentType parent) { |
| switch (curToken.getKind()) { |
| default: |
| //TODO: parse OperationStmt |
| return (emitError("expected statement"), nullptr); |
| |
| case Token::kw_for: |
| return parseForStmt(parent); |
| |
| case Token::kw_if: |
| return parseIfStmt(parent); |
| } |
| } |
| |
| /// For statement. |
| /// |
| /// ml-for-stmt ::= `for` ssa-id `=` lower-bound `to` upper-bound |
| /// (`step` integer-literal)? `{` ml-stmt* `}` |
| /// |
| ForStmt * Parser::parseForStmt(ParentType parent) { |
| consumeToken(Token::kw_for); |
| |
| //TODO: parse loop header |
| ForStmt *stmt = new ForStmt(parent); |
| if (parseNestedStatements(stmt)) { |
| delete stmt; |
| return nullptr; |
| } |
| return stmt; |
| } |
| |
| /// If statement. |
| /// |
| /// ml-if-head ::= `if` ml-if-cond `{` ml-stmt* `}` |
| /// | ml-if-head `else` `if` ml-if-cond `{` ml-stmt* `}` |
| /// ml-if-stmt ::= ml-if-head |
| /// | ml-if-head `else` `{` ml-stmt* `}` |
| /// |
| IfStmt * Parser::parseIfStmt(PointerUnion<MLFunction *, NodeStmt *> parent) { |
| consumeToken(Token::kw_if); |
| |
| //TODO: parse condition |
| IfStmt *stmt = new IfStmt(parent); |
| if (parseNestedStatements(stmt)) { |
| delete stmt; |
| return nullptr; |
| } |
| |
| int clauseNum = 0; |
| while (consumeIf(Token::kw_else)) { |
| if (consumeIf(Token::kw_if)) { |
| //TODO: parse condition |
| } |
| ElseClause * clause = new ElseClause(stmt, clauseNum); |
| ++clauseNum; |
| if (parseNestedStatements(clause)) { |
| delete clause; |
| return nullptr; |
| } |
| } |
| |
| return stmt; |
| } |
| |
| /// |
| /// Parse `{` ml-stmt* `}` |
| /// |
| ParseResult Parser::parseNestedStatements(NodeStmt *parent) { |
| if (!consumeIf(Token::l_brace)) |
| return emitError("expected '{' before statement list"); |
| |
| if (consumeIf(Token::r_brace)) { |
| // TODO: parse OperationStmt |
| return ParseSuccess; |
| } |
| |
| while (!consumeIf(Token::r_brace)) { |
| auto *stmt = parseStatement(parent); |
| if (!stmt) |
| return ParseFailure; |
| parent->children.push_back(stmt); |
| } |
| |
| return ParseSuccess; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top-level entity parsing. |
| //===----------------------------------------------------------------------===// |
| |
| /// This is the top-level module parser. |
| Module *Parser::parseModule() { |
| while (1) { |
| switch (curToken.getKind()) { |
| default: |
| emitError("expected a top level entity"); |
| return nullptr; |
| |
| // If we got to the end of the file, then we're done. |
| case Token::eof: |
| return module.release(); |
| |
| // If we got an error token, then the lexer already emitted an error, just |
| // stop. Someday we could introduce error recovery if there was demand for |
| // it. |
| case Token::error: |
| return nullptr; |
| |
| case Token::kw_extfunc: |
| if (parseExtFunc()) return nullptr; |
| break; |
| |
| case Token::kw_cfgfunc: |
| if (parseCFGFunc()) return nullptr; |
| break; |
| |
| case Token::hash_identifier: |
| if (parseAffineMapDef()) return nullptr; |
| break; |
| |
| case Token::kw_mlfunc: |
| if (parseMLFunc()) return nullptr; |
| break; |
| |
| // TODO: affine entity declarations, etc. |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| |
| void mlir::defaultErrorReporter(const llvm::SMDiagnostic &error) { |
| const auto &sourceMgr = *error.getSourceMgr(); |
| sourceMgr.PrintMessage(error.getLoc(), error.getKind(), error.getMessage()); |
| } |
| |
| /// This parses the file specified by the indicated SourceMgr and returns an |
| /// MLIR module if it was valid. If not, it emits diagnostics and returns null. |
| Module *mlir::parseSourceFile(llvm::SourceMgr &sourceMgr, MLIRContext *context, |
| SMDiagnosticHandlerTy errorReporter) { |
| auto *result = |
| Parser(sourceMgr, context, |
| errorReporter ? std::move(errorReporter) : defaultErrorReporter) |
| .parseModule(); |
| |
| // Make sure the parse module has no other structural problems detected by the |
| // verifier. |
| if (result) |
| result->verify(); |
| return result; |
| } |