| //===- MLIRContext.cpp - MLIR Type Classes --------------------------------===// |
| // |
| // Copyright 2019 The MLIR Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // ============================================================================= |
| |
| #include "mlir/IR/MLIRContext.h" |
| #include "AttributeListStorage.h" |
| #include "mlir/IR/AffineExpr.h" |
| #include "mlir/IR/AffineMap.h" |
| #include "mlir/IR/Attributes.h" |
| #include "mlir/IR/Function.h" |
| #include "mlir/IR/Identifier.h" |
| #include "mlir/IR/IntegerSet.h" |
| #include "mlir/IR/OperationSet.h" |
| #include "mlir/IR/StandardOps.h" |
| #include "mlir/IR/Types.h" |
| #include "mlir/Support/STLExtras.h" |
| #include "third_party/llvm/llvm/include/llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace mlir; |
| using namespace llvm; |
| |
| namespace { |
| struct FunctionTypeKeyInfo : DenseMapInfo<FunctionType *> { |
| // Functions are uniqued based on their inputs and results. |
| using KeyTy = std::pair<ArrayRef<Type *>, ArrayRef<Type *>>; |
| using DenseMapInfo<FunctionType *>::getHashValue; |
| using DenseMapInfo<FunctionType *>::isEqual; |
| |
| static unsigned getHashValue(KeyTy key) { |
| return hash_combine( |
| hash_combine_range(key.first.begin(), key.first.end()), |
| hash_combine_range(key.second.begin(), key.second.end())); |
| } |
| |
| static bool isEqual(const KeyTy &lhs, const FunctionType *rhs) { |
| if (rhs == getEmptyKey() || rhs == getTombstoneKey()) |
| return false; |
| return lhs == KeyTy(rhs->getInputs(), rhs->getResults()); |
| } |
| }; |
| |
| struct AffineMapKeyInfo : DenseMapInfo<AffineMap *> { |
| // Affine maps are uniqued based on their dim/symbol counts and affine |
| // expressions. |
| using KeyTy = std::tuple<unsigned, unsigned, ArrayRef<AffineExpr *>, |
| ArrayRef<AffineExpr *>>; |
| using DenseMapInfo<AffineMap *>::getHashValue; |
| using DenseMapInfo<AffineMap *>::isEqual; |
| |
| static unsigned getHashValue(KeyTy key) { |
| return hash_combine( |
| std::get<0>(key), std::get<1>(key), |
| hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()), |
| hash_combine_range(std::get<3>(key).begin(), std::get<3>(key).end())); |
| } |
| |
| static bool isEqual(const KeyTy &lhs, const AffineMap *rhs) { |
| if (rhs == getEmptyKey() || rhs == getTombstoneKey()) |
| return false; |
| return lhs == std::make_tuple(rhs->getNumDims(), rhs->getNumSymbols(), |
| rhs->getResults(), rhs->getRangeSizes()); |
| } |
| }; |
| |
| struct VectorTypeKeyInfo : DenseMapInfo<VectorType *> { |
| // Vectors are uniqued based on their element type and shape. |
| using KeyTy = std::pair<Type *, ArrayRef<unsigned>>; |
| using DenseMapInfo<VectorType *>::getHashValue; |
| using DenseMapInfo<VectorType *>::isEqual; |
| |
| static unsigned getHashValue(KeyTy key) { |
| return hash_combine( |
| DenseMapInfo<Type *>::getHashValue(key.first), |
| hash_combine_range(key.second.begin(), key.second.end())); |
| } |
| |
| static bool isEqual(const KeyTy &lhs, const VectorType *rhs) { |
| if (rhs == getEmptyKey() || rhs == getTombstoneKey()) |
| return false; |
| return lhs == KeyTy(rhs->getElementType(), rhs->getShape()); |
| } |
| }; |
| |
| struct RankedTensorTypeKeyInfo : DenseMapInfo<RankedTensorType *> { |
| // Ranked tensors are uniqued based on their element type and shape. |
| using KeyTy = std::pair<Type *, ArrayRef<int>>; |
| using DenseMapInfo<RankedTensorType *>::getHashValue; |
| using DenseMapInfo<RankedTensorType *>::isEqual; |
| |
| static unsigned getHashValue(KeyTy key) { |
| return hash_combine( |
| DenseMapInfo<Type *>::getHashValue(key.first), |
| hash_combine_range(key.second.begin(), key.second.end())); |
| } |
| |
| static bool isEqual(const KeyTy &lhs, const RankedTensorType *rhs) { |
| if (rhs == getEmptyKey() || rhs == getTombstoneKey()) |
| return false; |
| return lhs == KeyTy(rhs->getElementType(), rhs->getShape()); |
| } |
| }; |
| |
| struct MemRefTypeKeyInfo : DenseMapInfo<MemRefType *> { |
| // MemRefs are uniqued based on their element type, shape, affine map |
| // composition, and memory space. |
| using KeyTy = |
| std::tuple<Type *, ArrayRef<int>, ArrayRef<AffineMap *>, unsigned>; |
| using DenseMapInfo<MemRefType *>::getHashValue; |
| using DenseMapInfo<MemRefType *>::isEqual; |
| |
| static unsigned getHashValue(KeyTy key) { |
| return hash_combine( |
| DenseMapInfo<Type *>::getHashValue(std::get<0>(key)), |
| hash_combine_range(std::get<1>(key).begin(), std::get<1>(key).end()), |
| hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()), |
| std::get<3>(key)); |
| } |
| |
| static bool isEqual(const KeyTy &lhs, const MemRefType *rhs) { |
| if (rhs == getEmptyKey() || rhs == getTombstoneKey()) |
| return false; |
| return lhs == std::make_tuple(rhs->getElementType(), rhs->getShape(), |
| rhs->getAffineMaps(), rhs->getMemorySpace()); |
| } |
| }; |
| |
| struct ArrayAttrKeyInfo : DenseMapInfo<ArrayAttr *> { |
| // Array attributes are uniqued based on their elements. |
| using KeyTy = ArrayRef<Attribute *>; |
| using DenseMapInfo<ArrayAttr *>::getHashValue; |
| using DenseMapInfo<ArrayAttr *>::isEqual; |
| |
| static unsigned getHashValue(KeyTy key) { |
| return hash_combine_range(key.begin(), key.end()); |
| } |
| |
| static bool isEqual(const KeyTy &lhs, const ArrayAttr *rhs) { |
| if (rhs == getEmptyKey() || rhs == getTombstoneKey()) |
| return false; |
| return lhs == rhs->getValue(); |
| } |
| }; |
| |
| struct AttributeListKeyInfo : DenseMapInfo<AttributeListStorage *> { |
| // Array attributes are uniqued based on their elements. |
| using KeyTy = ArrayRef<NamedAttribute>; |
| using DenseMapInfo<AttributeListStorage *>::getHashValue; |
| using DenseMapInfo<AttributeListStorage *>::isEqual; |
| |
| static unsigned getHashValue(KeyTy key) { |
| return hash_combine_range(key.begin(), key.end()); |
| } |
| |
| static bool isEqual(const KeyTy &lhs, const AttributeListStorage *rhs) { |
| if (rhs == getEmptyKey() || rhs == getTombstoneKey()) |
| return false; |
| return lhs == rhs->getElements(); |
| } |
| }; |
| |
| } // end anonymous namespace. |
| |
| namespace mlir { |
| /// This is the implementation of the MLIRContext class, using the pImpl idiom. |
| /// This class is completely private to this file, so everything is public. |
| class MLIRContextImpl { |
| public: |
| /// We put immortal objects into this allocator. |
| llvm::BumpPtrAllocator allocator; |
| |
| /// This is the set of all operations that are registered with the system. |
| OperationSet operationSet; |
| |
| /// This is the handler to use to report diagnostics, or null if not |
| /// registered. |
| MLIRContext::DiagnosticHandlerTy diagnosticHandler; |
| |
| /// These are identifiers uniqued into this MLIRContext. |
| llvm::StringMap<char, llvm::BumpPtrAllocator &> identifiers; |
| |
| // Uniquing table for 'other' types. |
| OtherType *otherTypes[int(Type::Kind::LAST_OTHER_TYPE) - |
| int(Type::Kind::FIRST_OTHER_TYPE) + 1] = {nullptr}; |
| |
| // Uniquing table for 'float' types. |
| FloatType *floatTypes[int(Type::Kind::LAST_FLOATING_POINT_TYPE) - |
| int(Type::Kind::FIRST_FLOATING_POINT_TYPE) + 1] = { |
| nullptr}; |
| |
| // Affine map uniquing. |
| using AffineMapSet = DenseSet<AffineMap *, AffineMapKeyInfo>; |
| AffineMapSet affineMaps; |
| |
| // Affine binary op expression uniquing. Figure out uniquing of dimensional |
| // or symbolic identifiers. |
| DenseMap<std::tuple<unsigned, AffineExpr *, AffineExpr *>, AffineExpr *> |
| affineExprs; |
| |
| // Uniqui'ing of AffineDimExpr, AffineSymbolExpr's by their position. |
| std::vector<AffineDimExpr *> dimExprs; |
| std::vector<AffineSymbolExpr *> symbolExprs; |
| |
| // Uniqui'ing of AffineConstantExpr using constant value as key. |
| DenseMap<int64_t, AffineConstantExpr *> constExprs; |
| |
| /// Integer type uniquing. |
| DenseMap<unsigned, IntegerType *> integers; |
| |
| /// Function type uniquing. |
| using FunctionTypeSet = DenseSet<FunctionType *, FunctionTypeKeyInfo>; |
| FunctionTypeSet functions; |
| |
| /// Vector type uniquing. |
| using VectorTypeSet = DenseSet<VectorType *, VectorTypeKeyInfo>; |
| VectorTypeSet vectors; |
| |
| /// Ranked tensor type uniquing. |
| using RankedTensorTypeSet = |
| DenseSet<RankedTensorType *, RankedTensorTypeKeyInfo>; |
| RankedTensorTypeSet rankedTensors; |
| |
| /// Unranked tensor type uniquing. |
| DenseMap<Type *, UnrankedTensorType *> unrankedTensors; |
| |
| /// MemRef type uniquing. |
| using MemRefTypeSet = DenseSet<MemRefType *, MemRefTypeKeyInfo>; |
| MemRefTypeSet memrefs; |
| |
| // Attribute uniquing. |
| BoolAttr *boolAttrs[2] = {nullptr}; |
| DenseMap<int64_t, IntegerAttr *> integerAttrs; |
| DenseMap<int64_t, FloatAttr *> floatAttrs; |
| StringMap<StringAttr *> stringAttrs; |
| using ArrayAttrSet = DenseSet<ArrayAttr *, ArrayAttrKeyInfo>; |
| ArrayAttrSet arrayAttrs; |
| DenseMap<AffineMap *, AffineMapAttr *> affineMapAttrs; |
| DenseMap<Type *, TypeAttr *> typeAttrs; |
| using AttributeListSet = |
| DenseSet<AttributeListStorage *, AttributeListKeyInfo>; |
| AttributeListSet attributeLists; |
| DenseMap<const Function *, FunctionAttr *> functionAttrs; |
| |
| public: |
| MLIRContextImpl() : identifiers(allocator) { |
| registerStandardOperations(operationSet); |
| } |
| |
| /// Copy the specified array of elements into memory managed by our bump |
| /// pointer allocator. This assumes the elements are all PODs. |
| template <typename T> |
| ArrayRef<T> copyInto(ArrayRef<T> elements) { |
| auto result = allocator.Allocate<T>(elements.size()); |
| std::uninitialized_copy(elements.begin(), elements.end(), result); |
| return ArrayRef<T>(result, elements.size()); |
| } |
| }; |
| } // end namespace mlir |
| |
| MLIRContext::MLIRContext() : impl(new MLIRContextImpl()) {} |
| |
| MLIRContext::~MLIRContext() {} |
| |
| /// Register an issue handler with this LLVM context. The issue handler is |
| /// passed location information if present (nullptr if not) along with a |
| /// message and a boolean that indicates whether this is an error or warning. |
| void MLIRContext::registerDiagnosticHandler( |
| const DiagnosticHandlerTy &handler) { |
| getImpl().diagnosticHandler = handler; |
| } |
| |
| /// Return the current diagnostic handler, or null if none is present. |
| auto MLIRContext::getDiagnosticHandler() const -> DiagnosticHandlerTy { |
| return getImpl().diagnosticHandler; |
| } |
| |
| /// This emits a diagnostic using the registered issue handle if present, or |
| /// with the default behavior if not. The MLIR compiler should not generally |
| /// interact with this, it should use methods on Operation instead. |
| void MLIRContext::emitDiagnostic(Attribute *location, |
| const llvm::Twine &message, |
| DiagnosticKind kind) const { |
| // If we had a handler registered, emit the diagnostic using it. |
| auto handler = getImpl().diagnosticHandler; |
| if (handler && location) |
| return handler(location, message.str(), kind); |
| |
| // The default behavior for notes and warnings is to ignore them. |
| if (kind != DiagnosticKind::Error) |
| return; |
| |
| // The default behavior for errors is to emit them to stderr and exit. |
| llvm::errs() << message.str() << "\n"; |
| llvm::errs().flush(); |
| exit(1); |
| } |
| |
| /// Return the operation set associated with the specified MLIRContext object. |
| OperationSet &OperationSet::get(MLIRContext *context) { |
| return context->getImpl().operationSet; |
| } |
| |
| /// If this operation has a registered operation description in the |
| /// OperationSet, return it. Otherwise return null. |
| const AbstractOperation *Operation::getAbstractOperation() const { |
| return OperationSet::get(getContext()).lookup(getName().str()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Identifier uniquing |
| //===----------------------------------------------------------------------===// |
| |
| /// Return an identifier for the specified string. |
| Identifier Identifier::get(StringRef str, const MLIRContext *context) { |
| assert(!str.empty() && "Cannot create an empty identifier"); |
| assert(str.find('\0') == StringRef::npos && |
| "Cannot create an identifier with a nul character"); |
| |
| auto &impl = context->getImpl(); |
| auto it = impl.identifiers.insert({str, char()}).first; |
| return Identifier(it->getKeyData()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type uniquing |
| //===----------------------------------------------------------------------===// |
| |
| IntegerType *IntegerType::get(unsigned width, MLIRContext *context) { |
| auto &impl = context->getImpl(); |
| |
| auto *&result = impl.integers[width]; |
| if (!result) { |
| result = impl.allocator.Allocate<IntegerType>(); |
| new (result) IntegerType(width, context); |
| } |
| |
| return result; |
| } |
| |
| FloatType *FloatType::get(Kind kind, MLIRContext *context) { |
| assert(kind >= Kind::FIRST_FLOATING_POINT_TYPE && |
| kind <= Kind::LAST_FLOATING_POINT_TYPE && "Not an FP type kind"); |
| auto &impl = context->getImpl(); |
| |
| // We normally have these types. |
| auto *&entry = |
| impl.floatTypes[(int)kind - int(Kind::FIRST_FLOATING_POINT_TYPE)]; |
| if (entry) |
| return entry; |
| |
| // On the first use, we allocate them into the bump pointer. |
| auto *ptr = impl.allocator.Allocate<FloatType>(); |
| |
| // Initialize the memory using placement new. |
| new (ptr) FloatType(kind, context); |
| |
| // Cache and return it. |
| return entry = ptr; |
| } |
| |
| OtherType *OtherType::get(Kind kind, MLIRContext *context) { |
| assert(kind >= Kind::FIRST_OTHER_TYPE && kind <= Kind::LAST_OTHER_TYPE && |
| "Not an 'other' type kind"); |
| auto &impl = context->getImpl(); |
| |
| // We normally have these types. |
| auto *&entry = impl.otherTypes[(int)kind - int(Kind::FIRST_OTHER_TYPE)]; |
| if (entry) |
| return entry; |
| |
| // On the first use, we allocate them into the bump pointer. |
| auto *ptr = impl.allocator.Allocate<OtherType>(); |
| |
| // Initialize the memory using placement new. |
| new (ptr) OtherType(kind, context); |
| |
| // Cache and return it. |
| return entry = ptr; |
| } |
| |
| FunctionType *FunctionType::get(ArrayRef<Type *> inputs, |
| ArrayRef<Type *> results, |
| MLIRContext *context) { |
| auto &impl = context->getImpl(); |
| |
| // Look to see if we already have this function type. |
| FunctionTypeKeyInfo::KeyTy key(inputs, results); |
| auto existing = impl.functions.insert_as(nullptr, key); |
| |
| // If we already have it, return that value. |
| if (!existing.second) |
| return *existing.first; |
| |
| // On the first use, we allocate them into the bump pointer. |
| auto *result = impl.allocator.Allocate<FunctionType>(); |
| |
| // Copy the inputs and results into the bump pointer. |
| SmallVector<Type *, 16> types; |
| types.reserve(inputs.size() + results.size()); |
| types.append(inputs.begin(), inputs.end()); |
| types.append(results.begin(), results.end()); |
| auto typesList = impl.copyInto(ArrayRef<Type *>(types)); |
| |
| // Initialize the memory using placement new. |
| new (result) |
| FunctionType(typesList.data(), inputs.size(), results.size(), context); |
| |
| // Cache and return it. |
| return *existing.first = result; |
| } |
| |
| VectorType *VectorType::get(ArrayRef<unsigned> shape, Type *elementType) { |
| assert(!shape.empty() && "vector types must have at least one dimension"); |
| assert((isa<FloatType>(elementType) || isa<IntegerType>(elementType)) && |
| "vectors elements must be primitives"); |
| |
| auto *context = elementType->getContext(); |
| auto &impl = context->getImpl(); |
| |
| // Look to see if we already have this vector type. |
| VectorTypeKeyInfo::KeyTy key(elementType, shape); |
| auto existing = impl.vectors.insert_as(nullptr, key); |
| |
| // If we already have it, return that value. |
| if (!existing.second) |
| return *existing.first; |
| |
| // On the first use, we allocate them into the bump pointer. |
| auto *result = impl.allocator.Allocate<VectorType>(); |
| |
| // Copy the shape into the bump pointer. |
| shape = impl.copyInto(shape); |
| |
| // Initialize the memory using placement new. |
| new (result) VectorType(shape, elementType, context); |
| |
| // Cache and return it. |
| return *existing.first = result; |
| } |
| |
| RankedTensorType *RankedTensorType::get(ArrayRef<int> shape, |
| Type *elementType) { |
| auto *context = elementType->getContext(); |
| auto &impl = context->getImpl(); |
| |
| // Look to see if we already have this ranked tensor type. |
| RankedTensorTypeKeyInfo::KeyTy key(elementType, shape); |
| auto existing = impl.rankedTensors.insert_as(nullptr, key); |
| |
| // If we already have it, return that value. |
| if (!existing.second) |
| return *existing.first; |
| |
| // On the first use, we allocate them into the bump pointer. |
| auto *result = impl.allocator.Allocate<RankedTensorType>(); |
| |
| // Copy the shape into the bump pointer. |
| shape = impl.copyInto(shape); |
| |
| // Initialize the memory using placement new. |
| new (result) RankedTensorType(shape, elementType, context); |
| |
| // Cache and return it. |
| return *existing.first = result; |
| } |
| |
| UnrankedTensorType *UnrankedTensorType::get(Type *elementType) { |
| auto *context = elementType->getContext(); |
| auto &impl = context->getImpl(); |
| |
| // Look to see if we already have this unranked tensor type. |
| auto *&result = impl.unrankedTensors[elementType]; |
| |
| // If we already have it, return that value. |
| if (result) |
| return result; |
| |
| // On the first use, we allocate them into the bump pointer. |
| result = impl.allocator.Allocate<UnrankedTensorType>(); |
| |
| // Initialize the memory using placement new. |
| new (result) UnrankedTensorType(elementType, context); |
| return result; |
| } |
| |
| MemRefType *MemRefType::get(ArrayRef<int> shape, Type *elementType, |
| ArrayRef<AffineMap *> affineMapComposition, |
| unsigned memorySpace) { |
| auto *context = elementType->getContext(); |
| auto &impl = context->getImpl(); |
| |
| // Look to see if we already have this memref type. |
| auto key = |
| std::make_tuple(elementType, shape, affineMapComposition, memorySpace); |
| auto existing = impl.memrefs.insert_as(nullptr, key); |
| |
| // If we already have it, return that value. |
| if (!existing.second) |
| return *existing.first; |
| |
| // On the first use, we allocate them into the bump pointer. |
| auto *result = impl.allocator.Allocate<MemRefType>(); |
| |
| // Copy the shape into the bump pointer. |
| shape = impl.copyInto(shape); |
| |
| // Copy the affine map composition into the bump pointer. |
| // TODO(andydavis) Assert that the structure of the composition is valid. |
| affineMapComposition = |
| impl.copyInto(ArrayRef<AffineMap *>(affineMapComposition)); |
| |
| // Initialize the memory using placement new. |
| new (result) MemRefType(shape, elementType, affineMapComposition, memorySpace, |
| context); |
| // Cache and return it. |
| return *existing.first = result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Attribute uniquing |
| //===----------------------------------------------------------------------===// |
| |
| BoolAttr *BoolAttr::get(bool value, MLIRContext *context) { |
| auto *&result = context->getImpl().boolAttrs[value]; |
| if (result) |
| return result; |
| |
| result = context->getImpl().allocator.Allocate<BoolAttr>(); |
| new (result) BoolAttr(value); |
| return result; |
| } |
| |
| IntegerAttr *IntegerAttr::get(int64_t value, MLIRContext *context) { |
| auto *&result = context->getImpl().integerAttrs[value]; |
| if (result) |
| return result; |
| |
| result = context->getImpl().allocator.Allocate<IntegerAttr>(); |
| new (result) IntegerAttr(value); |
| return result; |
| } |
| |
| FloatAttr *FloatAttr::get(double value, MLIRContext *context) { |
| // We hash based on the bit representation of the double to ensure we don't |
| // merge things like -0.0 and 0.0 in the hash comparison. |
| union { |
| double floatValue; |
| int64_t intValue; |
| }; |
| floatValue = value; |
| |
| auto *&result = context->getImpl().floatAttrs[intValue]; |
| if (result) |
| return result; |
| |
| result = context->getImpl().allocator.Allocate<FloatAttr>(); |
| new (result) FloatAttr(value); |
| return result; |
| } |
| |
| StringAttr *StringAttr::get(StringRef bytes, MLIRContext *context) { |
| auto it = context->getImpl().stringAttrs.insert({bytes, nullptr}).first; |
| |
| if (it->second) |
| return it->second; |
| |
| auto result = context->getImpl().allocator.Allocate<StringAttr>(); |
| new (result) StringAttr(it->first()); |
| it->second = result; |
| return result; |
| } |
| |
| ArrayAttr *ArrayAttr::get(ArrayRef<Attribute *> value, MLIRContext *context) { |
| auto &impl = context->getImpl(); |
| |
| // Look to see if we already have this. |
| auto existing = impl.arrayAttrs.insert_as(nullptr, value); |
| |
| // If we already have it, return that value. |
| if (!existing.second) |
| return *existing.first; |
| |
| // On the first use, we allocate them into the bump pointer. |
| auto *result = impl.allocator.Allocate<ArrayAttr>(); |
| |
| // Copy the elements into the bump pointer. |
| value = impl.copyInto(value); |
| |
| // Check to see if any of the elements have a function attr. |
| bool hasFunctionAttr = false; |
| for (auto *elt : value) |
| if (elt->isOrContainsFunction()) { |
| hasFunctionAttr = true; |
| break; |
| } |
| |
| // Initialize the memory using placement new. |
| new (result) ArrayAttr(value, hasFunctionAttr); |
| |
| // Cache and return it. |
| return *existing.first = result; |
| } |
| |
| AffineMapAttr *AffineMapAttr::get(AffineMap *value, MLIRContext *context) { |
| auto *&result = context->getImpl().affineMapAttrs[value]; |
| if (result) |
| return result; |
| |
| result = context->getImpl().allocator.Allocate<AffineMapAttr>(); |
| new (result) AffineMapAttr(value); |
| return result; |
| } |
| |
| TypeAttr *TypeAttr::get(Type *type, MLIRContext *context) { |
| auto *&result = context->getImpl().typeAttrs[type]; |
| if (result) |
| return result; |
| |
| result = context->getImpl().allocator.Allocate<TypeAttr>(); |
| new (result) TypeAttr(type); |
| return result; |
| } |
| |
| FunctionAttr *FunctionAttr::get(const Function *value, MLIRContext *context) { |
| assert(value && "Cannot get FunctionAttr for a null function"); |
| |
| auto *&result = context->getImpl().functionAttrs[value]; |
| if (result) |
| return result; |
| |
| result = context->getImpl().allocator.Allocate<FunctionAttr>(); |
| new (result) FunctionAttr(const_cast<Function *>(value)); |
| return result; |
| } |
| |
| FunctionType *FunctionAttr::getType() const { return getValue()->getType(); } |
| |
| /// This function is used by the internals of the Function class to null out |
| /// attributes refering to functions that are about to be deleted. |
| void FunctionAttr::dropFunctionReference(Function *value) { |
| // Check to see if there was an attribute referring to this function. |
| auto &functionAttrs = value->getContext()->getImpl().functionAttrs; |
| |
| // If not, then we're done. |
| auto it = functionAttrs.find(value); |
| if (it == functionAttrs.end()) |
| return; |
| |
| // If so, null out the function reference in the attribute (to avoid dangling |
| // pointers) and remove the entry from the map so the map doesn't contain |
| // dangling keys. |
| it->second->value = nullptr; |
| functionAttrs.erase(it); |
| } |
| |
| /// Perform a three-way comparison between the names of the specified |
| /// NamedAttributes. |
| static int compareNamedAttributes(const NamedAttribute *lhs, |
| const NamedAttribute *rhs) { |
| return lhs->first.str().compare(rhs->first.str()); |
| } |
| |
| /// Given a list of NamedAttribute's, canonicalize the list (sorting |
| /// by name) and return the unique'd result. Note that the empty list is |
| /// represented with a null pointer. |
| AttributeListStorage *AttributeListStorage::get(ArrayRef<NamedAttribute> attrs, |
| MLIRContext *context) { |
| // We need to sort the element list to canonicalize it, but we also don't want |
| // to do a ton of work in the super common case where the element list is |
| // already sorted. |
| SmallVector<NamedAttribute, 8> storage; |
| switch (attrs.size()) { |
| case 0: |
| // An empty list is represented with a null pointer. |
| return nullptr; |
| case 1: |
| // A single element is already sorted. |
| break; |
| case 2: |
| // Don't invoke a general sort for two element case. |
| if (attrs[0].first.str() > attrs[1].first.str()) { |
| storage.push_back(attrs[1]); |
| storage.push_back(attrs[0]); |
| attrs = storage; |
| } |
| break; |
| default: |
| // Check to see they are sorted already. |
| bool isSorted = true; |
| for (unsigned i = 0, e = attrs.size() - 1; i != e; ++i) { |
| if (attrs[i].first.str() > attrs[i + 1].first.str()) { |
| isSorted = false; |
| break; |
| } |
| } |
| // If not, do a general sort. |
| if (!isSorted) { |
| storage.append(attrs.begin(), attrs.end()); |
| llvm::array_pod_sort(storage.begin(), storage.end(), |
| compareNamedAttributes); |
| attrs = storage; |
| } |
| } |
| |
| // Ok, now that we've canonicalized our attributes, unique them. |
| auto &impl = context->getImpl(); |
| |
| // Look to see if we already have this. |
| auto existing = impl.attributeLists.insert_as(nullptr, attrs); |
| |
| // If we already have it, return that value. |
| if (!existing.second) |
| return *existing.first; |
| |
| // Otherwise, allocate a new AttributeListStorage, unique it and return it. |
| auto byteSize = |
| AttributeListStorage::totalSizeToAlloc<NamedAttribute>(attrs.size()); |
| auto rawMem = impl.allocator.Allocate(byteSize, alignof(NamedAttribute)); |
| |
| // Placement initialize the AggregateSymbolicValue. |
| auto result = ::new (rawMem) AttributeListStorage(attrs.size()); |
| std::uninitialized_copy(attrs.begin(), attrs.end(), |
| result->getTrailingObjects<NamedAttribute>()); |
| return *existing.first = result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AffineMap and AffineExpr uniquing |
| //===----------------------------------------------------------------------===// |
| |
| AffineMap *AffineMap::get(unsigned dimCount, unsigned symbolCount, |
| ArrayRef<AffineExpr *> results, |
| ArrayRef<AffineExpr *> rangeSizes, |
| MLIRContext *context) { |
| // The number of results can't be zero. |
| assert(!results.empty()); |
| |
| assert(rangeSizes.empty() || results.size() == rangeSizes.size()); |
| |
| auto &impl = context->getImpl(); |
| |
| // Check if we already have this affine map. |
| auto key = std::make_tuple(dimCount, symbolCount, results, rangeSizes); |
| auto existing = impl.affineMaps.insert_as(nullptr, key); |
| |
| // If we already have it, return that value. |
| if (!existing.second) |
| return *existing.first; |
| |
| // On the first use, we allocate them into the bump pointer. |
| auto *res = impl.allocator.Allocate<AffineMap>(); |
| |
| // Copy the results and range sizes into the bump pointer. |
| results = impl.copyInto(ArrayRef<AffineExpr *>(results)); |
| rangeSizes = impl.copyInto(ArrayRef<AffineExpr *>(rangeSizes)); |
| |
| // Initialize the memory using placement new. |
| new (res) AffineMap(dimCount, symbolCount, results.size(), results.data(), |
| rangeSizes.empty() ? nullptr : rangeSizes.data()); |
| |
| // Cache and return it. |
| return *existing.first = res; |
| } |
| |
| /// Return a binary affine op expression with the specified op type and |
| /// operands: if it doesn't exist, create it and store it; if it is already |
| /// present, return from the list. The stored expressions are unique: they are |
| /// constructed and stored in a simplified/canonicalized form. The result after |
| /// simplification could be any form of affine expression. |
| AffineExpr *AffineBinaryOpExpr::get(AffineExpr::Kind kind, AffineExpr *lhs, |
| AffineExpr *rhs, MLIRContext *context) { |
| auto &impl = context->getImpl(); |
| |
| // Check if we already have this affine expression, and return it if we do. |
| auto keyValue = std::make_tuple((unsigned)kind, lhs, rhs); |
| auto cached = impl.affineExprs.find(keyValue); |
| if (cached != impl.affineExprs.end()) |
| return cached->second; |
| |
| // Simplify the expression if possible. |
| AffineExpr *simplified; |
| switch (kind) { |
| case Kind::Add: |
| simplified = AffineBinaryOpExpr::simplifyAdd(lhs, rhs, context); |
| break; |
| case Kind::Mul: |
| simplified = AffineBinaryOpExpr::simplifyMul(lhs, rhs, context); |
| break; |
| case Kind::FloorDiv: |
| simplified = AffineBinaryOpExpr::simplifyFloorDiv(lhs, rhs, context); |
| break; |
| case Kind::CeilDiv: |
| simplified = AffineBinaryOpExpr::simplifyCeilDiv(lhs, rhs, context); |
| break; |
| case Kind::Mod: |
| simplified = AffineBinaryOpExpr::simplifyMod(lhs, rhs, context); |
| break; |
| default: |
| llvm_unreachable("unexpected binary affine expr"); |
| } |
| |
| // The simplified one would have already been cached; just return it. |
| if (simplified) |
| return simplified; |
| |
| // An expression with these operands will already be in the |
| // simplified/canonical form. Create and store it. |
| auto *result = impl.allocator.Allocate<AffineBinaryOpExpr>(); |
| // Initialize the memory using placement new. |
| new (result) AffineBinaryOpExpr(kind, lhs, rhs); |
| bool inserted = impl.affineExprs.insert({keyValue, result}).second; |
| assert(inserted && "the expression shouldn't already exist in the map"); |
| (void)inserted; |
| return result; |
| } |
| |
| AffineDimExpr *AffineDimExpr::get(unsigned position, MLIRContext *context) { |
| auto &impl = context->getImpl(); |
| |
| // Check if we need to resize. |
| if (position >= impl.dimExprs.size()) |
| impl.dimExprs.resize(position + 1, nullptr); |
| |
| auto *&result = impl.dimExprs[position]; |
| if (result) |
| return result; |
| |
| result = impl.allocator.Allocate<AffineDimExpr>(); |
| // Initialize the memory using placement new. |
| new (result) AffineDimExpr(position); |
| return result; |
| } |
| |
| AffineSymbolExpr *AffineSymbolExpr::get(unsigned position, |
| MLIRContext *context) { |
| auto &impl = context->getImpl(); |
| |
| // Check if we need to resize. |
| if (position >= impl.symbolExprs.size()) |
| impl.symbolExprs.resize(position + 1, nullptr); |
| |
| auto *&result = impl.symbolExprs[position]; |
| if (result) |
| return result; |
| |
| result = impl.allocator.Allocate<AffineSymbolExpr>(); |
| // Initialize the memory using placement new. |
| new (result) AffineSymbolExpr(position); |
| return result; |
| } |
| |
| AffineConstantExpr *AffineConstantExpr::get(int64_t constant, |
| MLIRContext *context) { |
| auto &impl = context->getImpl(); |
| auto *&result = impl.constExprs[constant]; |
| |
| if (result) |
| return result; |
| |
| result = impl.allocator.Allocate<AffineConstantExpr>(); |
| // Initialize the memory using placement new. |
| new (result) AffineConstantExpr(constant); |
| return result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Integer Sets: these are allocated into the bump pointer, and are immutable. |
| // But they aren't uniqued like AffineMap's; there isn't an advantage to. |
| //===----------------------------------------------------------------------===// |
| |
| IntegerSet *IntegerSet::get(unsigned dimCount, unsigned symbolCount, |
| ArrayRef<AffineExpr *> constraints, |
| ArrayRef<bool> eqFlags, MLIRContext *context) { |
| assert(eqFlags.size() == constraints.size()); |
| |
| auto &impl = context->getImpl(); |
| |
| // Allocate them into the bump pointer. |
| auto *res = impl.allocator.Allocate<IntegerSet>(); |
| |
| // Copy the equalities and inequalities into the bump pointer. |
| constraints = impl.copyInto(ArrayRef<AffineExpr *>(constraints)); |
| eqFlags = impl.copyInto(ArrayRef<bool>(eqFlags)); |
| |
| // Initialize the memory using placement new. |
| return new (res) IntegerSet(dimCount, symbolCount, constraints.size(), |
| constraints.data(), eqFlags.data()); |
| } |