| //===- MLIRContext.cpp - MLIR Type Classes --------------------------------===// |
| // |
| // Copyright 2019 The MLIR Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // ============================================================================= |
| |
| #include "mlir/IR/MLIRContext.h" |
| #include "AttributeListStorage.h" |
| #include "mlir/IR/AffineExpr.h" |
| #include "mlir/IR/AffineMap.h" |
| #include "mlir/IR/Attributes.h" |
| #include "mlir/IR/Identifier.h" |
| #include "mlir/IR/OperationSet.h" |
| #include "mlir/IR/StandardOps.h" |
| #include "mlir/IR/Types.h" |
| #include "mlir/Support/STLExtras.h" |
| #include "third_party/llvm/llvm/include/llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/Support/Allocator.h" |
| using namespace mlir; |
| using namespace llvm; |
| |
| namespace { |
| struct FunctionTypeKeyInfo : DenseMapInfo<FunctionType*> { |
| // Functions are uniqued based on their inputs and results. |
| using KeyTy = std::pair<ArrayRef<Type*>, ArrayRef<Type*>>; |
| using DenseMapInfo<FunctionType*>::getHashValue; |
| using DenseMapInfo<FunctionType*>::isEqual; |
| |
| static unsigned getHashValue(KeyTy key) { |
| return hash_combine(hash_combine_range(key.first.begin(), key.first.end()), |
| hash_combine_range(key.second.begin(), |
| key.second.end())); |
| } |
| |
| static bool isEqual(const KeyTy &lhs, const FunctionType *rhs) { |
| if (rhs == getEmptyKey() || rhs == getTombstoneKey()) |
| return false; |
| return lhs == KeyTy(rhs->getInputs(), rhs->getResults()); |
| } |
| }; |
| |
| struct AffineMapKeyInfo : DenseMapInfo<AffineMap *> { |
| // Affine maps are uniqued based on their dim/symbol counts and affine |
| // expressions. |
| using KeyTy = std::tuple<unsigned, unsigned, ArrayRef<AffineExpr *>>; |
| using DenseMapInfo<AffineMap *>::getHashValue; |
| using DenseMapInfo<AffineMap *>::isEqual; |
| |
| static unsigned getHashValue(KeyTy key) { |
| return hash_combine( |
| std::get<0>(key), std::get<1>(key), |
| hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end())); |
| } |
| |
| static bool isEqual(const KeyTy &lhs, const AffineMap *rhs) { |
| if (rhs == getEmptyKey() || rhs == getTombstoneKey()) |
| return false; |
| return lhs == std::make_tuple(rhs->getNumDims(), rhs->getNumSymbols(), |
| rhs->getResults()); |
| } |
| }; |
| |
| struct VectorTypeKeyInfo : DenseMapInfo<VectorType*> { |
| // Vectors are uniqued based on their element type and shape. |
| using KeyTy = std::pair<Type*, ArrayRef<unsigned>>; |
| using DenseMapInfo<VectorType*>::getHashValue; |
| using DenseMapInfo<VectorType*>::isEqual; |
| |
| static unsigned getHashValue(KeyTy key) { |
| return hash_combine(DenseMapInfo<Type*>::getHashValue(key.first), |
| hash_combine_range(key.second.begin(), |
| key.second.end())); |
| } |
| |
| static bool isEqual(const KeyTy &lhs, const VectorType *rhs) { |
| if (rhs == getEmptyKey() || rhs == getTombstoneKey()) |
| return false; |
| return lhs == KeyTy(rhs->getElementType(), rhs->getShape()); |
| } |
| }; |
| |
| struct RankedTensorTypeKeyInfo : DenseMapInfo<RankedTensorType*> { |
| // Ranked tensors are uniqued based on their element type and shape. |
| using KeyTy = std::pair<Type*, ArrayRef<int>>; |
| using DenseMapInfo<RankedTensorType*>::getHashValue; |
| using DenseMapInfo<RankedTensorType*>::isEqual; |
| |
| static unsigned getHashValue(KeyTy key) { |
| return hash_combine(DenseMapInfo<Type*>::getHashValue(key.first), |
| hash_combine_range(key.second.begin(), |
| key.second.end())); |
| } |
| |
| static bool isEqual(const KeyTy &lhs, const RankedTensorType *rhs) { |
| if (rhs == getEmptyKey() || rhs == getTombstoneKey()) |
| return false; |
| return lhs == KeyTy(rhs->getElementType(), rhs->getShape()); |
| } |
| }; |
| |
| struct ArrayAttrKeyInfo : DenseMapInfo<ArrayAttr*> { |
| // Array attributes are uniqued based on their elements. |
| using KeyTy = ArrayRef<Attribute*>; |
| using DenseMapInfo<ArrayAttr*>::getHashValue; |
| using DenseMapInfo<ArrayAttr*>::isEqual; |
| |
| static unsigned getHashValue(KeyTy key) { |
| return hash_combine_range(key.begin(), key.end()); |
| } |
| |
| static bool isEqual(const KeyTy &lhs, const ArrayAttr *rhs) { |
| if (rhs == getEmptyKey() || rhs == getTombstoneKey()) |
| return false; |
| return lhs == rhs->getValue(); |
| } |
| }; |
| |
| struct AttributeListKeyInfo : DenseMapInfo<AttributeListStorage *> { |
| // Array attributes are uniqued based on their elements. |
| using KeyTy = ArrayRef<NamedAttribute>; |
| using DenseMapInfo<AttributeListStorage *>::getHashValue; |
| using DenseMapInfo<AttributeListStorage *>::isEqual; |
| |
| static unsigned getHashValue(KeyTy key) { |
| return hash_combine_range(key.begin(), key.end()); |
| } |
| |
| static bool isEqual(const KeyTy &lhs, const AttributeListStorage *rhs) { |
| if (rhs == getEmptyKey() || rhs == getTombstoneKey()) |
| return false; |
| return lhs == rhs->getElements(); |
| } |
| }; |
| |
| } // end anonymous namespace. |
| |
| |
| namespace mlir { |
| /// This is the implementation of the MLIRContext class, using the pImpl idiom. |
| /// This class is completely private to this file, so everything is public. |
| class MLIRContextImpl { |
| public: |
| /// We put immortal objects into this allocator. |
| llvm::BumpPtrAllocator allocator; |
| |
| /// This is the set of all operations that are registered with the system. |
| OperationSet operationSet; |
| |
| /// These are identifiers uniqued into this MLIRContext. |
| llvm::StringMap<char, llvm::BumpPtrAllocator&> identifiers; |
| |
| // Primitive type uniquing. |
| PrimitiveType *primitives[int(Type::Kind::LAST_PRIMITIVE_TYPE)+1] = {nullptr}; |
| |
| // Affine map uniquing. |
| using AffineMapSet = DenseSet<AffineMap *, AffineMapKeyInfo>; |
| AffineMapSet affineMaps; |
| |
| // Affine binary op expression uniquing. Figure out uniquing of dimensional |
| // or symbolic identifiers. |
| DenseMap<std::tuple<unsigned, AffineExpr *, AffineExpr *>, |
| AffineBinaryOpExpr *> |
| affineExprs; |
| |
| /// Integer type uniquing. |
| DenseMap<unsigned, IntegerType*> integers; |
| |
| /// Function type uniquing. |
| using FunctionTypeSet = DenseSet<FunctionType*, FunctionTypeKeyInfo>; |
| FunctionTypeSet functions; |
| |
| /// Vector type uniquing. |
| using VectorTypeSet = DenseSet<VectorType*, VectorTypeKeyInfo>; |
| VectorTypeSet vectors; |
| |
| /// Ranked tensor type uniquing. |
| using RankedTensorTypeSet = DenseSet<RankedTensorType*, |
| RankedTensorTypeKeyInfo>; |
| RankedTensorTypeSet rankedTensors; |
| |
| /// Unranked tensor type uniquing. |
| DenseMap<Type*, UnrankedTensorType*> unrankedTensors; |
| |
| // Attribute uniquing. |
| BoolAttr *boolAttrs[2] = { nullptr }; |
| DenseMap<int64_t, IntegerAttr*> integerAttrs; |
| DenseMap<int64_t, FloatAttr*> floatAttrs; |
| StringMap<StringAttr*> stringAttrs; |
| using ArrayAttrSet = DenseSet<ArrayAttr*, ArrayAttrKeyInfo>; |
| ArrayAttrSet arrayAttrs; |
| using AttributeListSet = |
| DenseSet<AttributeListStorage *, AttributeListKeyInfo>; |
| AttributeListSet attributeLists; |
| |
| public: |
| MLIRContextImpl() : identifiers(allocator) { |
| registerStandardOperations(operationSet); |
| } |
| |
| /// Copy the specified array of elements into memory managed by our bump |
| /// pointer allocator. This assumes the elements are all PODs. |
| template<typename T> |
| ArrayRef<T> copyInto(ArrayRef<T> elements) { |
| auto result = allocator.Allocate<T>(elements.size()); |
| std::uninitialized_copy(elements.begin(), elements.end(), result); |
| return ArrayRef<T>(result, elements.size()); |
| } |
| }; |
| } // end namespace mlir |
| |
| MLIRContext::MLIRContext() : impl(new MLIRContextImpl()) { |
| } |
| |
| MLIRContext::~MLIRContext() { |
| } |
| |
| /// Return the operation set associated with the specified MLIRContext object. |
| OperationSet &OperationSet::get(MLIRContext *context) { |
| return context->getImpl().operationSet; |
| } |
| |
| /// If this operation has a registered operation description in the |
| /// OperationSet, return it. Otherwise return null. |
| /// TODO: Shouldn't have to pass a Context here. |
| const AbstractOperation * |
| Operation::getAbstractOperation(MLIRContext *context) const { |
| return OperationSet::get(context).lookup(getName().str()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Identifier uniquing |
| //===----------------------------------------------------------------------===// |
| |
| /// Return an identifier for the specified string. |
| Identifier Identifier::get(StringRef str, const MLIRContext *context) { |
| assert(!str.empty() && "Cannot create an empty identifier"); |
| assert(str.find('\0') == StringRef::npos && |
| "Cannot create an identifier with a nul character"); |
| |
| auto &impl = context->getImpl(); |
| auto it = impl.identifiers.insert({str, char()}).first; |
| return Identifier(it->getKeyData()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type uniquing |
| //===----------------------------------------------------------------------===// |
| |
| PrimitiveType *PrimitiveType::get(Kind kind, MLIRContext *context) { |
| assert(kind <= Kind::LAST_PRIMITIVE_TYPE && "Not a primitive type kind"); |
| auto &impl = context->getImpl(); |
| |
| // We normally have these types. |
| if (impl.primitives[(int)kind]) |
| return impl.primitives[(int)kind]; |
| |
| // On the first use, we allocate them into the bump pointer. |
| auto *ptr = impl.allocator.Allocate<PrimitiveType>(); |
| |
| // Initialize the memory using placement new. |
| new(ptr) PrimitiveType(kind, context); |
| |
| // Cache and return it. |
| return impl.primitives[(int)kind] = ptr; |
| } |
| |
| IntegerType *IntegerType::get(unsigned width, MLIRContext *context) { |
| auto &impl = context->getImpl(); |
| |
| auto *&result = impl.integers[width]; |
| if (!result) { |
| result = impl.allocator.Allocate<IntegerType>(); |
| new (result) IntegerType(width, context); |
| } |
| |
| return result; |
| } |
| |
| FunctionType *FunctionType::get(ArrayRef<Type*> inputs, ArrayRef<Type*> results, |
| MLIRContext *context) { |
| auto &impl = context->getImpl(); |
| |
| // Look to see if we already have this function type. |
| FunctionTypeKeyInfo::KeyTy key(inputs, results); |
| auto existing = impl.functions.insert_as(nullptr, key); |
| |
| // If we already have it, return that value. |
| if (!existing.second) |
| return *existing.first; |
| |
| // On the first use, we allocate them into the bump pointer. |
| auto *result = impl.allocator.Allocate<FunctionType>(); |
| |
| // Copy the inputs and results into the bump pointer. |
| SmallVector<Type*, 16> types; |
| types.reserve(inputs.size()+results.size()); |
| types.append(inputs.begin(), inputs.end()); |
| types.append(results.begin(), results.end()); |
| auto typesList = impl.copyInto(ArrayRef<Type*>(types)); |
| |
| // Initialize the memory using placement new. |
| new (result) FunctionType(typesList.data(), inputs.size(), results.size(), |
| context); |
| |
| // Cache and return it. |
| return *existing.first = result; |
| } |
| |
| VectorType *VectorType::get(ArrayRef<unsigned> shape, Type *elementType) { |
| assert(!shape.empty() && "vector types must have at least one dimension"); |
| assert((isa<PrimitiveType>(elementType) || isa<IntegerType>(elementType)) && |
| "vectors elements must be primitives"); |
| |
| auto *context = elementType->getContext(); |
| auto &impl = context->getImpl(); |
| |
| // Look to see if we already have this vector type. |
| VectorTypeKeyInfo::KeyTy key(elementType, shape); |
| auto existing = impl.vectors.insert_as(nullptr, key); |
| |
| // If we already have it, return that value. |
| if (!existing.second) |
| return *existing.first; |
| |
| // On the first use, we allocate them into the bump pointer. |
| auto *result = impl.allocator.Allocate<VectorType>(); |
| |
| // Copy the shape into the bump pointer. |
| shape = impl.copyInto(shape); |
| |
| // Initialize the memory using placement new. |
| new (result) VectorType(shape, cast<PrimitiveType>(elementType), context); |
| |
| // Cache and return it. |
| return *existing.first = result; |
| } |
| |
| |
| TensorType::TensorType(Kind kind, Type *elementType, MLIRContext *context) |
| : Type(kind, context), elementType(elementType) { |
| assert((isa<PrimitiveType>(elementType) || isa<VectorType>(elementType) || |
| isa<IntegerType>(elementType)) && |
| "tensor elements must be primitives or vectors"); |
| assert(isa<TensorType>(this)); |
| } |
| |
| RankedTensorType *RankedTensorType::get(ArrayRef<int> shape, |
| Type *elementType) { |
| auto *context = elementType->getContext(); |
| auto &impl = context->getImpl(); |
| |
| // Look to see if we already have this ranked tensor type. |
| RankedTensorTypeKeyInfo::KeyTy key(elementType, shape); |
| auto existing = impl.rankedTensors.insert_as(nullptr, key); |
| |
| // If we already have it, return that value. |
| if (!existing.second) |
| return *existing.first; |
| |
| // On the first use, we allocate them into the bump pointer. |
| auto *result = impl.allocator.Allocate<RankedTensorType>(); |
| |
| // Copy the shape into the bump pointer. |
| shape = impl.copyInto(shape); |
| |
| // Initialize the memory using placement new. |
| new (result) RankedTensorType(shape, elementType, context); |
| |
| // Cache and return it. |
| return *existing.first = result; |
| } |
| |
| UnrankedTensorType *UnrankedTensorType::get(Type *elementType) { |
| auto *context = elementType->getContext(); |
| auto &impl = context->getImpl(); |
| |
| // Look to see if we already have this unranked tensor type. |
| auto *&result = impl.unrankedTensors[elementType]; |
| |
| // If we already have it, return that value. |
| if (result) |
| return result; |
| |
| // On the first use, we allocate them into the bump pointer. |
| result = impl.allocator.Allocate<UnrankedTensorType>(); |
| |
| // Initialize the memory using placement new. |
| new (result) UnrankedTensorType(elementType, context); |
| return result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Attribute uniquing |
| //===----------------------------------------------------------------------===// |
| |
| BoolAttr *BoolAttr::get(bool value, MLIRContext *context) { |
| auto *&result = context->getImpl().boolAttrs[value]; |
| if (result) |
| return result; |
| |
| result = context->getImpl().allocator.Allocate<BoolAttr>(); |
| new (result) BoolAttr(value); |
| return result; |
| } |
| |
| IntegerAttr *IntegerAttr::get(int64_t value, MLIRContext *context) { |
| auto *&result = context->getImpl().integerAttrs[value]; |
| if (result) |
| return result; |
| |
| result = context->getImpl().allocator.Allocate<IntegerAttr>(); |
| new (result) IntegerAttr(value); |
| return result; |
| } |
| |
| FloatAttr *FloatAttr::get(double value, MLIRContext *context) { |
| // We hash based on the bit representation of the double to ensure we don't |
| // merge things like -0.0 and 0.0 in the hash comparison. |
| union { |
| double floatValue; |
| int64_t intValue; |
| }; |
| floatValue = value; |
| |
| auto *&result = context->getImpl().floatAttrs[intValue]; |
| if (result) |
| return result; |
| |
| result = context->getImpl().allocator.Allocate<FloatAttr>(); |
| new (result) FloatAttr(value); |
| return result; |
| } |
| |
| StringAttr *StringAttr::get(StringRef bytes, MLIRContext *context) { |
| auto it = context->getImpl().stringAttrs.insert({bytes, nullptr}).first; |
| |
| if (it->second) |
| return it->second; |
| |
| auto result = context->getImpl().allocator.Allocate<StringAttr>(); |
| new (result) StringAttr(it->first()); |
| it->second = result; |
| return result; |
| } |
| |
| ArrayAttr *ArrayAttr::get(ArrayRef<Attribute*> value, MLIRContext *context) { |
| auto &impl = context->getImpl(); |
| |
| // Look to see if we already have this. |
| auto existing = impl.arrayAttrs.insert_as(nullptr, value); |
| |
| // If we already have it, return that value. |
| if (!existing.second) |
| return *existing.first; |
| |
| // On the first use, we allocate them into the bump pointer. |
| auto *result = impl.allocator.Allocate<ArrayAttr>(); |
| |
| // Copy the elements into the bump pointer. |
| value = impl.copyInto(value); |
| |
| // Initialize the memory using placement new. |
| new (result) ArrayAttr(value); |
| |
| // Cache and return it. |
| return *existing.first = result; |
| } |
| |
| /// Perform a three-way comparison between the names of the specified |
| /// NamedAttributes. |
| static int compareNamedAttributes(const NamedAttribute *lhs, |
| const NamedAttribute *rhs) { |
| return lhs->first.str().compare(rhs->first.str()); |
| } |
| |
| /// Given a list of NamedAttribute's, canonicalize the list (sorting |
| /// by name) and return the unique'd result. Note that the empty list is |
| /// represented with a null pointer. |
| AttributeListStorage *AttributeListStorage::get(ArrayRef<NamedAttribute> attrs, |
| MLIRContext *context) { |
| // We need to sort the element list to canonicalize it, but we also don't want |
| // to do a ton of work in the super common case where the element list is |
| // already sorted. |
| SmallVector<NamedAttribute, 8> storage; |
| switch (attrs.size()) { |
| case 0: |
| // An empty list is represented with a null pointer. |
| return nullptr; |
| case 1: |
| // A single element is already sorted. |
| break; |
| case 2: |
| // Don't invoke a general sort for two element case. |
| if (attrs[0].first.str() > attrs[1].first.str()) { |
| storage.push_back(attrs[1]); |
| storage.push_back(attrs[0]); |
| attrs = storage; |
| } |
| break; |
| default: |
| // Check to see they are sorted already. |
| bool isSorted = true; |
| for (unsigned i = 0, e = attrs.size() - 1; i != e; ++i) { |
| if (attrs[i].first.str() > attrs[i + 1].first.str()) { |
| isSorted = false; |
| break; |
| } |
| } |
| // If not, do a general sort. |
| if (!isSorted) { |
| storage.append(attrs.begin(), attrs.end()); |
| llvm::array_pod_sort(storage.begin(), storage.end(), |
| compareNamedAttributes); |
| attrs = storage; |
| } |
| } |
| |
| // Ok, now that we've canonicalized our attributes, unique them. |
| auto &impl = context->getImpl(); |
| |
| // Look to see if we already have this. |
| auto existing = impl.attributeLists.insert_as(nullptr, attrs); |
| |
| // If we already have it, return that value. |
| if (!existing.second) |
| return *existing.first; |
| |
| // Otherwise, allocate a new AttributeListStorage, unique it and return it. |
| auto byteSize = |
| AttributeListStorage::totalSizeToAlloc<NamedAttribute>(attrs.size()); |
| auto rawMem = impl.allocator.Allocate(byteSize, alignof(NamedAttribute)); |
| |
| // Placement initialize the AggregateSymbolicValue. |
| auto result = ::new (rawMem) AttributeListStorage(attrs.size()); |
| std::uninitialized_copy(attrs.begin(), attrs.end(), |
| result->getTrailingObjects<NamedAttribute>()); |
| return *existing.first = result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AffineMap and AffineExpr uniquing |
| //===----------------------------------------------------------------------===// |
| |
| AffineMap *AffineMap::get(unsigned dimCount, unsigned symbolCount, |
| ArrayRef<AffineExpr *> results, |
| MLIRContext *context) { |
| // The number of results can't be zero. |
| assert(!results.empty()); |
| |
| auto &impl = context->getImpl(); |
| |
| // Check if we already have this affine map. |
| auto key = std::make_tuple(dimCount, symbolCount, results); |
| auto existing = impl.affineMaps.insert_as(nullptr, key); |
| |
| // If we already have it, return that value. |
| if (!existing.second) |
| return *existing.first; |
| |
| // On the first use, we allocate them into the bump pointer. |
| auto *res = impl.allocator.Allocate<AffineMap>(); |
| |
| // Copy the results into the bump pointer. |
| results = impl.copyInto(ArrayRef<AffineExpr *>(results)); |
| |
| // Initialize the memory using placement new. |
| new (res) AffineMap(dimCount, symbolCount, results.size(), results.data()); |
| |
| // Cache and return it. |
| return *existing.first = res; |
| } |
| |
| AffineBinaryOpExpr *AffineBinaryOpExpr::get(AffineExpr::Kind kind, |
| AffineExpr *lhsOperand, |
| AffineExpr *rhsOperand, |
| MLIRContext *context) { |
| auto &impl = context->getImpl(); |
| |
| // Check if we already have this affine expression. |
| auto keyValue = std::make_tuple((unsigned)kind, lhsOperand, rhsOperand); |
| auto *&result = impl.affineExprs[keyValue]; |
| |
| // If we already have it, return that value. |
| if (!result) { |
| // On the first use, we allocate them into the bump pointer. |
| result = impl.allocator.Allocate<AffineBinaryOpExpr>(); |
| |
| // Initialize the memory using placement new. |
| new (result) AffineBinaryOpExpr(kind, lhsOperand, rhsOperand); |
| } |
| return result; |
| } |
| |
| // TODO(bondhugula): complete uniquing of remaining AffineExpr sub-classes. |
| AffineAddExpr *AffineAddExpr::get(AffineExpr *lhsOperand, |
| AffineExpr *rhsOperand, |
| MLIRContext *context) { |
| return cast<AffineAddExpr>( |
| AffineBinaryOpExpr::get(Kind::Add, lhsOperand, rhsOperand, context)); |
| } |
| |
| AffineSubExpr *AffineSubExpr::get(AffineExpr *lhsOperand, |
| AffineExpr *rhsOperand, |
| MLIRContext *context) { |
| return cast<AffineSubExpr>( |
| AffineBinaryOpExpr::get(Kind::Sub, lhsOperand, rhsOperand, context)); |
| } |
| |
| AffineMulExpr *AffineMulExpr::get(AffineExpr *lhsOperand, |
| AffineExpr *rhsOperand, |
| MLIRContext *context) { |
| return cast<AffineMulExpr>( |
| AffineBinaryOpExpr::get(Kind::Mul, lhsOperand, rhsOperand, context)); |
| } |
| |
| AffineFloorDivExpr *AffineFloorDivExpr::get(AffineExpr *lhsOperand, |
| AffineExpr *rhsOperand, |
| MLIRContext *context) { |
| return cast<AffineFloorDivExpr>( |
| AffineBinaryOpExpr::get(Kind::FloorDiv, lhsOperand, rhsOperand, context)); |
| } |
| |
| AffineCeilDivExpr *AffineCeilDivExpr::get(AffineExpr *lhsOperand, |
| AffineExpr *rhsOperand, |
| MLIRContext *context) { |
| return cast<AffineCeilDivExpr>( |
| AffineBinaryOpExpr::get(Kind::CeilDiv, lhsOperand, rhsOperand, context)); |
| } |
| |
| AffineModExpr *AffineModExpr::get(AffineExpr *lhsOperand, |
| AffineExpr *rhsOperand, |
| MLIRContext *context) { |
| return cast<AffineModExpr>( |
| AffineBinaryOpExpr::get(Kind::Mod, lhsOperand, rhsOperand, context)); |
| } |
| |
| AffineDimExpr *AffineDimExpr::get(unsigned position, MLIRContext *context) { |
| // TODO(bondhugula): complete this |
| // FIXME: this should be POD |
| return new AffineDimExpr(position); |
| } |
| |
| AffineSymbolExpr *AffineSymbolExpr::get(unsigned position, |
| MLIRContext *context) { |
| // TODO(bondhugula): complete this |
| // FIXME: this should be POD |
| return new AffineSymbolExpr(position); |
| } |
| |
| AffineConstantExpr *AffineConstantExpr::get(int64_t constant, |
| MLIRContext *context) { |
| // TODO(bondhugula): complete this |
| // FIXME: this should be POD |
| return new AffineConstantExpr(constant); |
| } |