blob: 1a065158de0d426d628d71580b375db50756fb9a [file] [log] [blame]
//===- HyperRectangularSet.cpp - MLIR HyperRectangularSet Class--*- C++ -*-===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// Structures for affine/polyhedral analysis of MLIR functions.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/HyperRectangularSet.h"
#include <algorithm>
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/IntegerSet.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
// TODO(bondhugula): clean this code up.
// Get the constant bound that is either the min or max (depending on 'cmp').
static Optional<int64_t>
getReducedConstBound(const HyperRectangularSet &set, unsigned *idx,
std::function<bool(int64_t, int64_t)> const &cmp) {
Optional<int64_t> val = None;
for (unsigned i = 0, n = set.getNumDims(); i < n; i++) {
auto &ubs = set.getLowerBound(i);
unsigned j = 0;
AffineBoundExprList::const_iterator it, e;
for (it = ubs.begin(), e = ubs.end(); it != e; it++, j++) {
if (auto *cExpr = dyn_cast<AffineConstantExpr>(*it)) {
if (val == None) {
val = cExpr->getValue();
*idx = j;
} else if (cmp(cExpr->getValue(), val.getValue())) {
val = cExpr->getValue();
*idx = j;
}
}
}
}
return val;
}
// Merge the two lists of AffineExpr's into a single one, avoiding duplicates.
// lb specifies whether the bound lists are for a lower bound or an upper bound.
// TODO(bondhugula): clean this code up.
static void mergeBounds(const HyperRectangularSet &set,
AffineBoundExprList &lhsList,
const AffineBoundExprList &rhsList, bool lb) {
// The list of bounds is going to be small. Just a linear search
// should be enough to create a list without duplicates.
for (auto *expr : rhsList) {
AffineBoundExprList::const_iterator it;
for (it = lhsList.begin(); it != lhsList.end(); it++) {
if (expr == *it)
break;
}
if (it == lhsList.end()) {
// There can only be one constant affine expr in this bound list.
if (auto *cExpr = dyn_cast<AffineConstantExpr>(expr)) {
unsigned idx;
if (lb) {
auto cb = getReducedConstBound(
set, &idx,
[](int64_t newVal, int64_t oldVal) { return newVal < oldVal; });
if (!cb.hasValue()) {
lhsList.push_back(expr);
continue;
}
if (cExpr->getValue() < cb)
lhsList[idx] = expr;
// A constant value >= the existing bound constant.
continue;
}
// Upper bound case.
auto cb =
getReducedConstBound(set, &idx, [](int64_t newVal, int64_t oldVal) {
return newVal > oldVal;
});
if (!cb.hasValue()) {
lhsList.push_back(expr);
continue;
}
if (cExpr->getValue() > cb)
lhsList[idx] = expr;
continue;
}
// Not a constant expression; push it.
// TODO(bondhugula): check if this was implied by an existing symbolic
// expression or by the context.
lhsList.push_back(expr);
}
}
}
HyperRectangularSet::HyperRectangularSet(unsigned numDims, unsigned numSymbols,
ArrayRef<ArrayRef<AffineExpr *>> lbs,
ArrayRef<ArrayRef<AffineExpr *>> ubs,
IntegerSet *symbolContext)
: context(symbolContext ? MutableIntegerSet(symbolContext)
: MutableIntegerSet(numDims, numSymbols)) {
unsigned d = 0;
for (auto boundList : lbs) {
AffineBoundExprList lb;
for (auto *expr : boundList) {
assert(expr->isSymbolicOrConstant() &&
"bound expression should be symbolic or constant");
lb.push_back(expr);
}
mergeBounds(*this, lowerBounds[d++], lb, true);
}
d = 0;
for (auto boundList : ubs) {
AffineBoundExprList ub;
for (auto *expr : boundList) {
assert(expr->isSymbolicOrConstant() &&
"bound expression should be symbolic or constant");
ub.push_back(expr);
}
mergeBounds(*this, upperBounds[d++], ub, false);
}
simplifyUnderContext();
}
void HyperRectangularSet::projectOut(unsigned idx, unsigned num) {
// Erase the bounds along the projected out dimensions.
lowerBounds.erase(lowerBounds.begin() + idx, lowerBounds.begin() + idx + num);
upperBounds.erase(upperBounds.begin() + idx, upperBounds.begin() + idx + num);
numDims -= num;
}
void HyperRectangularSet::intersect(const HyperRectangularSet &rhs) {
assert(rhs.getNumSymbols() == getNumSymbols() &&
rhs.getNumDims() == getNumDims() && "operand space does not match");
// Intersection is just a concatenation of distinct bounds.
for (unsigned i = 0, n = getNumDims(); i < n; i++) {
mergeBounds(*this, getLowerBound(i), rhs.getLowerBound(i), true);
mergeBounds(*this, getUpperBound(i), rhs.getUpperBound(i), false);
}
}
void HyperRectangularSet::print(raw_ostream &os) const {
os << "Hyper rectangular set: " << numDims << "dimensions, " << numSymbols
<< "symbols\n";
os << "Lower bounds\n";
unsigned d = 0;
for (auto &lb : lowerBounds) {
os << "Dim " << d++ << "\n";
for (auto *expr : lb) {
expr->print(os);
}
}
d = 0;
os << "Upper bounds\n";
for (auto &lb : upperBounds) {
os << "Dim " << d++ << "\n";
for (auto *expr : lb) {
expr->print(os);
}
}
}
void HyperRectangleList::projectOut(unsigned idx, unsigned num) {
for (auto &elt : hyperRectangles) {
elt.projectOut(idx, num);
}
// TODO: after a project out, some of the sets may be identical. Remove those.
}
bool HyperRectangleList::empty() const {
for (auto &set : hyperRectangles) {
if (!set.empty())
return false;
}
return true;
}
bool HyperRectangularSet::empty() const {
assert(0 && "unimplemented");
return false;
}
void HyperRectangularSet::dump() const { print(llvm::errs()); }