| //===- SimplifyAffineExpr.cpp - MLIR Affine Structures Class-----*- C++ -*-===// |
| // |
| // Copyright 2019 The MLIR Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // ============================================================================= |
| // |
| // This file implements a pass to simplify affine expressions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Analysis/AffineStructures.h" |
| #include "mlir/IR/AffineExprVisitor.h" |
| #include "mlir/IR/AffineMap.h" |
| #include "mlir/IR/Attributes.h" |
| #include "mlir/IR/StmtVisitor.h" |
| |
| #include "mlir/Transforms/Pass.h" |
| #include "mlir/Transforms/Passes.h" |
| |
| using namespace mlir; |
| using llvm::report_fatal_error; |
| |
| namespace { |
| |
| /// Simplify all affine expressions appearing in the operation statements of the |
| /// MLFunction. |
| // TODO(someone): Gradually, extend this to all affine map references found in |
| // ML functions and CFG functions. |
| struct SimplifyAffineExpr : public FunctionPass { |
| explicit SimplifyAffineExpr() {} |
| |
| void runOnMLFunction(MLFunction *f); |
| // Does nothing on CFG functions for now. No reusable walkers/visitors exist |
| // for this yet? TODO(someone). |
| void runOnCFGFunction(CFGFunction *f) {} |
| }; |
| |
| // This class is used to flatten a pure affine expression into a sum of products |
| // (w.r.t constants) when possible, and in that process accumulating |
| // contributions for each dimensional and symbolic identifier together. Note |
| // that an affine expression may not always be expressible that way due to the |
| // preesnce of modulo, floordiv, and ceildiv expressions. A simplification that |
| // this flattening naturally performs is to fold a modulo expression to a zero, |
| // if possible. Two examples are below: |
| // |
| // (d0 + 3 * d1) + d0) - 2 * d1) - d0 simplified to d0 + d1 |
| // (d0 - d0 mod 4 + 4) mod 4 simplified to 0. |
| // |
| // For modulo and floordiv expressions, an additional variable is introduced to |
| // rewrite it as a sum of products (w.r.t constants). For example, for the |
| // second example above, d0 % 4 is replaced by d0 - 4*q with q being introduced: |
| // the expression simplifies to: |
| // (d0 - (d0 - 4q) + 4) = 4q + 4, modulo of which w.r.t 4 simplifies to zero. |
| // |
| // This is a linear time post order walk for an affine expression that attempts |
| // the above simplifications through visit methods, with partial results being |
| // stored in 'operandExprStack'. When a parent expr is visited, the flattened |
| // expressions corresponding to its two operands would already be on the stack - |
| // the parent expr looks at the two flattened expressions and combines the two. |
| // It pops off the operand expressions and pushes the combined result (although |
| // this is done in-place on its LHS operand expr. When the walk is completed, |
| // the flattened form of the top-level expression would be left on the stack. |
| // |
| class AffineExprFlattener : public AffineExprVisitor<AffineExprFlattener> { |
| public: |
| std::vector<SmallVector<int64_t, 32>> operandExprStack; |
| |
| // The layout of the flattened expressions is dimensions, symbols, locals, |
| // and constant term. |
| unsigned getNumCols() const { return numDims + numSymbols + numLocals + 1; } |
| |
| AffineExprFlattener(unsigned numDims, unsigned numSymbols) |
| : numDims(numDims), numSymbols(numSymbols), numLocals(0) {} |
| |
| void visitMulExpr(AffineBinaryOpExpr *expr) { |
| assert(expr->isPureAffine()); |
| // Get the RHS constant. |
| auto rhsConst = operandExprStack.back()[getNumCols() - 1]; |
| operandExprStack.pop_back(); |
| // Update the LHS in place instead of pop and push. |
| auto &lhs = operandExprStack.back(); |
| for (unsigned i = 0, e = lhs.size(); i < e; i++) { |
| lhs[i] *= rhsConst; |
| } |
| } |
| void visitAddExpr(AffineBinaryOpExpr *expr) { |
| const auto &rhs = operandExprStack.back(); |
| auto &lhs = operandExprStack[operandExprStack.size() - 2]; |
| assert(lhs.size() == rhs.size()); |
| // Update the LHS in place. |
| for (unsigned i = 0; i < rhs.size(); i++) { |
| lhs[i] += rhs[i]; |
| } |
| // Pop off the RHS. |
| operandExprStack.pop_back(); |
| } |
| void visitModExpr(AffineBinaryOpExpr *expr) { |
| assert(expr->isPureAffine()); |
| // This is a pure affine expr; the RHS is a constant. |
| auto rhsConst = operandExprStack.back()[getNumCols() - 1]; |
| operandExprStack.pop_back(); |
| auto &lhs = operandExprStack.back(); |
| assert(rhsConst != 0 && "RHS constant can't be zero"); |
| unsigned i; |
| for (i = 0; i < lhs.size(); i++) |
| if (lhs[i] % rhsConst != 0) |
| break; |
| if (i == lhs.size()) { |
| // The modulo expression here simplifies to zero. |
| lhs.assign(lhs.size(), 0); |
| return; |
| } |
| // Add an existential quantifier. expr1 % expr2 is replaced by (expr1 - |
| // q * expr2) where q is the existential quantifier introduced. |
| addExistentialQuantifier(); |
| lhs = operandExprStack.back(); |
| lhs[numDims + numSymbols + numLocals - 1] = -rhsConst; |
| } |
| void visitConstantExpr(AffineConstantExpr *expr) { |
| operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0)); |
| auto &eq = operandExprStack.back(); |
| eq[getNumCols() - 1] = expr->getValue(); |
| } |
| void visitDimExpr(AffineDimExpr *expr) { |
| SmallVector<int64_t, 32> eq(getNumCols(), 0); |
| eq[expr->getPosition()] = 1; |
| operandExprStack.push_back(eq); |
| } |
| void visitSymbolExpr(AffineSymbolExpr *expr) { |
| SmallVector<int64_t, 32> eq(getNumCols(), 0); |
| eq[numDims + expr->getPosition()] = 1; |
| operandExprStack.push_back(eq); |
| } |
| void visitCeilDivExpr(AffineBinaryOpExpr *expr) { |
| // TODO(bondhugula): handle ceildiv as well; won't simplify further through |
| // this analysis but will be handled (rest of the expr will simplify). |
| report_fatal_error("ceildiv expr simplification not supported here"); |
| } |
| void visitFloorDivExpr(AffineBinaryOpExpr *expr) { |
| // TODO(bondhugula): handle ceildiv as well; won't simplify further through |
| // this analysis but will be handled (rest of the expr will simplify). |
| report_fatal_error("floordiv expr simplification unimplemented"); |
| } |
| // Add an existential quantifier (used to flatten a mod or a floordiv expr). |
| void addExistentialQuantifier() { |
| for (auto &subExpr : operandExprStack) { |
| subExpr.insert(subExpr.begin() + numDims + numSymbols + numLocals, 0); |
| } |
| numLocals++; |
| } |
| |
| unsigned numDims; |
| unsigned numSymbols; |
| unsigned numLocals; |
| }; |
| |
| } // end anonymous namespace |
| |
| FunctionPass *mlir::createSimplifyAffineExprPass() { |
| return new SimplifyAffineExpr(); |
| } |
| |
| AffineMap *MutableAffineMap::getAffineMap() { |
| return AffineMap::get(numDims, numSymbols, results, rangeSizes, context); |
| } |
| |
| void SimplifyAffineExpr::runOnMLFunction(MLFunction *f) { |
| struct MapSimplifier : public StmtWalker<MapSimplifier> { |
| MLIRContext *context; |
| MapSimplifier(MLIRContext *context) : context(context) {} |
| |
| void visitOperationStmt(OperationStmt *opStmt) { |
| for (auto attr : opStmt->getAttrs()) { |
| if (auto *mapAttr = dyn_cast<AffineMapAttr>(attr.second)) { |
| MutableAffineMap mMap(mapAttr->getValue(), context); |
| mMap.simplify(); |
| auto *map = mMap.getAffineMap(); |
| opStmt->setAttr(attr.first, AffineMapAttr::get(map, context)); |
| } |
| } |
| } |
| }; |
| |
| MapSimplifier v(f->getContext()); |
| v.walkPostOrder(f); |
| } |
| |
| /// Get an affine expression from a flat ArrayRef. If there are local variables |
| /// (existential quantifiers introduced during the flattening) that appear in |
| /// the sum of products expression, we can't readily express it as an affine |
| /// expression of dimension and symbol id's; return nullptr in such cases. |
| static AffineExpr *toAffineExpr(ArrayRef<int64_t> eq, unsigned numDims, |
| unsigned numSymbols, MLIRContext *context) { |
| // Check if any local variable has a non-zero coefficient. |
| for (unsigned j = numDims + numSymbols; j < eq.size() - 1; j++) { |
| if (eq[j] != 0) |
| return nullptr; |
| } |
| |
| AffineExpr *expr = AffineConstantExpr::get(0, context); |
| for (unsigned j = 0; j < numDims + numSymbols; j++) { |
| if (eq[j] != 0) { |
| AffineExpr *id = |
| j < numDims |
| ? static_cast<AffineExpr *>(AffineDimExpr::get(j, context)) |
| : AffineSymbolExpr::get(j - numDims, context); |
| expr = AffineBinaryOpExpr::get( |
| AffineExpr::Kind::Add, expr, |
| AffineBinaryOpExpr::get(AffineExpr::Kind::Mul, |
| AffineConstantExpr::get(eq[j], context), id, |
| context), |
| context); |
| } |
| } |
| unsigned constTerm = eq[eq.size() - 1]; |
| if (constTerm != 0) |
| expr = AffineBinaryOpExpr::get(AffineExpr::Kind::Add, expr, |
| AffineConstantExpr::get(constTerm, context), |
| context); |
| return expr; |
| } |
| |
| // Simplify the result affine expressions of this map. The expressions have to |
| // be pure for the simplification implemented. |
| void MutableAffineMap::simplify() { |
| // Simplify each of the results if possible. |
| for (unsigned i = 0, e = getNumResults(); i < e; i++) { |
| AffineExpr *result = getResult(i); |
| if (!result->isPureAffine()) |
| continue; |
| |
| AffineExprFlattener flattener(numDims, numSymbols); |
| flattener.walkPostOrder(result); |
| const auto &flattenedExpr = flattener.operandExprStack.back(); |
| auto *expr = toAffineExpr(flattenedExpr, numDims, numSymbols, context); |
| if (expr) |
| results[i] = expr; |
| flattener.operandExprStack.pop_back(); |
| assert(flattener.operandExprStack.empty()); |
| } |
| } |