blob: 3c72887c3018439234e8b3b630bb1c5f272b0665 [file] [log] [blame]
//===- SimplifyAffineExpr.cpp - MLIR Affine Structures Class-----*- C++ -*-===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements a pass to simplify affine expressions.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/StmtVisitor.h"
#include "mlir/Transforms/Pass.h"
#include "mlir/Transforms/Passes.h"
using namespace mlir;
using llvm::report_fatal_error;
namespace {
/// Simplify all affine expressions appearing in the operation statements of the
/// MLFunction.
// TODO(someone): Gradually, extend this to all affine map references found in
// ML functions and CFG functions.
struct SimplifyAffineExpr : public FunctionPass {
explicit SimplifyAffineExpr() {}
void runOnMLFunction(MLFunction *f);
// Does nothing on CFG functions for now. No reusable walkers/visitors exist
// for this yet? TODO(someone).
void runOnCFGFunction(CFGFunction *f) {}
};
// This class is used to flatten a pure affine expression into a sum of products
// (w.r.t constants) when possible, and in that process accumulating
// contributions for each dimensional and symbolic identifier together. Note
// that an affine expression may not always be expressible that way due to the
// preesnce of modulo, floordiv, and ceildiv expressions. A simplification that
// this flattening naturally performs is to fold a modulo expression to a zero,
// if possible. Two examples are below:
//
// (d0 + 3 * d1) + d0) - 2 * d1) - d0 simplified to d0 + d1
// (d0 - d0 mod 4 + 4) mod 4 simplified to 0.
//
// For modulo and floordiv expressions, an additional variable is introduced to
// rewrite it as a sum of products (w.r.t constants). For example, for the
// second example above, d0 % 4 is replaced by d0 - 4*q with q being introduced:
// the expression simplifies to:
// (d0 - (d0 - 4q) + 4) = 4q + 4, modulo of which w.r.t 4 simplifies to zero.
//
// This is a linear time post order walk for an affine expression that attempts
// the above simplifications through visit methods, with partial results being
// stored in 'operandExprStack'. When a parent expr is visited, the flattened
// expressions corresponding to its two operands would already be on the stack -
// the parent expr looks at the two flattened expressions and combines the two.
// It pops off the operand expressions and pushes the combined result (although
// this is done in-place on its LHS operand expr. When the walk is completed,
// the flattened form of the top-level expression would be left on the stack.
//
class AffineExprFlattener : public AffineExprVisitor<AffineExprFlattener> {
public:
std::vector<SmallVector<int64_t, 32>> operandExprStack;
// The layout of the flattened expressions is dimensions, symbols, locals,
// and constant term.
unsigned getNumCols() const { return numDims + numSymbols + numLocals + 1; }
AffineExprFlattener(unsigned numDims, unsigned numSymbols)
: numDims(numDims), numSymbols(numSymbols), numLocals(0) {}
void visitMulExpr(AffineBinaryOpExpr *expr) {
assert(expr->isPureAffine());
// Get the RHS constant.
auto rhsConst = operandExprStack.back()[getNumCols() - 1];
operandExprStack.pop_back();
// Update the LHS in place instead of pop and push.
auto &lhs = operandExprStack.back();
for (unsigned i = 0, e = lhs.size(); i < e; i++) {
lhs[i] *= rhsConst;
}
}
void visitAddExpr(AffineBinaryOpExpr *expr) {
const auto &rhs = operandExprStack.back();
auto &lhs = operandExprStack[operandExprStack.size() - 2];
assert(lhs.size() == rhs.size());
// Update the LHS in place.
for (unsigned i = 0; i < rhs.size(); i++) {
lhs[i] += rhs[i];
}
// Pop off the RHS.
operandExprStack.pop_back();
}
void visitModExpr(AffineBinaryOpExpr *expr) {
assert(expr->isPureAffine());
// This is a pure affine expr; the RHS is a constant.
auto rhsConst = operandExprStack.back()[getNumCols() - 1];
operandExprStack.pop_back();
auto &lhs = operandExprStack.back();
assert(rhsConst != 0 && "RHS constant can't be zero");
unsigned i;
for (i = 0; i < lhs.size(); i++)
if (lhs[i] % rhsConst != 0)
break;
if (i == lhs.size()) {
// The modulo expression here simplifies to zero.
lhs.assign(lhs.size(), 0);
return;
}
// Add an existential quantifier. expr1 % expr2 is replaced by (expr1 -
// q * expr2) where q is the existential quantifier introduced.
addExistentialQuantifier();
lhs = operandExprStack.back();
lhs[numDims + numSymbols + numLocals - 1] = -rhsConst;
}
void visitConstantExpr(AffineConstantExpr *expr) {
operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
auto &eq = operandExprStack.back();
eq[getNumCols() - 1] = expr->getValue();
}
void visitDimExpr(AffineDimExpr *expr) {
SmallVector<int64_t, 32> eq(getNumCols(), 0);
eq[expr->getPosition()] = 1;
operandExprStack.push_back(eq);
}
void visitSymbolExpr(AffineSymbolExpr *expr) {
SmallVector<int64_t, 32> eq(getNumCols(), 0);
eq[numDims + expr->getPosition()] = 1;
operandExprStack.push_back(eq);
}
void visitCeilDivExpr(AffineBinaryOpExpr *expr) {
// TODO(bondhugula): handle ceildiv as well; won't simplify further through
// this analysis but will be handled (rest of the expr will simplify).
report_fatal_error("ceildiv expr simplification not supported here");
}
void visitFloorDivExpr(AffineBinaryOpExpr *expr) {
// TODO(bondhugula): handle ceildiv as well; won't simplify further through
// this analysis but will be handled (rest of the expr will simplify).
report_fatal_error("floordiv expr simplification unimplemented");
}
// Add an existential quantifier (used to flatten a mod or a floordiv expr).
void addExistentialQuantifier() {
for (auto &subExpr : operandExprStack) {
subExpr.insert(subExpr.begin() + numDims + numSymbols + numLocals, 0);
}
numLocals++;
}
unsigned numDims;
unsigned numSymbols;
unsigned numLocals;
};
} // end anonymous namespace
FunctionPass *mlir::createSimplifyAffineExprPass() {
return new SimplifyAffineExpr();
}
AffineMap *MutableAffineMap::getAffineMap() {
return AffineMap::get(numDims, numSymbols, results, rangeSizes, context);
}
void SimplifyAffineExpr::runOnMLFunction(MLFunction *f) {
struct MapSimplifier : public StmtWalker<MapSimplifier> {
MLIRContext *context;
MapSimplifier(MLIRContext *context) : context(context) {}
void visitOperationStmt(OperationStmt *opStmt) {
for (auto attr : opStmt->getAttrs()) {
if (auto *mapAttr = dyn_cast<AffineMapAttr>(attr.second)) {
MutableAffineMap mMap(mapAttr->getValue(), context);
mMap.simplify();
auto *map = mMap.getAffineMap();
opStmt->setAttr(attr.first, AffineMapAttr::get(map, context));
}
}
}
};
MapSimplifier v(f->getContext());
v.walkPostOrder(f);
}
/// Get an affine expression from a flat ArrayRef. If there are local variables
/// (existential quantifiers introduced during the flattening) that appear in
/// the sum of products expression, we can't readily express it as an affine
/// expression of dimension and symbol id's; return nullptr in such cases.
static AffineExpr *toAffineExpr(ArrayRef<int64_t> eq, unsigned numDims,
unsigned numSymbols, MLIRContext *context) {
// Check if any local variable has a non-zero coefficient.
for (unsigned j = numDims + numSymbols; j < eq.size() - 1; j++) {
if (eq[j] != 0)
return nullptr;
}
AffineExpr *expr = AffineConstantExpr::get(0, context);
for (unsigned j = 0; j < numDims + numSymbols; j++) {
if (eq[j] != 0) {
AffineExpr *id =
j < numDims
? static_cast<AffineExpr *>(AffineDimExpr::get(j, context))
: AffineSymbolExpr::get(j - numDims, context);
expr = AffineBinaryOpExpr::get(
AffineExpr::Kind::Add, expr,
AffineBinaryOpExpr::get(AffineExpr::Kind::Mul,
AffineConstantExpr::get(eq[j], context), id,
context),
context);
}
}
unsigned constTerm = eq[eq.size() - 1];
if (constTerm != 0)
expr = AffineBinaryOpExpr::get(AffineExpr::Kind::Add, expr,
AffineConstantExpr::get(constTerm, context),
context);
return expr;
}
// Simplify the result affine expressions of this map. The expressions have to
// be pure for the simplification implemented.
void MutableAffineMap::simplify() {
// Simplify each of the results if possible.
for (unsigned i = 0, e = getNumResults(); i < e; i++) {
AffineExpr *result = getResult(i);
if (!result->isPureAffine())
continue;
AffineExprFlattener flattener(numDims, numSymbols);
flattener.walkPostOrder(result);
const auto &flattenedExpr = flattener.operandExprStack.back();
auto *expr = toAffineExpr(flattenedExpr, numDims, numSymbols, context);
if (expr)
results[i] = expr;
flattener.operandExprStack.pop_back();
assert(flattener.operandExprStack.empty());
}
}