blob: dc56d62b107f4bac1d95deb3ab89e5699f2f78d2 [file] [log] [blame]
//===- LoopAnalysis.cpp - Misc loop analysis routines //-------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements miscellaneous loop analysis routines.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Statements.h"
using mlir::AffineExpr;
/// Returns the trip count of the loop as an affine expression if the latter is
/// expressible as an affine expression, and nullptr otherwise. The trip count
/// expression is simplified before returning.
AffineExpr *mlir::getTripCount(const ForStmt &forStmt) {
// upper_bound - lower_bound + 1
int64_t loopSpan;
int64_t step = forStmt.getStep();
auto *context = forStmt.getContext();
if (forStmt.hasConstantBounds()) {
int64_t lb = forStmt.getConstantLowerBound();
int64_t ub = forStmt.getConstantUpperBound();
loopSpan = ub - lb + 1;
} else {
const AffineBound lb = forStmt.getLowerBound();
const AffineBound ub = forStmt.getUpperBound();
auto lbMap = lb.getMap();
auto ubMap = ub.getMap();
// TODO(bondhugula): handle max/min of multiple expressions.
if (lbMap->getNumResults() != 1 || ubMap->getNumResults() != 1 ||
lbMap->getNumDims() != ubMap->getNumDims() ||
lbMap->getNumSymbols() != ubMap->getNumSymbols()) {
return nullptr;
}
// TODO(bondhugula): handle bounds with different operands.
unsigned i, e = lb.getNumOperands();
for (i = 0; i < e; i++) {
if (lb.getStmtOperand(i).get() != ub.getStmtOperand(i).get())
break;
}
// Bounds have different operands, unhandled for now.
if (i != e)
return nullptr;
// ub_expr - lb_expr + 1
auto *loopSpanExpr = AffineBinaryOpExpr::getAdd(
AffineBinaryOpExpr::getSub(ubMap->getResult(0), lbMap->getResult(0),
context),
1, context);
if (auto *expr = simplifyAffineExpr(loopSpanExpr, lbMap->getNumDims(),
lbMap->getNumSymbols(), context))
loopSpanExpr = expr;
auto *cExpr = dyn_cast<AffineConstantExpr>(loopSpanExpr);
if (!cExpr)
return AffineBinaryOpExpr::getCeilDiv(loopSpanExpr, std::abs(step),
context);
loopSpan = cExpr->getValue();
}
// 0 iteration loops.
if ((loopSpan < 0 && step >= 1) || (loopSpan > 0 && step <= -1))
return 0;
return AffineConstantExpr::get(
static_cast<uint64_t>(loopSpan % step == 0 ? loopSpan / step
: loopSpan / step + 1),
context);
}
/// Returns the trip count of the loop if it's a constant, None otherwise. This
/// method uses affine expression analysis (in turn using getTripCount) and is
/// able to determine constant trip count in non-trivial cases.
llvm::Optional<uint64_t> mlir::getConstantTripCount(const ForStmt &forStmt) {
AffineExpr *tripCountExpr = getTripCount(forStmt);
if (auto *constExpr = dyn_cast_or_null<AffineConstantExpr>(tripCountExpr))
return constExpr->getValue();
return None;
}
/// Returns the greatest known integral divisor of the trip count. Affine
/// expression analysis is used (indirectly through getTripCount), and
/// this method is thus able to determine non-trivial divisors.
uint64_t mlir::getLargestDivisorOfTripCount(const ForStmt &forStmt) {
AffineExpr *tripCountExpr = getTripCount(forStmt);
if (!tripCountExpr)
return 1;
if (auto *constExpr = dyn_cast<AffineConstantExpr>(tripCountExpr)) {
uint64_t tripCount = constExpr->getValue();
// 0 iteration loops (greatest divisor is 2^64 - 1).
if (tripCount == 0)
return ULONG_MAX;
// The greatest divisor is the trip count.
return tripCount;
}
// Trip count is not a known constant; return its largest known divisor.
return tripCountExpr->getLargestKnownDivisor();
}