| //===- MLIRContext.cpp - MLIR Type Classes --------------------------------===// |
| // |
| // Copyright 2019 The MLIR Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // ============================================================================= |
| |
| #include "mlir/IR/MLIRContext.h" |
| #include "mlir/IR/Identifier.h" |
| #include "mlir/IR/Types.h" |
| #include "mlir/Support/LLVM.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/Support/Allocator.h" |
| using namespace mlir; |
| using namespace llvm; |
| |
| namespace { |
| struct FunctionTypeKeyInfo : DenseMapInfo<FunctionType*> { |
| // Functions are uniqued based on their inputs and results. |
| using KeyTy = std::pair<ArrayRef<Type*>, ArrayRef<Type*>>; |
| using DenseMapInfo<FunctionType*>::getHashValue; |
| using DenseMapInfo<FunctionType*>::isEqual; |
| |
| static unsigned getHashValue(KeyTy key) { |
| return hash_combine(hash_combine_range(key.first.begin(), key.first.end()), |
| hash_combine_range(key.second.begin(), |
| key.second.end())); |
| } |
| |
| static bool isEqual(const KeyTy &lhs, const FunctionType *rhs) { |
| if (rhs == getEmptyKey() || rhs == getTombstoneKey()) |
| return false; |
| return lhs == KeyTy(rhs->getInputs(), rhs->getResults()); |
| } |
| }; |
| struct VectorTypeKeyInfo : DenseMapInfo<VectorType*> { |
| // Vectors are uniqued based on their element type and shape. |
| using KeyTy = std::pair<Type*, ArrayRef<unsigned>>; |
| using DenseMapInfo<VectorType*>::getHashValue; |
| using DenseMapInfo<VectorType*>::isEqual; |
| |
| static unsigned getHashValue(KeyTy key) { |
| return hash_combine(DenseMapInfo<Type*>::getHashValue(key.first), |
| hash_combine_range(key.second.begin(), |
| key.second.end())); |
| } |
| |
| static bool isEqual(const KeyTy &lhs, const VectorType *rhs) { |
| if (rhs == getEmptyKey() || rhs == getTombstoneKey()) |
| return false; |
| return lhs == KeyTy(rhs->getElementType(), rhs->getShape()); |
| } |
| }; |
| struct RankedTensorTypeKeyInfo : DenseMapInfo<RankedTensorType*> { |
| // Ranked tensors are uniqued based on their element type and shape. |
| using KeyTy = std::pair<Type*, ArrayRef<int>>; |
| using DenseMapInfo<RankedTensorType*>::getHashValue; |
| using DenseMapInfo<RankedTensorType*>::isEqual; |
| |
| static unsigned getHashValue(KeyTy key) { |
| return hash_combine(DenseMapInfo<Type*>::getHashValue(key.first), |
| hash_combine_range(key.second.begin(), |
| key.second.end())); |
| } |
| |
| static bool isEqual(const KeyTy &lhs, const RankedTensorType *rhs) { |
| if (rhs == getEmptyKey() || rhs == getTombstoneKey()) |
| return false; |
| return lhs == KeyTy(rhs->getElementType(), rhs->getShape()); |
| } |
| }; |
| } // end anonymous namespace. |
| |
| |
| namespace mlir { |
| /// This is the implementation of the MLIRContext class, using the pImpl idiom. |
| /// This class is completely private to this file, so everything is public. |
| class MLIRContextImpl { |
| public: |
| /// We put immortal objects into this allocator. |
| llvm::BumpPtrAllocator allocator; |
| |
| /// These are identifiers uniqued into this MLIRContext. |
| llvm::StringMap<char, llvm::BumpPtrAllocator&> identifiers; |
| |
| // Primitive type uniquing. |
| PrimitiveType *primitives[int(TypeKind::LAST_PRIMITIVE_TYPE)+1] = { nullptr }; |
| |
| /// Function type uniquing. |
| using FunctionTypeSet = DenseSet<FunctionType*, FunctionTypeKeyInfo>; |
| FunctionTypeSet functions; |
| |
| /// Vector type uniquing. |
| using VectorTypeSet = DenseSet<VectorType*, VectorTypeKeyInfo>; |
| VectorTypeSet vectors; |
| |
| /// Ranked tensor type uniquing. |
| using RankedTensorTypeSet = DenseSet<RankedTensorType*, |
| RankedTensorTypeKeyInfo>; |
| RankedTensorTypeSet rankedTensors; |
| |
| /// Unranked tensor type uniquing. |
| DenseMap<Type*, UnrankedTensorType*> unrankedTensors; |
| |
| |
| public: |
| MLIRContextImpl() : identifiers(allocator) {} |
| |
| /// Copy the specified array of elements into memory managed by our bump |
| /// pointer allocator. This assumes the elements are all PODs. |
| template<typename T> |
| ArrayRef<T> copyInto(ArrayRef<T> elements) { |
| auto result = allocator.Allocate<T>(elements.size()); |
| std::uninitialized_copy(elements.begin(), elements.end(), result); |
| return ArrayRef<T>(result, elements.size()); |
| } |
| }; |
| } // end namespace mlir |
| |
| MLIRContext::MLIRContext() : impl(new MLIRContextImpl()) { |
| } |
| |
| MLIRContext::~MLIRContext() { |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Identifier |
| //===----------------------------------------------------------------------===// |
| |
| /// Return an identifier for the specified string. |
| Identifier Identifier::get(StringRef str, const MLIRContext *context) { |
| assert(!str.empty() && "Cannot create an empty identifier"); |
| assert(str.find('\0') == StringRef::npos && |
| "Cannot create an identifier with a nul character"); |
| |
| auto &impl = context->getImpl(); |
| auto it = impl.identifiers.insert({str, char()}).first; |
| return Identifier(it->getKeyData()); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Types |
| //===----------------------------------------------------------------------===// |
| |
| PrimitiveType::PrimitiveType(TypeKind kind, MLIRContext *context) |
| : Type(kind, context) { |
| } |
| |
| PrimitiveType *PrimitiveType::get(TypeKind kind, MLIRContext *context) { |
| assert(kind <= TypeKind::LAST_PRIMITIVE_TYPE && "Not a primitive type kind"); |
| auto &impl = context->getImpl(); |
| |
| // We normally have these types. |
| if (impl.primitives[(int)kind]) |
| return impl.primitives[(int)kind]; |
| |
| // On the first use, we allocate them into the bump pointer. |
| auto *ptr = impl.allocator.Allocate<PrimitiveType>(); |
| |
| // Initialize the memory using placement new. |
| new(ptr) PrimitiveType(kind, context); |
| |
| // Cache and return it. |
| return impl.primitives[(int)kind] = ptr; |
| } |
| |
| FunctionType::FunctionType(Type *const *inputsAndResults, unsigned numInputs, |
| unsigned numResults, MLIRContext *context) |
| : Type(TypeKind::Function, context, numInputs), |
| numResults(numResults), inputsAndResults(inputsAndResults) { |
| } |
| |
| FunctionType *FunctionType::get(ArrayRef<Type*> inputs, ArrayRef<Type*> results, |
| MLIRContext *context) { |
| auto &impl = context->getImpl(); |
| |
| // Look to see if we already have this function type. |
| FunctionTypeKeyInfo::KeyTy key(inputs, results); |
| auto existing = impl.functions.insert_as(nullptr, key); |
| |
| // If we already have it, return that value. |
| if (!existing.second) |
| return *existing.first; |
| |
| // On the first use, we allocate them into the bump pointer. |
| auto *result = impl.allocator.Allocate<FunctionType>(); |
| |
| // Copy the inputs and results into the bump pointer. |
| SmallVector<Type*, 16> types; |
| types.reserve(inputs.size()+results.size()); |
| types.append(inputs.begin(), inputs.end()); |
| types.append(results.begin(), results.end()); |
| auto typesList = impl.copyInto(ArrayRef<Type*>(types)); |
| |
| // Initialize the memory using placement new. |
| new (result) FunctionType(typesList.data(), inputs.size(), results.size(), |
| context); |
| |
| // Cache and return it. |
| return *existing.first = result; |
| } |
| |
| |
| |
| VectorType::VectorType(ArrayRef<unsigned> shape, PrimitiveType *elementType, |
| MLIRContext *context) |
| : Type(TypeKind::Vector, context, shape.size()), |
| shapeElements(shape.data()), elementType(elementType) { |
| } |
| |
| |
| VectorType *VectorType::get(ArrayRef<unsigned> shape, Type *elementType) { |
| assert(!shape.empty() && "vector types must have at least one dimension"); |
| assert(isa<PrimitiveType>(elementType) && |
| "vectors elements must be primitives"); |
| |
| auto *context = elementType->getContext(); |
| auto &impl = context->getImpl(); |
| |
| // Look to see if we already have this vector type. |
| VectorTypeKeyInfo::KeyTy key(elementType, shape); |
| auto existing = impl.vectors.insert_as(nullptr, key); |
| |
| // If we already have it, return that value. |
| if (!existing.second) |
| return *existing.first; |
| |
| // On the first use, we allocate them into the bump pointer. |
| auto *result = impl.allocator.Allocate<VectorType>(); |
| |
| // Copy the shape into the bump pointer. |
| shape = impl.copyInto(shape); |
| |
| // Initialize the memory using placement new. |
| new (result) VectorType(shape, cast<PrimitiveType>(elementType), context); |
| |
| // Cache and return it. |
| return *existing.first = result; |
| } |
| |
| |
| TensorType::TensorType(TypeKind kind, Type *elementType, MLIRContext *context) |
| : Type(kind, context), elementType(elementType) { |
| assert((isa<PrimitiveType>(elementType) || isa<VectorType>(elementType)) && |
| "tensor elements must be primitives or vectors"); |
| assert(isa<TensorType>(this)); |
| } |
| |
| RankedTensorType::RankedTensorType(ArrayRef<int> shape, Type *elementType, |
| MLIRContext *context) |
| : TensorType(TypeKind::RankedTensor, elementType, context), |
| shapeElements(shape.data()) { |
| setSubclassData(shape.size()); |
| } |
| |
| UnrankedTensorType::UnrankedTensorType(Type *elementType, MLIRContext *context) |
| : TensorType(TypeKind::UnrankedTensor, elementType, context) { |
| } |
| |
| RankedTensorType *RankedTensorType::get(ArrayRef<int> shape, |
| Type *elementType) { |
| auto *context = elementType->getContext(); |
| auto &impl = context->getImpl(); |
| |
| // Look to see if we already have this ranked tensor type. |
| RankedTensorTypeKeyInfo::KeyTy key(elementType, shape); |
| auto existing = impl.rankedTensors.insert_as(nullptr, key); |
| |
| // If we already have it, return that value. |
| if (!existing.second) |
| return *existing.first; |
| |
| // On the first use, we allocate them into the bump pointer. |
| auto *result = impl.allocator.Allocate<RankedTensorType>(); |
| |
| // Copy the shape into the bump pointer. |
| shape = impl.copyInto(shape); |
| |
| // Initialize the memory using placement new. |
| new (result) RankedTensorType(shape, elementType, context); |
| |
| // Cache and return it. |
| return *existing.first = result; |
| } |
| |
| UnrankedTensorType *UnrankedTensorType::get(Type *elementType) { |
| auto *context = elementType->getContext(); |
| auto &impl = context->getImpl(); |
| |
| // Look to see if we already have this unranked tensor type. |
| auto existing = impl.unrankedTensors.insert({elementType, nullptr}); |
| |
| // If we already have it, return that value. |
| if (!existing.second) |
| return existing.first->second; |
| |
| // On the first use, we allocate them into the bump pointer. |
| auto *result = impl.allocator.Allocate<UnrankedTensorType>(); |
| |
| // Initialize the memory using placement new. |
| new (result) UnrankedTensorType(elementType, context); |
| |
| // Cache and return it. |
| return existing.first->second = result; |
| } |