blob: 8d8b0139831a05ad6e5aa9c46693269dbaea009c [file] [log] [blame]
Chris Lattnerf7e22732018-06-22 22:03:48 -07001//===- MLIRContext.cpp - MLIR Type Classes --------------------------------===//
2//
3// Copyright 2019 The MLIR Authors.
4//
5// Licensed under the Apache License, Version 2.0 (the "License");
6// you may not use this file except in compliance with the License.
7// You may obtain a copy of the License at
8//
9// http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing, software
12// distributed under the License is distributed on an "AS IS" BASIS,
13// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14// See the License for the specific language governing permissions and
15// limitations under the License.
16// =============================================================================
17
18#include "mlir/IR/MLIRContext.h"
Chris Lattnerdf1a2fc2018-07-05 21:20:59 -070019#include "AttributeListStorage.h"
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -070020#include "mlir/IR/AffineExpr.h"
21#include "mlir/IR/AffineMap.h"
Chris Lattner36b4ed12018-07-04 10:43:29 -070022#include "mlir/IR/Attributes.h"
23#include "mlir/IR/Identifier.h"
Chris Lattnerff0d5902018-07-05 09:12:11 -070024#include "mlir/IR/OperationSet.h"
25#include "mlir/IR/StandardOps.h"
Chris Lattnerf7e22732018-06-22 22:03:48 -070026#include "mlir/IR/Types.h"
Chris Lattner36b4ed12018-07-04 10:43:29 -070027#include "mlir/Support/STLExtras.h"
Chris Lattnerdf1a2fc2018-07-05 21:20:59 -070028#include "third_party/llvm/llvm/include/llvm/ADT/STLExtras.h"
Chris Lattnerf7e22732018-06-22 22:03:48 -070029#include "llvm/ADT/DenseSet.h"
Chris Lattnered65a732018-06-28 20:45:33 -070030#include "llvm/ADT/StringMap.h"
Chris Lattner95865062018-08-01 10:18:59 -070031#include "llvm/ADT/Twine.h"
Chris Lattnerf7e22732018-06-22 22:03:48 -070032#include "llvm/Support/Allocator.h"
Chris Lattner95865062018-08-01 10:18:59 -070033#include "llvm/Support/raw_ostream.h"
Chris Lattnerf7e22732018-06-22 22:03:48 -070034using namespace mlir;
35using namespace llvm;
36
37namespace {
James Molloy87d81022018-07-23 11:44:40 -070038struct FunctionTypeKeyInfo : DenseMapInfo<FunctionType *> {
Chris Lattnerf7e22732018-06-22 22:03:48 -070039 // Functions are uniqued based on their inputs and results.
James Molloy87d81022018-07-23 11:44:40 -070040 using KeyTy = std::pair<ArrayRef<Type *>, ArrayRef<Type *>>;
41 using DenseMapInfo<FunctionType *>::getHashValue;
42 using DenseMapInfo<FunctionType *>::isEqual;
Chris Lattnerf7e22732018-06-22 22:03:48 -070043
44 static unsigned getHashValue(KeyTy key) {
James Molloy87d81022018-07-23 11:44:40 -070045 return hash_combine(
46 hash_combine_range(key.first.begin(), key.first.end()),
47 hash_combine_range(key.second.begin(), key.second.end()));
Chris Lattnerf7e22732018-06-22 22:03:48 -070048 }
49
50 static bool isEqual(const KeyTy &lhs, const FunctionType *rhs) {
51 if (rhs == getEmptyKey() || rhs == getTombstoneKey())
52 return false;
53 return lhs == KeyTy(rhs->getInputs(), rhs->getResults());
54 }
55};
Uday Bondhugula015cbb12018-07-03 20:16:08 -070056
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -070057struct AffineMapKeyInfo : DenseMapInfo<AffineMap *> {
Uday Bondhugula015cbb12018-07-03 20:16:08 -070058 // Affine maps are uniqued based on their dim/symbol counts and affine
59 // expressions.
Uday Bondhugula0115dbb2018-07-11 21:31:07 -070060 using KeyTy = std::tuple<unsigned, unsigned, ArrayRef<AffineExpr *>,
61 ArrayRef<AffineExpr *>>;
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -070062 using DenseMapInfo<AffineMap *>::getHashValue;
63 using DenseMapInfo<AffineMap *>::isEqual;
64
65 static unsigned getHashValue(KeyTy key) {
Uday Bondhugula015cbb12018-07-03 20:16:08 -070066 return hash_combine(
Chris Lattner36b4ed12018-07-04 10:43:29 -070067 std::get<0>(key), std::get<1>(key),
Uday Bondhugula0115dbb2018-07-11 21:31:07 -070068 hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
69 hash_combine_range(std::get<3>(key).begin(), std::get<3>(key).end()));
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -070070 }
71
Uday Bondhugula015cbb12018-07-03 20:16:08 -070072 static bool isEqual(const KeyTy &lhs, const AffineMap *rhs) {
73 if (rhs == getEmptyKey() || rhs == getTombstoneKey())
74 return false;
Chris Lattner36b4ed12018-07-04 10:43:29 -070075 return lhs == std::make_tuple(rhs->getNumDims(), rhs->getNumSymbols(),
Uday Bondhugula0115dbb2018-07-11 21:31:07 -070076 rhs->getResults(), rhs->getRangeSizes());
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -070077 }
78};
79
James Molloy87d81022018-07-23 11:44:40 -070080struct VectorTypeKeyInfo : DenseMapInfo<VectorType *> {
Chris Lattnerf7e22732018-06-22 22:03:48 -070081 // Vectors are uniqued based on their element type and shape.
James Molloy87d81022018-07-23 11:44:40 -070082 using KeyTy = std::pair<Type *, ArrayRef<unsigned>>;
83 using DenseMapInfo<VectorType *>::getHashValue;
84 using DenseMapInfo<VectorType *>::isEqual;
Chris Lattnerf7e22732018-06-22 22:03:48 -070085
86 static unsigned getHashValue(KeyTy key) {
James Molloy87d81022018-07-23 11:44:40 -070087 return hash_combine(
88 DenseMapInfo<Type *>::getHashValue(key.first),
89 hash_combine_range(key.second.begin(), key.second.end()));
Chris Lattnerf7e22732018-06-22 22:03:48 -070090 }
91
92 static bool isEqual(const KeyTy &lhs, const VectorType *rhs) {
93 if (rhs == getEmptyKey() || rhs == getTombstoneKey())
94 return false;
95 return lhs == KeyTy(rhs->getElementType(), rhs->getShape());
96 }
97};
Chris Lattner36b4ed12018-07-04 10:43:29 -070098
James Molloy87d81022018-07-23 11:44:40 -070099struct RankedTensorTypeKeyInfo : DenseMapInfo<RankedTensorType *> {
MLIR Team355ec862018-06-23 18:09:09 -0700100 // Ranked tensors are uniqued based on their element type and shape.
James Molloy87d81022018-07-23 11:44:40 -0700101 using KeyTy = std::pair<Type *, ArrayRef<int>>;
102 using DenseMapInfo<RankedTensorType *>::getHashValue;
103 using DenseMapInfo<RankedTensorType *>::isEqual;
MLIR Team355ec862018-06-23 18:09:09 -0700104
105 static unsigned getHashValue(KeyTy key) {
James Molloy87d81022018-07-23 11:44:40 -0700106 return hash_combine(
107 DenseMapInfo<Type *>::getHashValue(key.first),
108 hash_combine_range(key.second.begin(), key.second.end()));
MLIR Team355ec862018-06-23 18:09:09 -0700109 }
110
111 static bool isEqual(const KeyTy &lhs, const RankedTensorType *rhs) {
112 if (rhs == getEmptyKey() || rhs == getTombstoneKey())
113 return false;
114 return lhs == KeyTy(rhs->getElementType(), rhs->getShape());
115 }
116};
Chris Lattner36b4ed12018-07-04 10:43:29 -0700117
James Molloy87d81022018-07-23 11:44:40 -0700118struct MemRefTypeKeyInfo : DenseMapInfo<MemRefType *> {
MLIR Team718c82f2018-07-16 09:45:22 -0700119 // MemRefs are uniqued based on their element type, shape, affine map
120 // composition, and memory space.
James Molloy87d81022018-07-23 11:44:40 -0700121 using KeyTy =
122 std::tuple<Type *, ArrayRef<int>, ArrayRef<AffineMap *>, unsigned>;
123 using DenseMapInfo<MemRefType *>::getHashValue;
124 using DenseMapInfo<MemRefType *>::isEqual;
MLIR Team718c82f2018-07-16 09:45:22 -0700125
126 static unsigned getHashValue(KeyTy key) {
127 return hash_combine(
James Molloy87d81022018-07-23 11:44:40 -0700128 DenseMapInfo<Type *>::getHashValue(std::get<0>(key)),
MLIR Team718c82f2018-07-16 09:45:22 -0700129 hash_combine_range(std::get<1>(key).begin(), std::get<1>(key).end()),
130 hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
131 std::get<3>(key));
132 }
133
134 static bool isEqual(const KeyTy &lhs, const MemRefType *rhs) {
135 if (rhs == getEmptyKey() || rhs == getTombstoneKey())
136 return false;
137 return lhs == std::make_tuple(rhs->getElementType(), rhs->getShape(),
138 rhs->getAffineMaps(), rhs->getMemorySpace());
139 }
140};
141
James Molloy87d81022018-07-23 11:44:40 -0700142struct ArrayAttrKeyInfo : DenseMapInfo<ArrayAttr *> {
Chris Lattner36b4ed12018-07-04 10:43:29 -0700143 // Array attributes are uniqued based on their elements.
James Molloy87d81022018-07-23 11:44:40 -0700144 using KeyTy = ArrayRef<Attribute *>;
145 using DenseMapInfo<ArrayAttr *>::getHashValue;
146 using DenseMapInfo<ArrayAttr *>::isEqual;
Chris Lattner36b4ed12018-07-04 10:43:29 -0700147
148 static unsigned getHashValue(KeyTy key) {
149 return hash_combine_range(key.begin(), key.end());
150 }
151
152 static bool isEqual(const KeyTy &lhs, const ArrayAttr *rhs) {
153 if (rhs == getEmptyKey() || rhs == getTombstoneKey())
154 return false;
155 return lhs == rhs->getValue();
156 }
157};
Chris Lattnerdf1a2fc2018-07-05 21:20:59 -0700158
159struct AttributeListKeyInfo : DenseMapInfo<AttributeListStorage *> {
160 // Array attributes are uniqued based on their elements.
161 using KeyTy = ArrayRef<NamedAttribute>;
162 using DenseMapInfo<AttributeListStorage *>::getHashValue;
163 using DenseMapInfo<AttributeListStorage *>::isEqual;
164
165 static unsigned getHashValue(KeyTy key) {
166 return hash_combine_range(key.begin(), key.end());
167 }
168
169 static bool isEqual(const KeyTy &lhs, const AttributeListStorage *rhs) {
170 if (rhs == getEmptyKey() || rhs == getTombstoneKey())
171 return false;
172 return lhs == rhs->getElements();
173 }
174};
175
Chris Lattnerf7e22732018-06-22 22:03:48 -0700176} // end anonymous namespace.
177
Chris Lattnerf7e22732018-06-22 22:03:48 -0700178namespace mlir {
179/// This is the implementation of the MLIRContext class, using the pImpl idiom.
180/// This class is completely private to this file, so everything is public.
181class MLIRContextImpl {
182public:
183 /// We put immortal objects into this allocator.
184 llvm::BumpPtrAllocator allocator;
185
Chris Lattnerff0d5902018-07-05 09:12:11 -0700186 /// This is the set of all operations that are registered with the system.
187 OperationSet operationSet;
188
Chris Lattner95865062018-08-01 10:18:59 -0700189 /// This is the handler to use to report issues, or null if not registered.
190 std::function<void(Attribute *location, StringRef message, bool isError)>
191 issueHandler;
192
Chris Lattnered65a732018-06-28 20:45:33 -0700193 /// These are identifiers uniqued into this MLIRContext.
James Molloy87d81022018-07-23 11:44:40 -0700194 llvm::StringMap<char, llvm::BumpPtrAllocator &> identifiers;
Chris Lattnered65a732018-06-28 20:45:33 -0700195
Chris Lattnerc3251192018-07-27 13:09:58 -0700196 // Uniquing table for 'other' types.
197 OtherType *otherTypes[int(Type::Kind::LAST_OTHER_TYPE) -
198 int(Type::Kind::FIRST_OTHER_TYPE) + 1] = {nullptr};
199
200 // Uniquing table for 'float' types.
201 FloatType *floatTypes[int(Type::Kind::LAST_FLOATING_POINT_TYPE) -
202 int(Type::Kind::FIRST_FLOATING_POINT_TYPE) + 1] = {
James Molloy87d81022018-07-23 11:44:40 -0700203 nullptr};
Chris Lattnerf7e22732018-06-22 22:03:48 -0700204
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -0700205 // Affine map uniquing.
206 using AffineMapSet = DenseSet<AffineMap *, AffineMapKeyInfo>;
207 AffineMapSet affineMaps;
208
Uday Bondhugula0b80a162018-07-03 21:34:58 -0700209 // Affine binary op expression uniquing. Figure out uniquing of dimensional
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700210 // or symbolic identifiers.
Uday Bondhugula3934d4d2018-07-09 09:00:25 -0700211 DenseMap<std::tuple<unsigned, AffineExpr *, AffineExpr *>, AffineExpr *>
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700212 affineExprs;
213
Uday Bondhugula4e5078b2018-07-24 22:34:09 -0700214 // Uniqui'ing of AffineDimExpr, AffineSymbolExpr's by their position.
215 std::vector<AffineDimExpr *> dimExprs;
216 std::vector<AffineSymbolExpr *> symbolExprs;
217
218 // Uniqui'ing of AffineConstantExpr using constant value as key.
219 DenseMap<int64_t, AffineConstantExpr *> constExprs;
220
Chris Lattnerf958bbe2018-06-29 22:08:05 -0700221 /// Integer type uniquing.
James Molloy87d81022018-07-23 11:44:40 -0700222 DenseMap<unsigned, IntegerType *> integers;
Chris Lattnerf958bbe2018-06-29 22:08:05 -0700223
Chris Lattnerf7e22732018-06-22 22:03:48 -0700224 /// Function type uniquing.
James Molloy87d81022018-07-23 11:44:40 -0700225 using FunctionTypeSet = DenseSet<FunctionType *, FunctionTypeKeyInfo>;
Chris Lattnerf7e22732018-06-22 22:03:48 -0700226 FunctionTypeSet functions;
227
228 /// Vector type uniquing.
James Molloy87d81022018-07-23 11:44:40 -0700229 using VectorTypeSet = DenseSet<VectorType *, VectorTypeKeyInfo>;
Chris Lattnerf7e22732018-06-22 22:03:48 -0700230 VectorTypeSet vectors;
231
MLIR Team355ec862018-06-23 18:09:09 -0700232 /// Ranked tensor type uniquing.
James Molloy87d81022018-07-23 11:44:40 -0700233 using RankedTensorTypeSet =
234 DenseSet<RankedTensorType *, RankedTensorTypeKeyInfo>;
MLIR Team355ec862018-06-23 18:09:09 -0700235 RankedTensorTypeSet rankedTensors;
236
237 /// Unranked tensor type uniquing.
James Molloy87d81022018-07-23 11:44:40 -0700238 DenseMap<Type *, UnrankedTensorType *> unrankedTensors;
MLIR Team355ec862018-06-23 18:09:09 -0700239
MLIR Team718c82f2018-07-16 09:45:22 -0700240 /// MemRef type uniquing.
James Molloy87d81022018-07-23 11:44:40 -0700241 using MemRefTypeSet = DenseSet<MemRefType *, MemRefTypeKeyInfo>;
MLIR Team718c82f2018-07-16 09:45:22 -0700242 MemRefTypeSet memrefs;
243
Chris Lattner36b4ed12018-07-04 10:43:29 -0700244 // Attribute uniquing.
James Molloy87d81022018-07-23 11:44:40 -0700245 BoolAttr *boolAttrs[2] = {nullptr};
246 DenseMap<int64_t, IntegerAttr *> integerAttrs;
247 DenseMap<int64_t, FloatAttr *> floatAttrs;
248 StringMap<StringAttr *> stringAttrs;
249 using ArrayAttrSet = DenseSet<ArrayAttr *, ArrayAttrKeyInfo>;
Chris Lattner36b4ed12018-07-04 10:43:29 -0700250 ArrayAttrSet arrayAttrs;
James Molloy87d81022018-07-23 11:44:40 -0700251 DenseMap<AffineMap *, AffineMapAttr *> affineMapAttrs;
Chris Lattnerdf1a2fc2018-07-05 21:20:59 -0700252 using AttributeListSet =
253 DenseSet<AttributeListStorage *, AttributeListKeyInfo>;
254 AttributeListSet attributeLists;
Chris Lattnerf7e22732018-06-22 22:03:48 -0700255
256public:
Chris Lattnerff0d5902018-07-05 09:12:11 -0700257 MLIRContextImpl() : identifiers(allocator) {
258 registerStandardOperations(operationSet);
259 }
Chris Lattnered65a732018-06-28 20:45:33 -0700260
Chris Lattnerf7e22732018-06-22 22:03:48 -0700261 /// Copy the specified array of elements into memory managed by our bump
262 /// pointer allocator. This assumes the elements are all PODs.
James Molloy87d81022018-07-23 11:44:40 -0700263 template <typename T> ArrayRef<T> copyInto(ArrayRef<T> elements) {
Chris Lattnerf7e22732018-06-22 22:03:48 -0700264 auto result = allocator.Allocate<T>(elements.size());
265 std::uninitialized_copy(elements.begin(), elements.end(), result);
266 return ArrayRef<T>(result, elements.size());
267 }
268};
269} // end namespace mlir
270
James Molloy87d81022018-07-23 11:44:40 -0700271MLIRContext::MLIRContext() : impl(new MLIRContextImpl()) {}
Chris Lattnerf7e22732018-06-22 22:03:48 -0700272
James Molloy87d81022018-07-23 11:44:40 -0700273MLIRContext::~MLIRContext() {}
Chris Lattnerf7e22732018-06-22 22:03:48 -0700274
Chris Lattner95865062018-08-01 10:18:59 -0700275/// Register an issue handler with this LLVM context. The issue handler is
276/// passed location information if present (nullptr if not) along with a
277/// message and a boolean that indicates whether this is an error or warning.
278void MLIRContext::registerDiagnosticHandler(
279 const std::function<void(Attribute *location, StringRef message,
280 bool isError)> &handler) {
281 getImpl().issueHandler = handler;
282}
283
284/// This emits a diagnostic using the registered issue handle if present, or
285/// with the default behavior if not. The MLIR compiler should not generally
286/// interact with this, it should use methods on Operation instead.
287void MLIRContext::emitDiagnostic(Attribute *location,
288 const llvm::Twine &message,
289 bool isError) const {
290 // If we had a handler registered, emit the diagnostic using it.
291 auto handler = getImpl().issueHandler;
292 if (handler)
293 return handler(location, message.str(), isError);
294
295 // The default behavior for warnings is to ignore them.
296 if (!isError)
297 return;
298
299 // The default behavior for errors is to emit them to stderr and exit.
300 llvm::errs() << message.str() << "\n";
301 llvm::errs().flush();
302 exit(1);
303}
304
Chris Lattnerff0d5902018-07-05 09:12:11 -0700305/// Return the operation set associated with the specified MLIRContext object.
306OperationSet &OperationSet::get(MLIRContext *context) {
307 return context->getImpl().operationSet;
308}
Chris Lattnerf7e22732018-06-22 22:03:48 -0700309
Chris Lattner21e67f62018-07-06 10:46:19 -0700310/// If this operation has a registered operation description in the
311/// OperationSet, return it. Otherwise return null.
Chris Lattner95865062018-08-01 10:18:59 -0700312const AbstractOperation *Operation::getAbstractOperation() const {
313 return OperationSet::get(getContext()).lookup(getName().str());
Chris Lattner21e67f62018-07-06 10:46:19 -0700314}
315
Chris Lattnered65a732018-06-28 20:45:33 -0700316//===----------------------------------------------------------------------===//
Chris Lattner36b4ed12018-07-04 10:43:29 -0700317// Identifier uniquing
Chris Lattnered65a732018-06-28 20:45:33 -0700318//===----------------------------------------------------------------------===//
319
320/// Return an identifier for the specified string.
321Identifier Identifier::get(StringRef str, const MLIRContext *context) {
322 assert(!str.empty() && "Cannot create an empty identifier");
323 assert(str.find('\0') == StringRef::npos &&
324 "Cannot create an identifier with a nul character");
325
326 auto &impl = context->getImpl();
327 auto it = impl.identifiers.insert({str, char()}).first;
328 return Identifier(it->getKeyData());
329}
330
Chris Lattnered65a732018-06-28 20:45:33 -0700331//===----------------------------------------------------------------------===//
Chris Lattner36b4ed12018-07-04 10:43:29 -0700332// Type uniquing
Chris Lattnered65a732018-06-28 20:45:33 -0700333//===----------------------------------------------------------------------===//
334
Chris Lattnerf958bbe2018-06-29 22:08:05 -0700335IntegerType *IntegerType::get(unsigned width, MLIRContext *context) {
336 auto &impl = context->getImpl();
337
338 auto *&result = impl.integers[width];
339 if (!result) {
340 result = impl.allocator.Allocate<IntegerType>();
341 new (result) IntegerType(width, context);
342 }
343
344 return result;
Chris Lattnerf7e22732018-06-22 22:03:48 -0700345}
346
Chris Lattnerc3251192018-07-27 13:09:58 -0700347FloatType *FloatType::get(Kind kind, MLIRContext *context) {
348 assert(kind >= Kind::FIRST_FLOATING_POINT_TYPE &&
349 kind <= Kind::LAST_FLOATING_POINT_TYPE && "Not an FP type kind");
350 auto &impl = context->getImpl();
351
352 // We normally have these types.
353 auto *&entry =
354 impl.floatTypes[(int)kind - int(Kind::FIRST_FLOATING_POINT_TYPE)];
355 if (entry)
356 return entry;
357
358 // On the first use, we allocate them into the bump pointer.
359 auto *ptr = impl.allocator.Allocate<FloatType>();
360
361 // Initialize the memory using placement new.
362 new (ptr) FloatType(kind, context);
363
364 // Cache and return it.
365 return entry = ptr;
366}
367
368OtherType *OtherType::get(Kind kind, MLIRContext *context) {
369 assert(kind >= Kind::FIRST_OTHER_TYPE && kind <= Kind::LAST_OTHER_TYPE &&
370 "Not an 'other' type kind");
371 auto &impl = context->getImpl();
372
373 // We normally have these types.
374 auto *&entry = impl.otherTypes[(int)kind - int(Kind::FIRST_OTHER_TYPE)];
375 if (entry)
376 return entry;
377
378 // On the first use, we allocate them into the bump pointer.
379 auto *ptr = impl.allocator.Allocate<OtherType>();
380
381 // Initialize the memory using placement new.
382 new (ptr) OtherType(kind, context);
383
384 // Cache and return it.
385 return entry = ptr;
386}
387
James Molloy87d81022018-07-23 11:44:40 -0700388FunctionType *FunctionType::get(ArrayRef<Type *> inputs,
389 ArrayRef<Type *> results,
Chris Lattnerf7e22732018-06-22 22:03:48 -0700390 MLIRContext *context) {
391 auto &impl = context->getImpl();
392
393 // Look to see if we already have this function type.
394 FunctionTypeKeyInfo::KeyTy key(inputs, results);
395 auto existing = impl.functions.insert_as(nullptr, key);
396
397 // If we already have it, return that value.
398 if (!existing.second)
399 return *existing.first;
400
401 // On the first use, we allocate them into the bump pointer.
402 auto *result = impl.allocator.Allocate<FunctionType>();
403
404 // Copy the inputs and results into the bump pointer.
James Molloy87d81022018-07-23 11:44:40 -0700405 SmallVector<Type *, 16> types;
406 types.reserve(inputs.size() + results.size());
Chris Lattnerf7e22732018-06-22 22:03:48 -0700407 types.append(inputs.begin(), inputs.end());
408 types.append(results.begin(), results.end());
James Molloy87d81022018-07-23 11:44:40 -0700409 auto typesList = impl.copyInto(ArrayRef<Type *>(types));
Chris Lattnerf7e22732018-06-22 22:03:48 -0700410
411 // Initialize the memory using placement new.
James Molloy87d81022018-07-23 11:44:40 -0700412 new (result)
413 FunctionType(typesList.data(), inputs.size(), results.size(), context);
Chris Lattnerf7e22732018-06-22 22:03:48 -0700414
415 // Cache and return it.
416 return *existing.first = result;
417}
418
Chris Lattnerf7e22732018-06-22 22:03:48 -0700419VectorType *VectorType::get(ArrayRef<unsigned> shape, Type *elementType) {
420 assert(!shape.empty() && "vector types must have at least one dimension");
Chris Lattnerc3251192018-07-27 13:09:58 -0700421 assert((isa<FloatType>(elementType) || isa<IntegerType>(elementType)) &&
Chris Lattnerf7e22732018-06-22 22:03:48 -0700422 "vectors elements must be primitives");
423
424 auto *context = elementType->getContext();
425 auto &impl = context->getImpl();
426
427 // Look to see if we already have this vector type.
428 VectorTypeKeyInfo::KeyTy key(elementType, shape);
429 auto existing = impl.vectors.insert_as(nullptr, key);
430
431 // If we already have it, return that value.
432 if (!existing.second)
433 return *existing.first;
434
435 // On the first use, we allocate them into the bump pointer.
436 auto *result = impl.allocator.Allocate<VectorType>();
437
438 // Copy the shape into the bump pointer.
439 shape = impl.copyInto(shape);
440
441 // Initialize the memory using placement new.
Jacques Pienaar3cdb8542018-07-23 11:48:22 -0700442 new (result) VectorType(shape, elementType, context);
Chris Lattnerf7e22732018-06-22 22:03:48 -0700443
444 // Cache and return it.
445 return *existing.first = result;
446}
MLIR Team355ec862018-06-23 18:09:09 -0700447
Chris Lattnereee1a2d2018-07-04 09:13:39 -0700448TensorType::TensorType(Kind kind, Type *elementType, MLIRContext *context)
James Molloy87d81022018-07-23 11:44:40 -0700449 : Type(kind, context), elementType(elementType) {
Chris Lattnerc3251192018-07-27 13:09:58 -0700450 assert((isa<FloatType>(elementType) || isa<VectorType>(elementType) ||
Chris Lattnerf958bbe2018-06-29 22:08:05 -0700451 isa<IntegerType>(elementType)) &&
MLIR Team355ec862018-06-23 18:09:09 -0700452 "tensor elements must be primitives or vectors");
453 assert(isa<TensorType>(this));
454}
455
MLIR Team355ec862018-06-23 18:09:09 -0700456RankedTensorType *RankedTensorType::get(ArrayRef<int> shape,
457 Type *elementType) {
458 auto *context = elementType->getContext();
459 auto &impl = context->getImpl();
460
461 // Look to see if we already have this ranked tensor type.
462 RankedTensorTypeKeyInfo::KeyTy key(elementType, shape);
463 auto existing = impl.rankedTensors.insert_as(nullptr, key);
464
465 // If we already have it, return that value.
466 if (!existing.second)
467 return *existing.first;
468
469 // On the first use, we allocate them into the bump pointer.
470 auto *result = impl.allocator.Allocate<RankedTensorType>();
471
472 // Copy the shape into the bump pointer.
473 shape = impl.copyInto(shape);
474
475 // Initialize the memory using placement new.
476 new (result) RankedTensorType(shape, elementType, context);
477
478 // Cache and return it.
479 return *existing.first = result;
480}
481
482UnrankedTensorType *UnrankedTensorType::get(Type *elementType) {
483 auto *context = elementType->getContext();
484 auto &impl = context->getImpl();
485
486 // Look to see if we already have this unranked tensor type.
Chris Lattner36b4ed12018-07-04 10:43:29 -0700487 auto *&result = impl.unrankedTensors[elementType];
MLIR Team355ec862018-06-23 18:09:09 -0700488
489 // If we already have it, return that value.
Chris Lattner36b4ed12018-07-04 10:43:29 -0700490 if (result)
491 return result;
MLIR Team355ec862018-06-23 18:09:09 -0700492
493 // On the first use, we allocate them into the bump pointer.
Chris Lattner36b4ed12018-07-04 10:43:29 -0700494 result = impl.allocator.Allocate<UnrankedTensorType>();
MLIR Team355ec862018-06-23 18:09:09 -0700495
496 // Initialize the memory using placement new.
497 new (result) UnrankedTensorType(elementType, context);
Chris Lattner36b4ed12018-07-04 10:43:29 -0700498 return result;
499}
500
MLIR Team718c82f2018-07-16 09:45:22 -0700501MemRefType *MemRefType::get(ArrayRef<int> shape, Type *elementType,
James Molloy87d81022018-07-23 11:44:40 -0700502 ArrayRef<AffineMap *> affineMapComposition,
MLIR Team718c82f2018-07-16 09:45:22 -0700503 unsigned memorySpace) {
504 auto *context = elementType->getContext();
505 auto &impl = context->getImpl();
506
507 // Look to see if we already have this memref type.
James Molloy87d81022018-07-23 11:44:40 -0700508 auto key =
509 std::make_tuple(elementType, shape, affineMapComposition, memorySpace);
MLIR Team718c82f2018-07-16 09:45:22 -0700510 auto existing = impl.memrefs.insert_as(nullptr, key);
511
512 // If we already have it, return that value.
513 if (!existing.second)
514 return *existing.first;
515
516 // On the first use, we allocate them into the bump pointer.
517 auto *result = impl.allocator.Allocate<MemRefType>();
518
519 // Copy the shape into the bump pointer.
520 shape = impl.copyInto(shape);
521
522 // Copy the affine map composition into the bump pointer.
523 // TODO(andydavis) Assert that the structure of the composition is valid.
James Molloy87d81022018-07-23 11:44:40 -0700524 affineMapComposition =
525 impl.copyInto(ArrayRef<AffineMap *>(affineMapComposition));
MLIR Team718c82f2018-07-16 09:45:22 -0700526
527 // Initialize the memory using placement new.
528 new (result) MemRefType(shape, elementType, affineMapComposition, memorySpace,
529 context);
530 // Cache and return it.
531 return *existing.first = result;
532}
533
Chris Lattner36b4ed12018-07-04 10:43:29 -0700534//===----------------------------------------------------------------------===//
535// Attribute uniquing
536//===----------------------------------------------------------------------===//
537
538BoolAttr *BoolAttr::get(bool value, MLIRContext *context) {
539 auto *&result = context->getImpl().boolAttrs[value];
540 if (result)
541 return result;
542
543 result = context->getImpl().allocator.Allocate<BoolAttr>();
544 new (result) BoolAttr(value);
545 return result;
546}
547
548IntegerAttr *IntegerAttr::get(int64_t value, MLIRContext *context) {
549 auto *&result = context->getImpl().integerAttrs[value];
550 if (result)
551 return result;
552
553 result = context->getImpl().allocator.Allocate<IntegerAttr>();
554 new (result) IntegerAttr(value);
555 return result;
556}
557
558FloatAttr *FloatAttr::get(double value, MLIRContext *context) {
559 // We hash based on the bit representation of the double to ensure we don't
560 // merge things like -0.0 and 0.0 in the hash comparison.
561 union {
562 double floatValue;
563 int64_t intValue;
564 };
565 floatValue = value;
566
567 auto *&result = context->getImpl().floatAttrs[intValue];
568 if (result)
569 return result;
570
571 result = context->getImpl().allocator.Allocate<FloatAttr>();
572 new (result) FloatAttr(value);
573 return result;
574}
575
576StringAttr *StringAttr::get(StringRef bytes, MLIRContext *context) {
577 auto it = context->getImpl().stringAttrs.insert({bytes, nullptr}).first;
578
579 if (it->second)
580 return it->second;
581
582 auto result = context->getImpl().allocator.Allocate<StringAttr>();
583 new (result) StringAttr(it->first());
584 it->second = result;
585 return result;
586}
587
James Molloy87d81022018-07-23 11:44:40 -0700588ArrayAttr *ArrayAttr::get(ArrayRef<Attribute *> value, MLIRContext *context) {
Chris Lattner36b4ed12018-07-04 10:43:29 -0700589 auto &impl = context->getImpl();
590
591 // Look to see if we already have this.
592 auto existing = impl.arrayAttrs.insert_as(nullptr, value);
593
594 // If we already have it, return that value.
595 if (!existing.second)
596 return *existing.first;
597
598 // On the first use, we allocate them into the bump pointer.
599 auto *result = impl.allocator.Allocate<ArrayAttr>();
600
601 // Copy the elements into the bump pointer.
602 value = impl.copyInto(value);
603
604 // Initialize the memory using placement new.
605 new (result) ArrayAttr(value);
MLIR Team355ec862018-06-23 18:09:09 -0700606
607 // Cache and return it.
Chris Lattner36b4ed12018-07-04 10:43:29 -0700608 return *existing.first = result;
MLIR Team355ec862018-06-23 18:09:09 -0700609}
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -0700610
James Molloy87d81022018-07-23 11:44:40 -0700611AffineMapAttr *AffineMapAttr::get(AffineMap *value, MLIRContext *context) {
MLIR Teamb61885d2018-07-18 16:29:21 -0700612 auto *&result = context->getImpl().affineMapAttrs[value];
613 if (result)
614 return result;
615
616 result = context->getImpl().allocator.Allocate<AffineMapAttr>();
617 new (result) AffineMapAttr(value);
618 return result;
619}
620
Chris Lattnerdf1a2fc2018-07-05 21:20:59 -0700621/// Perform a three-way comparison between the names of the specified
622/// NamedAttributes.
623static int compareNamedAttributes(const NamedAttribute *lhs,
624 const NamedAttribute *rhs) {
625 return lhs->first.str().compare(rhs->first.str());
626}
627
628/// Given a list of NamedAttribute's, canonicalize the list (sorting
629/// by name) and return the unique'd result. Note that the empty list is
630/// represented with a null pointer.
631AttributeListStorage *AttributeListStorage::get(ArrayRef<NamedAttribute> attrs,
632 MLIRContext *context) {
633 // We need to sort the element list to canonicalize it, but we also don't want
634 // to do a ton of work in the super common case where the element list is
635 // already sorted.
636 SmallVector<NamedAttribute, 8> storage;
637 switch (attrs.size()) {
638 case 0:
639 // An empty list is represented with a null pointer.
640 return nullptr;
641 case 1:
642 // A single element is already sorted.
643 break;
644 case 2:
645 // Don't invoke a general sort for two element case.
646 if (attrs[0].first.str() > attrs[1].first.str()) {
647 storage.push_back(attrs[1]);
648 storage.push_back(attrs[0]);
649 attrs = storage;
650 }
651 break;
652 default:
653 // Check to see they are sorted already.
654 bool isSorted = true;
655 for (unsigned i = 0, e = attrs.size() - 1; i != e; ++i) {
656 if (attrs[i].first.str() > attrs[i + 1].first.str()) {
657 isSorted = false;
658 break;
659 }
660 }
661 // If not, do a general sort.
662 if (!isSorted) {
663 storage.append(attrs.begin(), attrs.end());
664 llvm::array_pod_sort(storage.begin(), storage.end(),
665 compareNamedAttributes);
666 attrs = storage;
667 }
668 }
669
670 // Ok, now that we've canonicalized our attributes, unique them.
671 auto &impl = context->getImpl();
672
673 // Look to see if we already have this.
674 auto existing = impl.attributeLists.insert_as(nullptr, attrs);
675
676 // If we already have it, return that value.
677 if (!existing.second)
678 return *existing.first;
679
680 // Otherwise, allocate a new AttributeListStorage, unique it and return it.
681 auto byteSize =
682 AttributeListStorage::totalSizeToAlloc<NamedAttribute>(attrs.size());
683 auto rawMem = impl.allocator.Allocate(byteSize, alignof(NamedAttribute));
684
685 // Placement initialize the AggregateSymbolicValue.
686 auto result = ::new (rawMem) AttributeListStorage(attrs.size());
687 std::uninitialized_copy(attrs.begin(), attrs.end(),
688 result->getTrailingObjects<NamedAttribute>());
689 return *existing.first = result;
690}
691
Chris Lattner36b4ed12018-07-04 10:43:29 -0700692//===----------------------------------------------------------------------===//
693// AffineMap and AffineExpr uniquing
694//===----------------------------------------------------------------------===//
695
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700696AffineMap *AffineMap::get(unsigned dimCount, unsigned symbolCount,
697 ArrayRef<AffineExpr *> results,
Uday Bondhugula0115dbb2018-07-11 21:31:07 -0700698 ArrayRef<AffineExpr *> rangeSizes,
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -0700699 MLIRContext *context) {
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700700 // The number of results can't be zero.
701 assert(!results.empty());
702
Uday Bondhugula0115dbb2018-07-11 21:31:07 -0700703 assert(rangeSizes.empty() || results.size() == rangeSizes.size());
704
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700705 auto &impl = context->getImpl();
706
707 // Check if we already have this affine map.
Uday Bondhugula0115dbb2018-07-11 21:31:07 -0700708 auto key = std::make_tuple(dimCount, symbolCount, results, rangeSizes);
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700709 auto existing = impl.affineMaps.insert_as(nullptr, key);
710
711 // If we already have it, return that value.
712 if (!existing.second)
713 return *existing.first;
714
715 // On the first use, we allocate them into the bump pointer.
716 auto *res = impl.allocator.Allocate<AffineMap>();
717
Uday Bondhugula1e500b42018-07-12 18:04:04 -0700718 // Copy the results and range sizes into the bump pointer.
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700719 results = impl.copyInto(ArrayRef<AffineExpr *>(results));
Uday Bondhugula0115dbb2018-07-11 21:31:07 -0700720 rangeSizes = impl.copyInto(ArrayRef<AffineExpr *>(rangeSizes));
721
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700722 // Initialize the memory using placement new.
Uday Bondhugula0115dbb2018-07-11 21:31:07 -0700723 new (res) AffineMap(dimCount, symbolCount, results.size(), results.data(),
724 rangeSizes.empty() ? nullptr : rangeSizes.data());
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700725
726 // Cache and return it.
727 return *existing.first = res;
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -0700728}
729
Uday Bondhugulae082aad2018-07-11 21:19:31 -0700730/// Return a binary affine op expression with the specified op type and
731/// operands: if it doesn't exist, create it and store it; if it is already
732/// present, return from the list. The stored expressions are unique: they are
733/// constructed and stored in a simplified/canonicalized form. The result after
734/// simplification could be any form of affine expression.
735AffineExpr *AffineBinaryOpExpr::get(AffineExpr::Kind kind, AffineExpr *lhs,
736 AffineExpr *rhs, MLIRContext *context) {
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700737 auto &impl = context->getImpl();
738
Uday Bondhugula0dd940c2018-07-26 00:19:21 -0700739 // Check if we already have this affine expression, and return it if we do.
Uday Bondhugulae082aad2018-07-11 21:19:31 -0700740 auto keyValue = std::make_tuple((unsigned)kind, lhs, rhs);
Uday Bondhugula0dd940c2018-07-26 00:19:21 -0700741 auto cached = impl.affineExprs.find(keyValue);
742 if (cached != impl.affineExprs.end())
743 return cached->second;
Uday Bondhugula3934d4d2018-07-09 09:00:25 -0700744
Uday Bondhugulae082aad2018-07-11 21:19:31 -0700745 // Simplify the expression if possible.
746 AffineExpr *simplified;
747 switch (kind) {
748 case Kind::Add:
749 simplified = AffineBinaryOpExpr::simplifyAdd(lhs, rhs, context);
750 break;
Uday Bondhugulae082aad2018-07-11 21:19:31 -0700751 case Kind::Mul:
752 simplified = AffineBinaryOpExpr::simplifyMul(lhs, rhs, context);
753 break;
754 case Kind::FloorDiv:
755 simplified = AffineBinaryOpExpr::simplifyFloorDiv(lhs, rhs, context);
756 break;
757 case Kind::CeilDiv:
758 simplified = AffineBinaryOpExpr::simplifyCeilDiv(lhs, rhs, context);
759 break;
760 case Kind::Mod:
761 simplified = AffineBinaryOpExpr::simplifyMod(lhs, rhs, context);
762 break;
763 default:
764 llvm_unreachable("unexpected binary affine expr");
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700765 }
Uday Bondhugulae082aad2018-07-11 21:19:31 -0700766
Uday Bondhugula0dd940c2018-07-26 00:19:21 -0700767 // The simplified one would have already been cached; just return it.
Uday Bondhugulae082aad2018-07-11 21:19:31 -0700768 if (simplified)
Uday Bondhugula0dd940c2018-07-26 00:19:21 -0700769 return simplified;
Uday Bondhugulae082aad2018-07-11 21:19:31 -0700770
Uday Bondhugula0dd940c2018-07-26 00:19:21 -0700771 // An expression with these operands will already be in the
772 // simplified/canonical form. Create and store it.
773 auto *result = impl.allocator.Allocate<AffineBinaryOpExpr>();
Uday Bondhugulae082aad2018-07-11 21:19:31 -0700774 // Initialize the memory using placement new.
Uday Bondhugula0dd940c2018-07-26 00:19:21 -0700775 new (result) AffineBinaryOpExpr(kind, lhs, rhs);
776 bool inserted = impl.affineExprs.insert({keyValue, result}).second;
777 assert(inserted && "the expression shouldn't already exist in the map");
778 (void)inserted;
779 return result;
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -0700780}
781
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -0700782AffineDimExpr *AffineDimExpr::get(unsigned position, MLIRContext *context) {
Uday Bondhugula4e5078b2018-07-24 22:34:09 -0700783 auto &impl = context->getImpl();
784
785 // Check if we need to resize.
786 if (position >= impl.dimExprs.size())
787 impl.dimExprs.resize(position + 1, nullptr);
788
789 auto *&result = impl.dimExprs[position];
790 if (result)
791 return result;
792
793 result = impl.allocator.Allocate<AffineDimExpr>();
794 // Initialize the memory using placement new.
795 new (result) AffineDimExpr(position);
796 return result;
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -0700797}
798
799AffineSymbolExpr *AffineSymbolExpr::get(unsigned position,
800 MLIRContext *context) {
Uday Bondhugula4e5078b2018-07-24 22:34:09 -0700801 auto &impl = context->getImpl();
802
803 // Check if we need to resize.
804 if (position >= impl.symbolExprs.size())
805 impl.symbolExprs.resize(position + 1, nullptr);
806
807 auto *&result = impl.symbolExprs[position];
808 if (result)
809 return result;
810
811 result = impl.allocator.Allocate<AffineSymbolExpr>();
812 // Initialize the memory using placement new.
813 new (result) AffineSymbolExpr(position);
814 return result;
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -0700815}
816
817AffineConstantExpr *AffineConstantExpr::get(int64_t constant,
818 MLIRContext *context) {
Uday Bondhugula4e5078b2018-07-24 22:34:09 -0700819 auto &impl = context->getImpl();
820 auto *&result = impl.constExprs[constant];
821
822 if (result)
823 return result;
824
825 result = impl.allocator.Allocate<AffineConstantExpr>();
826 // Initialize the memory using placement new.
827 new (result) AffineConstantExpr(constant);
828 return result;
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -0700829}