Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1 | // This file was extracted from the TCG Published |
| 2 | // Trusted Platform Module Library |
| 3 | // Part 4: Supporting Routines |
| 4 | // Family "2.0" |
| 5 | // Level 00 Revision 01.16 |
| 6 | // October 30, 2014 |
| 7 | |
| 8 | #define NV_C |
| 9 | #include "InternalRoutines.h" |
Vadim Bendebury | 6c73a9e | 2015-05-31 16:06:18 -0700 | [diff] [blame] | 10 | #include "Platform.h" |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 11 | // |
| 12 | // NV Index/evict object iterator value |
| 13 | // |
| 14 | typedef UINT32 NV_ITER; // type of a NV iterator |
| 15 | #define NV_ITER_INIT 0xFFFFFFFF // initial value to start an |
| 16 | // iterator |
| 17 | // |
| 18 | // |
| 19 | // NV Utility Functions |
| 20 | // |
| 21 | // NvCheckState() |
| 22 | // |
| 23 | // Function to check the NV state by accessing the platform-specific function to get the NV state. The result |
| 24 | // state is registered in s_NvIsAvailable that will be reported by NvIsAvailable(). |
| 25 | // This function is called at the beginning of ExecuteCommand() before any potential call to NvIsAvailable(). |
| 26 | // |
| 27 | void |
| 28 | NvCheckState(void) |
| 29 | { |
| 30 | int func_return; |
| 31 | func_return = _plat__IsNvAvailable(); |
| 32 | if(func_return == 0) |
| 33 | { |
| 34 | s_NvStatus = TPM_RC_SUCCESS; |
| 35 | } |
| 36 | else if(func_return == 1) |
| 37 | { |
| 38 | s_NvStatus = TPM_RC_NV_UNAVAILABLE; |
| 39 | } |
| 40 | else |
| 41 | { |
| 42 | s_NvStatus = TPM_RC_NV_RATE; |
| 43 | } |
| 44 | return; |
| 45 | } |
| 46 | // |
| 47 | // |
| 48 | // NvIsAvailable() |
| 49 | // |
| 50 | // This function returns the NV availability parameter. |
| 51 | // |
| 52 | // Error Returns Meaning |
| 53 | // |
| 54 | // TPM_RC_SUCCESS NV is available |
| 55 | // TPM_RC_NV_RATE NV is unavailable because of rate limit |
| 56 | // TPM_RC_NV_UNAVAILABLE NV is inaccessible |
| 57 | // |
| 58 | TPM_RC |
| 59 | NvIsAvailable( |
| 60 | void |
| 61 | ) |
| 62 | { |
| 63 | return s_NvStatus; |
| 64 | } |
| 65 | // |
| 66 | // |
| 67 | // NvCommit |
| 68 | // |
| 69 | // This is a wrapper for the platform function to commit pending NV writes. |
| 70 | // |
| 71 | BOOL |
| 72 | NvCommit( |
| 73 | void |
| 74 | ) |
| 75 | { |
| 76 | BOOL success = (_plat__NvCommit() == 0); |
| 77 | return success; |
| 78 | } |
| 79 | // |
| 80 | // |
| 81 | // NvReadMaxCount() |
| 82 | // |
| 83 | // This function returns the max NV counter value. |
| 84 | // |
| 85 | static UINT64 |
| 86 | NvReadMaxCount( |
| 87 | void |
| 88 | ) |
| 89 | { |
| 90 | UINT64 countValue; |
| 91 | _plat__NvMemoryRead(s_maxCountAddr, sizeof(UINT64), &countValue); |
| 92 | return countValue; |
| 93 | } |
| 94 | // |
| 95 | // |
| 96 | // NvWriteMaxCount() |
| 97 | // |
| 98 | // This function updates the max counter value to NV memory. |
| 99 | // |
| 100 | static void |
| 101 | NvWriteMaxCount( |
| 102 | UINT64 maxCount |
| 103 | ) |
| 104 | { |
| 105 | _plat__NvMemoryWrite(s_maxCountAddr, sizeof(UINT64), &maxCount); |
| 106 | return; |
| 107 | } |
| 108 | // |
| 109 | // |
| 110 | // NV Index and Persistent Object Access Functions |
| 111 | // |
| 112 | // Introduction |
| 113 | // |
| 114 | // These functions are used to access an NV Index and persistent object memory. In this implementation, |
| 115 | // the memory is simulated with RAM. The data in dynamic area is organized as a linked list, starting from |
| 116 | // address s_evictNvStart. The first 4 bytes of a node in this link list is the offset of next node, followed by |
| 117 | // the data entry. A 0-valued offset value indicates the end of the list. If the data entry area of the last node |
| 118 | // happens to reach the end of the dynamic area without space left for an additional 4 byte end marker, the |
| 119 | // end address, s_evictNvEnd, should serve as the mark of list end |
| 120 | // |
| 121 | // NvNext() |
| 122 | // |
| 123 | // This function provides a method to traverse every data entry in NV dynamic area. |
| 124 | // To begin with, parameter iter should be initialized to NV_ITER_INIT indicating the first element. Every |
| 125 | // time this function is called, the value in iter would be adjusted pointing to the next element in traversal. If |
| 126 | // there is no next element, iter value would be 0. This function returns the address of the 'data entry' |
| 127 | // pointed by the iter. If there is no more element in the set, a 0 value is returned indicating the end of |
| 128 | // traversal. |
| 129 | // |
| 130 | static UINT32 |
| 131 | NvNext( |
| 132 | NV_ITER *iter |
| 133 | ) |
| 134 | { |
| 135 | NV_ITER currentIter; |
| 136 | // If iterator is at the beginning of list |
| 137 | if(*iter == NV_ITER_INIT) |
| 138 | { |
| 139 | // Initialize iterator |
| 140 | *iter = s_evictNvStart; |
| 141 | } |
| 142 | // If iterator reaches the end of NV space, or iterator indicates list end |
| 143 | if(*iter + sizeof(UINT32) > s_evictNvEnd || *iter == 0) |
| 144 | return 0; |
| 145 | // Save the current iter offset |
| 146 | currentIter = *iter; |
| 147 | // Adjust iter pointer pointing to next entity |
| 148 | // Read pointer value |
| 149 | _plat__NvMemoryRead(*iter, sizeof(UINT32), iter); |
| 150 | if(*iter == 0) return 0; |
| 151 | return currentIter + sizeof(UINT32); // entity stores after the pointer |
| 152 | } |
| 153 | // |
| 154 | // |
| 155 | // NvGetEnd() |
| 156 | // |
| 157 | // Function to find the end of the NV dynamic data list |
| 158 | // |
| 159 | static UINT32 |
| 160 | NvGetEnd( |
| 161 | void |
| 162 | ) |
| 163 | { |
| 164 | NV_ITER iter = NV_ITER_INIT; |
| 165 | UINT32 endAddr = s_evictNvStart; |
| 166 | UINT32 currentAddr; |
| 167 | while((currentAddr = NvNext(&iter)) != 0) |
| 168 | endAddr = currentAddr; |
| 169 | if(endAddr != s_evictNvStart) |
| 170 | { |
| 171 | // Read offset |
| 172 | endAddr -= sizeof(UINT32); |
| 173 | _plat__NvMemoryRead(endAddr, sizeof(UINT32), &endAddr); |
| 174 | } |
| 175 | return endAddr; |
| 176 | } |
| 177 | // |
| 178 | // |
| 179 | // NvGetFreeByte |
| 180 | // |
| 181 | // This function returns the number of free octets in NV space. |
| 182 | // |
| 183 | static UINT32 |
| 184 | NvGetFreeByte( |
| 185 | void |
| 186 | ) |
| 187 | { |
| 188 | return s_evictNvEnd - NvGetEnd(); |
| 189 | } |
| 190 | // |
| 191 | // NvGetEvictObjectSize |
| 192 | // |
| 193 | // This function returns the size of an evict object in NV space |
| 194 | // |
| 195 | static UINT32 |
| 196 | NvGetEvictObjectSize( |
| 197 | void |
| 198 | ) |
| 199 | { |
| 200 | return sizeof(TPM_HANDLE) + sizeof(OBJECT) + sizeof(UINT32); |
| 201 | } |
| 202 | // |
| 203 | // |
| 204 | // NvGetCounterSize |
| 205 | // |
| 206 | // This function returns the size of a counter index in NV space. |
| 207 | // |
| 208 | static UINT32 |
| 209 | NvGetCounterSize( |
| 210 | void |
| 211 | ) |
| 212 | { |
| 213 | // It takes an offset field, a handle and the sizeof(NV_INDEX) and |
| 214 | // sizeof(UINT64) for counter data |
| 215 | return sizeof(TPM_HANDLE) + sizeof(NV_INDEX) + sizeof(UINT64) + sizeof(UINT32); |
| 216 | } |
| 217 | // |
| 218 | // |
| 219 | // NvTestSpace() |
| 220 | // |
| 221 | // This function will test if there is enough space to add a new entity. |
| 222 | // |
| 223 | // Return Value Meaning |
| 224 | // |
| 225 | // TRUE space available |
| 226 | // FALSE no enough space |
| 227 | // |
| 228 | static BOOL |
| 229 | NvTestSpace( |
| 230 | UINT32 size, // IN: size of the entity to be added |
| 231 | BOOL isIndex // IN: TRUE if the entity is an index |
| 232 | ) |
| 233 | { |
| 234 | UINT32 remainByte = NvGetFreeByte(); |
| 235 | // For NV Index, need to make sure that we do not allocate and Index if this |
| 236 | // would mean that the TPM cannot allocate the minimum number of evict |
| 237 | // objects. |
| 238 | if(isIndex) |
| 239 | { |
| 240 | // Get the number of persistent objects allocated |
| 241 | UINT32 persistentNum = NvCapGetPersistentNumber(); |
| 242 | // If we have not allocated the requisite number of evict objects, then we |
| 243 | // need to reserve space for them. |
| 244 | // NOTE: some of this is not written as simply as it might seem because |
| 245 | // the values are all unsigned and subtracting needs to be done carefully |
| 246 | // so that an underflow doesn't cause problems. |
| 247 | if(persistentNum < MIN_EVICT_OBJECTS) |
| 248 | { |
| 249 | UINT32 needed = (MIN_EVICT_OBJECTS - persistentNum) |
| 250 | * NvGetEvictObjectSize(); |
| 251 | if(needed > remainByte) |
| 252 | remainByte = 0; |
| 253 | else |
| 254 | remainByte -= needed; |
| 255 | } |
| 256 | // if the requisite number of evict objects have been allocated then |
| 257 | // no need to reserve additional space |
| 258 | } |
| 259 | // This checks for the size of the value being added plus the index value. |
| 260 | // NOTE: This does not check to see if the end marker can be placed in |
| 261 | // memory because the end marker will not be written if it will not fit. |
| 262 | return (size + sizeof(UINT32) <= remainByte); |
| 263 | } |
| 264 | // |
| 265 | // |
| 266 | // NvAdd() |
| 267 | // |
| 268 | // This function adds a new entity to NV. |
| 269 | // This function requires that there is enough space to add a new entity (i.e., that NvTestSpace() has been |
| 270 | // called and the available space is at least as large as the required space). |
| 271 | // |
| 272 | static void |
| 273 | NvAdd( |
| 274 | UINT32 totalSize, // IN: total size needed for this entity For |
| 275 | // evict object, totalSize is the same as |
| 276 | // bufferSize. For NV Index, totalSize is |
| 277 | // bufferSize plus index data size |
| 278 | UINT32 bufferSize, // IN: size of initial buffer |
| 279 | BYTE *entity // IN: initial buffer |
| 280 | ) |
| 281 | { |
| 282 | UINT32 endAddr; |
| 283 | UINT32 nextAddr; |
| 284 | UINT32 listEnd = 0; |
| 285 | // Get the end of data list |
| 286 | endAddr = NvGetEnd(); |
| 287 | // Calculate the value of next pointer, which is the size of a pointer + |
| 288 | // the entity data size |
| 289 | nextAddr = endAddr + sizeof(UINT32) + totalSize; |
| 290 | // Write next pointer |
| 291 | _plat__NvMemoryWrite(endAddr, sizeof(UINT32), &nextAddr); |
| 292 | // Write entity data |
| 293 | _plat__NvMemoryWrite(endAddr + sizeof(UINT32), bufferSize, entity); |
| 294 | // Write the end of list if it is not going to exceed the NV space |
| 295 | if(nextAddr + sizeof(UINT32) <= s_evictNvEnd) |
| 296 | _plat__NvMemoryWrite(nextAddr, sizeof(UINT32), &listEnd); |
| 297 | // Set the flag so that NV changes are committed before the command completes. |
| 298 | g_updateNV = TRUE; |
| 299 | } |
| 300 | // |
| 301 | // |
| 302 | // NvDelete() |
| 303 | // |
| 304 | // This function is used to delete an NV Index or persistent object from NV memory. |
| 305 | // |
| 306 | static void |
| 307 | NvDelete( |
| 308 | UINT32 entityAddr // IN: address of entity to be deleted |
| 309 | ) |
| 310 | { |
| 311 | UINT32 next; |
| 312 | UINT32 entrySize; |
| 313 | UINT32 entryAddr = entityAddr - sizeof(UINT32); |
| 314 | UINT32 listEnd = 0; |
| 315 | // Get the offset of the next entry. |
| 316 | _plat__NvMemoryRead(entryAddr, sizeof(UINT32), &next); |
| 317 | // The size of this entry is the difference between the current entry and the |
| 318 | // next entry. |
| 319 | entrySize = next - entryAddr; |
| 320 | // Move each entry after the current one to fill the freed space. |
| 321 | // Stop when we have reached the end of all the indexes. There are two |
| 322 | // ways to detect the end of the list. The first is to notice that there |
| 323 | // is no room for anything else because we are at the end of NV. The other |
| 324 | // indication is that we find an end marker. |
| 325 | // The loop condition checks for the end of NV. |
| 326 | while(next + sizeof(UINT32) <= s_evictNvEnd) |
| 327 | { |
| 328 | UINT32 size, oldAddr, newAddr; |
| 329 | // Now check for the end marker |
| 330 | _plat__NvMemoryRead(next, sizeof(UINT32), &oldAddr); |
| 331 | if(oldAddr == 0) |
| 332 | break; |
| 333 | size = oldAddr - next; |
| 334 | // Move entry |
| 335 | _plat__NvMemoryMove(next, next - entrySize, size); |
| 336 | // Update forward link |
| 337 | newAddr = oldAddr - entrySize; |
| 338 | _plat__NvMemoryWrite(next - entrySize, sizeof(UINT32), &newAddr); |
| 339 | next = oldAddr; |
| 340 | } |
| 341 | // Mark the end of list |
| 342 | _plat__NvMemoryWrite(next - entrySize, sizeof(UINT32), &listEnd); |
| 343 | // Set the flag so that NV changes are committed before the command completes. |
| 344 | g_updateNV = TRUE; |
| 345 | } |
| 346 | // |
| 347 | // |
| 348 | // RAM-based NV Index Data Access Functions |
| 349 | // |
| 350 | // Introduction |
| 351 | // |
| 352 | // The data layout in ram buffer is {size of(NV_handle() + data), NV_handle(), data} for each NV Index data |
| 353 | // stored in RAM. |
| 354 | // NV storage is updated when a NV Index is added or deleted. We do NOT updated NV storage when the |
| 355 | // data is updated/ |
| 356 | // |
| 357 | // NvTestRAMSpace() |
| 358 | // |
| 359 | // This function indicates if there is enough RAM space to add a data for a new NV Index. |
| 360 | // |
| 361 | // |
| 362 | // |
| 363 | // |
| 364 | // Return Value Meaning |
| 365 | // |
| 366 | // TRUE space available |
| 367 | // FALSE no enough space |
| 368 | // |
| 369 | static BOOL |
| 370 | NvTestRAMSpace( |
| 371 | UINT32 size // IN: size of the data to be added to RAM |
| 372 | ) |
| 373 | { |
| 374 | BOOL success = ( s_ramIndexSize |
| 375 | + size |
| 376 | + sizeof(TPM_HANDLE) + sizeof(UINT32) |
| 377 | <= RAM_INDEX_SPACE); |
| 378 | return success; |
| 379 | } |
| 380 | // |
| 381 | // |
| 382 | // NvGetRamIndexOffset |
| 383 | // |
| 384 | // This function returns the offset of NV data in the RAM buffer |
| 385 | // This function requires that NV Index is in RAM. That is, the index must be known to exist. |
| 386 | // |
| 387 | static UINT32 |
| 388 | NvGetRAMIndexOffset( |
| 389 | TPMI_RH_NV_INDEX handle // IN: NV handle |
| 390 | ) |
| 391 | { |
| 392 | UINT32 currAddr = 0; |
| 393 | while(currAddr < s_ramIndexSize) |
| 394 | { |
| 395 | TPMI_RH_NV_INDEX currHandle; |
| 396 | UINT32 currSize; |
Jocelyn Bohr | 71e3b99 | 2015-08-14 12:05:59 -0700 | [diff] [blame] | 397 | memcpy(&currHandle, &s_ramIndex[currAddr + sizeof(UINT32)], |
| 398 | sizeof(currHandle)); |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 399 | // Found a match |
| 400 | if(currHandle == handle) |
| 401 | // data buffer follows the handle and size field |
| 402 | break; |
Jocelyn Bohr | 71e3b99 | 2015-08-14 12:05:59 -0700 | [diff] [blame] | 403 | memcpy(&currSize, &s_ramIndex[currAddr], sizeof(currSize)); |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 404 | currAddr += sizeof(UINT32) + currSize; |
| 405 | } |
| 406 | // We assume the index data is existing in RAM space |
| 407 | pAssert(currAddr < s_ramIndexSize); |
| 408 | return currAddr + sizeof(TPMI_RH_NV_INDEX) + sizeof(UINT32); |
| 409 | } |
| 410 | // |
| 411 | // |
| 412 | // NvAddRAM() |
| 413 | // |
| 414 | // This function adds a new data area to RAM. |
| 415 | // This function requires that enough free RAM space is available to add the new data. |
| 416 | // |
| 417 | static void |
| 418 | NvAddRAM( |
| 419 | TPMI_RH_NV_INDEX handle, // IN: NV handle |
| 420 | UINT32 size // IN: size of data |
| 421 | ) |
| 422 | { |
| 423 | // Add data space at the end of reserved RAM buffer |
Jocelyn Bohr | 71e3b99 | 2015-08-14 12:05:59 -0700 | [diff] [blame] | 424 | UINT32 value = size + sizeof(TPMI_RH_NV_INDEX); |
| 425 | memcpy(&s_ramIndex[s_ramIndexSize], &value, |
| 426 | sizeof(s_ramIndex[s_ramIndexSize])); |
| 427 | memcpy(&s_ramIndex[s_ramIndexSize + sizeof(UINT32)], &handle, |
| 428 | sizeof(s_ramIndex[s_ramIndexSize + sizeof(UINT32)])); |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 429 | s_ramIndexSize += sizeof(UINT32) + sizeof(TPMI_RH_NV_INDEX) + size; |
| 430 | pAssert(s_ramIndexSize <= RAM_INDEX_SPACE); |
| 431 | // Update NV version of s_ramIndexSize |
| 432 | _plat__NvMemoryWrite(s_ramIndexSizeAddr, sizeof(UINT32), &s_ramIndexSize); |
| 433 | // Write reserved RAM space to NV to reflect the newly added NV Index |
| 434 | _plat__NvMemoryWrite(s_ramIndexAddr, RAM_INDEX_SPACE, s_ramIndex); |
| 435 | return; |
| 436 | } |
| 437 | // |
| 438 | // |
| 439 | // NvDeleteRAM() |
| 440 | // |
| 441 | // This function is used to delete a RAM-backed NV Index data area. |
| 442 | // This function assumes the data of NV Index exists in RAM |
| 443 | // |
| 444 | static void |
| 445 | NvDeleteRAM( |
| 446 | TPMI_RH_NV_INDEX handle // IN: NV handle |
| 447 | ) |
| 448 | { |
| 449 | UINT32 nodeOffset; |
| 450 | UINT32 nextNode; |
| 451 | UINT32 size; |
| 452 | nodeOffset = NvGetRAMIndexOffset(handle); |
| 453 | // Move the pointer back to get the size field of this node |
| 454 | nodeOffset -= sizeof(UINT32) + sizeof(TPMI_RH_NV_INDEX); |
| 455 | // Get node size |
Jocelyn Bohr | 71e3b99 | 2015-08-14 12:05:59 -0700 | [diff] [blame] | 456 | memcpy(&size, &s_ramIndex[nodeOffset], sizeof(size)); |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 457 | // Get the offset of next node |
| 458 | nextNode = nodeOffset + sizeof(UINT32) + size; |
| 459 | // Move data |
| 460 | MemoryMove(s_ramIndex + nodeOffset, s_ramIndex + nextNode, |
| 461 | s_ramIndexSize - nextNode, s_ramIndexSize - nextNode); |
| 462 | // Update RAM size |
| 463 | s_ramIndexSize -= size + sizeof(UINT32); |
| 464 | // Update NV version of s_ramIndexSize |
| 465 | _plat__NvMemoryWrite(s_ramIndexSizeAddr, sizeof(UINT32), &s_ramIndexSize); |
| 466 | // Write reserved RAM space to NV to reflect the newly delete NV Index |
| 467 | _plat__NvMemoryWrite(s_ramIndexAddr, RAM_INDEX_SPACE, s_ramIndex); |
| 468 | return; |
| 469 | } |
| 470 | // |
| 471 | // |
| 472 | // |
| 473 | // Utility Functions |
| 474 | // |
| 475 | // NvInitStatic() |
| 476 | // |
| 477 | // This function initializes the static variables used in the NV subsystem. |
| 478 | // |
| 479 | static void |
| 480 | NvInitStatic( |
| 481 | void |
| 482 | ) |
| 483 | { |
| 484 | UINT16 i; |
| 485 | UINT32 reservedAddr; |
| 486 | s_reservedSize[NV_DISABLE_CLEAR] = sizeof(gp.disableClear); |
| 487 | s_reservedSize[NV_OWNER_ALG] = sizeof(gp.ownerAlg); |
| 488 | s_reservedSize[NV_ENDORSEMENT_ALG] = sizeof(gp.endorsementAlg); |
| 489 | s_reservedSize[NV_LOCKOUT_ALG] = sizeof(gp.lockoutAlg); |
| 490 | s_reservedSize[NV_OWNER_POLICY] = sizeof(gp.ownerPolicy); |
| 491 | s_reservedSize[NV_ENDORSEMENT_POLICY] = sizeof(gp.endorsementPolicy); |
| 492 | s_reservedSize[NV_LOCKOUT_POLICY] = sizeof(gp.lockoutPolicy); |
| 493 | s_reservedSize[NV_OWNER_AUTH] = sizeof(gp.ownerAuth); |
| 494 | s_reservedSize[NV_ENDORSEMENT_AUTH] = sizeof(gp.endorsementAuth); |
| 495 | s_reservedSize[NV_LOCKOUT_AUTH] = sizeof(gp.lockoutAuth); |
| 496 | s_reservedSize[NV_EP_SEED] = sizeof(gp.EPSeed); |
| 497 | s_reservedSize[NV_SP_SEED] = sizeof(gp.SPSeed); |
| 498 | s_reservedSize[NV_PP_SEED] = sizeof(gp.PPSeed); |
| 499 | s_reservedSize[NV_PH_PROOF] = sizeof(gp.phProof); |
| 500 | s_reservedSize[NV_SH_PROOF] = sizeof(gp.shProof); |
| 501 | s_reservedSize[NV_EH_PROOF] = sizeof(gp.ehProof); |
| 502 | s_reservedSize[NV_TOTAL_RESET_COUNT] = sizeof(gp.totalResetCount); |
| 503 | s_reservedSize[NV_RESET_COUNT] = sizeof(gp.resetCount); |
| 504 | s_reservedSize[NV_PCR_POLICIES] = sizeof(gp.pcrPolicies); |
| 505 | s_reservedSize[NV_PCR_ALLOCATED] = sizeof(gp.pcrAllocated); |
| 506 | s_reservedSize[NV_PP_LIST] = sizeof(gp.ppList); |
| 507 | s_reservedSize[NV_FAILED_TRIES] = sizeof(gp.failedTries); |
| 508 | s_reservedSize[NV_MAX_TRIES] = sizeof(gp.maxTries); |
| 509 | s_reservedSize[NV_RECOVERY_TIME] = sizeof(gp.recoveryTime); |
| 510 | s_reservedSize[NV_LOCKOUT_RECOVERY] = sizeof(gp.lockoutRecovery); |
| 511 | s_reservedSize[NV_LOCKOUT_AUTH_ENABLED] = sizeof(gp.lockOutAuthEnabled); |
| 512 | s_reservedSize[NV_ORDERLY] = sizeof(gp.orderlyState); |
| 513 | s_reservedSize[NV_AUDIT_COMMANDS] = sizeof(gp.auditComands); |
| 514 | s_reservedSize[NV_AUDIT_HASH_ALG] = sizeof(gp.auditHashAlg); |
| 515 | s_reservedSize[NV_AUDIT_COUNTER] = sizeof(gp.auditCounter); |
| 516 | s_reservedSize[NV_ALGORITHM_SET] = sizeof(gp.algorithmSet); |
| 517 | s_reservedSize[NV_FIRMWARE_V1] = sizeof(gp.firmwareV1); |
| 518 | s_reservedSize[NV_FIRMWARE_V2] = sizeof(gp.firmwareV2); |
| 519 | s_reservedSize[NV_ORDERLY_DATA] = sizeof(go); |
| 520 | s_reservedSize[NV_STATE_CLEAR] = sizeof(gc); |
| 521 | s_reservedSize[NV_STATE_RESET] = sizeof(gr); |
| 522 | // Initialize reserved data address. In this implementation, reserved data |
| 523 | // is stored at the start of NV memory |
| 524 | reservedAddr = 0; |
| 525 | for(i = 0; i < NV_RESERVE_LAST; i++) |
| 526 | { |
| 527 | s_reservedAddr[i] = reservedAddr; |
| 528 | reservedAddr += s_reservedSize[i]; |
| 529 | } |
| 530 | // Initialize auxiliary variable space for index/evict implementation. |
| 531 | // Auxiliary variables are stored after reserved data area |
| 532 | // RAM index copy starts at the beginning |
| 533 | s_ramIndexSizeAddr = reservedAddr; |
| 534 | s_ramIndexAddr = s_ramIndexSizeAddr + sizeof(UINT32); |
| 535 | // Maximum counter value |
| 536 | s_maxCountAddr = s_ramIndexAddr + RAM_INDEX_SPACE; |
| 537 | // dynamic memory start |
| 538 | s_evictNvStart = s_maxCountAddr + sizeof(UINT64); |
| 539 | // dynamic memory ends at the end of NV memory |
| 540 | s_evictNvEnd = NV_MEMORY_SIZE; |
| 541 | return; |
| 542 | } |
| 543 | // |
| 544 | // |
| 545 | // NvInit() |
| 546 | // |
| 547 | // This function initializes the NV system at pre-install time. |
| 548 | // This function should only be called in a manufacturing environment or in a simulation. |
| 549 | // The layout of NV memory space is an implementation choice. |
| 550 | // |
| 551 | void |
| 552 | NvInit( |
| 553 | void |
| 554 | ) |
| 555 | { |
| 556 | UINT32 nullPointer = 0; |
| 557 | UINT64 zeroCounter = 0; |
| 558 | // Initialize static variables |
| 559 | NvInitStatic(); |
| 560 | // Initialize RAM index space as unused |
| 561 | _plat__NvMemoryWrite(s_ramIndexSizeAddr, sizeof(UINT32), &nullPointer); |
| 562 | // Initialize max counter value to 0 |
| 563 | _plat__NvMemoryWrite(s_maxCountAddr, sizeof(UINT64), &zeroCounter); |
| 564 | // Initialize the next offset of the first entry in evict/index list to 0 |
| 565 | _plat__NvMemoryWrite(s_evictNvStart, sizeof(TPM_HANDLE), &nullPointer); |
| 566 | return; |
| 567 | } |
| 568 | // |
| 569 | // |
| 570 | // NvReadReserved() |
| 571 | // |
| 572 | // This function is used to move reserved data from NV memory to RAM. |
| 573 | // |
| 574 | void |
| 575 | NvReadReserved( |
| 576 | NV_RESERVE type, // IN: type of reserved data |
| 577 | void *buffer // OUT: buffer receives the data. |
| 578 | ) |
| 579 | { |
| 580 | // Input type should be valid |
| 581 | pAssert(type >= 0 && type < NV_RESERVE_LAST); |
| 582 | _plat__NvMemoryRead(s_reservedAddr[type], s_reservedSize[type], buffer); |
| 583 | return; |
| 584 | } |
| 585 | // |
| 586 | // |
| 587 | // NvWriteReserved() |
| 588 | // |
| 589 | // This function is used to post a reserved data for writing to NV memory. Before the TPM completes the |
| 590 | // operation, the value will be written. |
| 591 | // |
| 592 | void |
| 593 | NvWriteReserved( |
| 594 | NV_RESERVE type, // IN: type of reserved data |
| 595 | void *buffer // IN: data buffer |
| 596 | ) |
| 597 | { |
| 598 | // Input type should be valid |
| 599 | pAssert(type >= 0 && type < NV_RESERVE_LAST); |
| 600 | _plat__NvMemoryWrite(s_reservedAddr[type], s_reservedSize[type], buffer); |
| 601 | // Set the flag that a NV write happens |
| 602 | g_updateNV = TRUE; |
| 603 | return; |
| 604 | } |
| 605 | // |
| 606 | // |
| 607 | // NvReadPersistent() |
| 608 | // |
| 609 | // This function reads persistent data to the RAM copy of the gp structure. |
| 610 | // |
| 611 | void |
| 612 | NvReadPersistent( |
| 613 | void |
| 614 | ) |
| 615 | { |
| 616 | // Hierarchy persistent data |
| 617 | NvReadReserved(NV_DISABLE_CLEAR, &gp.disableClear); |
| 618 | NvReadReserved(NV_OWNER_ALG, &gp.ownerAlg); |
| 619 | NvReadReserved(NV_ENDORSEMENT_ALG, &gp.endorsementAlg); |
| 620 | NvReadReserved(NV_LOCKOUT_ALG, &gp.lockoutAlg); |
| 621 | NvReadReserved(NV_OWNER_POLICY, &gp.ownerPolicy); |
| 622 | NvReadReserved(NV_ENDORSEMENT_POLICY, &gp.endorsementPolicy); |
| 623 | NvReadReserved(NV_LOCKOUT_POLICY, &gp.lockoutPolicy); |
| 624 | NvReadReserved(NV_OWNER_AUTH, &gp.ownerAuth); |
| 625 | NvReadReserved(NV_ENDORSEMENT_AUTH, &gp.endorsementAuth); |
| 626 | NvReadReserved(NV_LOCKOUT_AUTH, &gp.lockoutAuth); |
| 627 | NvReadReserved(NV_EP_SEED, &gp.EPSeed); |
| 628 | NvReadReserved(NV_SP_SEED, &gp.SPSeed); |
| 629 | NvReadReserved(NV_PP_SEED, &gp.PPSeed); |
| 630 | NvReadReserved(NV_PH_PROOF, &gp.phProof); |
| 631 | NvReadReserved(NV_SH_PROOF, &gp.shProof); |
| 632 | NvReadReserved(NV_EH_PROOF, &gp.ehProof); |
| 633 | // Time persistent data |
| 634 | NvReadReserved(NV_TOTAL_RESET_COUNT, &gp.totalResetCount); |
| 635 | NvReadReserved(NV_RESET_COUNT, &gp.resetCount); |
| 636 | // PCR persistent data |
| 637 | NvReadReserved(NV_PCR_POLICIES, &gp.pcrPolicies); |
| 638 | NvReadReserved(NV_PCR_ALLOCATED, &gp.pcrAllocated); |
| 639 | // Physical Presence persistent data |
| 640 | NvReadReserved(NV_PP_LIST, &gp.ppList); |
| 641 | // Dictionary attack values persistent data |
| 642 | NvReadReserved(NV_FAILED_TRIES, &gp.failedTries); |
| 643 | NvReadReserved(NV_MAX_TRIES, &gp.maxTries); |
| 644 | NvReadReserved(NV_RECOVERY_TIME, &gp.recoveryTime); |
| 645 | // |
| 646 | NvReadReserved(NV_LOCKOUT_RECOVERY, &gp.lockoutRecovery); |
| 647 | NvReadReserved(NV_LOCKOUT_AUTH_ENABLED, &gp.lockOutAuthEnabled); |
| 648 | // Orderly State persistent data |
| 649 | NvReadReserved(NV_ORDERLY, &gp.orderlyState); |
| 650 | // Command audit values persistent data |
| 651 | NvReadReserved(NV_AUDIT_COMMANDS, &gp.auditComands); |
| 652 | NvReadReserved(NV_AUDIT_HASH_ALG, &gp.auditHashAlg); |
| 653 | NvReadReserved(NV_AUDIT_COUNTER, &gp.auditCounter); |
| 654 | // Algorithm selection persistent data |
| 655 | NvReadReserved(NV_ALGORITHM_SET, &gp.algorithmSet); |
| 656 | // Firmware version persistent data |
| 657 | NvReadReserved(NV_FIRMWARE_V1, &gp.firmwareV1); |
| 658 | NvReadReserved(NV_FIRMWARE_V2, &gp.firmwareV2); |
| 659 | return; |
| 660 | } |
| 661 | // |
| 662 | // |
| 663 | // NvIsPlatformPersistentHandle() |
| 664 | // |
| 665 | // This function indicates if a handle references a persistent object in the range belonging to the platform. |
| 666 | // |
| 667 | // Return Value Meaning |
| 668 | // |
| 669 | // TRUE handle references a platform persistent object |
| 670 | // FALSE handle does not reference platform persistent object and may |
| 671 | // reference an owner persistent object either |
| 672 | // |
| 673 | BOOL |
| 674 | NvIsPlatformPersistentHandle( |
| 675 | TPM_HANDLE handle // IN: handle |
| 676 | ) |
| 677 | { |
| 678 | return (handle >= PLATFORM_PERSISTENT && handle <= PERSISTENT_LAST); |
| 679 | } |
| 680 | // |
| 681 | // |
| 682 | // NvIsOwnerPersistentHandle() |
| 683 | // |
| 684 | // This function indicates if a handle references a persistent object in the range belonging to the owner. |
| 685 | // |
| 686 | // Return Value Meaning |
| 687 | // |
| 688 | // TRUE handle is owner persistent handle |
| 689 | // FALSE handle is not owner persistent handle and may not be a persistent |
| 690 | // handle at all |
| 691 | // |
| 692 | BOOL |
| 693 | NvIsOwnerPersistentHandle( |
| 694 | TPM_HANDLE handle // IN: handle |
| 695 | ) |
| 696 | { |
| 697 | return (handle >= PERSISTENT_FIRST && handle < PLATFORM_PERSISTENT); |
| 698 | } |
| 699 | // |
| 700 | // |
| 701 | // NvNextIndex() |
| 702 | // |
| 703 | // This function returns the offset in NV of the next NV Index entry. A value of 0 indicates the end of the list. |
| 704 | // Family "2.0" TCG Published Page 131 |
| 705 | // Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014 |
| 706 | // Trusted Platform Module Library Part 4: Supporting Routines |
| 707 | // |
| 708 | static UINT32 |
| 709 | NvNextIndex( |
| 710 | NV_ITER *iter |
| 711 | ) |
| 712 | { |
| 713 | UINT32 addr; |
| 714 | TPM_HANDLE handle; |
| 715 | while((addr = NvNext(iter)) != 0) |
| 716 | { |
| 717 | // Read handle |
| 718 | _plat__NvMemoryRead(addr, sizeof(TPM_HANDLE), &handle); |
| 719 | if(HandleGetType(handle) == TPM_HT_NV_INDEX) |
| 720 | return addr; |
| 721 | } |
| 722 | pAssert(addr == 0); |
| 723 | return addr; |
| 724 | } |
| 725 | // |
| 726 | // |
| 727 | // NvNextEvict() |
| 728 | // |
| 729 | // This function returns the offset in NV of the next evict object entry. A value of 0 indicates the end of the |
| 730 | // list. |
| 731 | // |
| 732 | static UINT32 |
| 733 | NvNextEvict( |
| 734 | NV_ITER *iter |
| 735 | ) |
| 736 | { |
| 737 | UINT32 addr; |
| 738 | TPM_HANDLE handle; |
| 739 | while((addr = NvNext(iter)) != 0) |
| 740 | { |
| 741 | // Read handle |
| 742 | _plat__NvMemoryRead(addr, sizeof(TPM_HANDLE), &handle); |
| 743 | if(HandleGetType(handle) == TPM_HT_PERSISTENT) |
| 744 | return addr; |
| 745 | } |
| 746 | pAssert(addr == 0); |
| 747 | return addr; |
| 748 | } |
| 749 | // |
| 750 | // |
| 751 | // NvFindHandle() |
| 752 | // |
| 753 | // this function returns the offset in NV memory of the entity associated with the input handle. A value of |
| 754 | // zero indicates that handle does not exist reference an existing persistent object or defined NV Index. |
| 755 | // |
| 756 | static UINT32 |
| 757 | NvFindHandle( |
| 758 | TPM_HANDLE handle |
| 759 | ) |
| 760 | { |
| 761 | UINT32 addr; |
| 762 | NV_ITER iter = NV_ITER_INIT; |
| 763 | while((addr = NvNext(&iter)) != 0) |
| 764 | { |
| 765 | TPM_HANDLE entityHandle; |
| 766 | // Read handle |
| 767 | // |
| 768 | _plat__NvMemoryRead(addr, sizeof(TPM_HANDLE), &entityHandle); |
| 769 | if(entityHandle == handle) |
| 770 | return addr; |
| 771 | } |
| 772 | pAssert(addr == 0); |
| 773 | return addr; |
| 774 | } |
| 775 | // |
| 776 | // |
| 777 | // NvPowerOn() |
| 778 | // |
| 779 | // This function is called at _TPM_Init() to initialize the NV environment. |
| 780 | // |
| 781 | // Return Value Meaning |
| 782 | // |
| 783 | // TRUE all NV was initialized |
| 784 | // FALSE the NV containing saved state had an error and |
| 785 | // TPM2_Startup(CLEAR) is required |
| 786 | // |
| 787 | BOOL |
| 788 | NvPowerOn( |
| 789 | void |
| 790 | ) |
| 791 | { |
| 792 | int nvError = 0; |
| 793 | // If power was lost, need to re-establish the RAM data that is loaded from |
| 794 | // NV and initialize the static variables |
| 795 | if(_plat__WasPowerLost(TRUE)) |
| 796 | { |
| 797 | if((nvError = _plat__NVEnable(0)) < 0) |
| 798 | FAIL(FATAL_ERROR_NV_UNRECOVERABLE); |
| 799 | NvInitStatic(); |
| 800 | } |
| 801 | return nvError == 0; |
| 802 | } |
| 803 | // |
| 804 | // |
| 805 | // NvStateSave() |
| 806 | // |
| 807 | // This function is used to cause the memory containing the RAM backed NV Indices to be written to NV. |
| 808 | // |
| 809 | void |
| 810 | NvStateSave( |
| 811 | void |
| 812 | ) |
| 813 | { |
| 814 | // Write RAM backed NV Index info to NV |
| 815 | // No need to save s_ramIndexSize because we save it to NV whenever it is |
| 816 | // updated. |
| 817 | _plat__NvMemoryWrite(s_ramIndexAddr, RAM_INDEX_SPACE, s_ramIndex); |
| 818 | // Set the flag so that an NV write happens before the command completes. |
| 819 | g_updateNV = TRUE; |
| 820 | return; |
| 821 | } |
| 822 | // |
| 823 | // |
| 824 | // |
| 825 | // NvEntityStartup() |
| 826 | // |
| 827 | // This function is called at TPM_Startup(). If the startup completes a TPM Resume cycle, no action is |
| 828 | // taken. If the startup is a TPM Reset or a TPM Restart, then this function will: |
| 829 | // a) clear read/write lock; |
| 830 | // b) reset NV Index data that has TPMA_NV_CLEAR_STCLEAR SET; and |
| 831 | // c) set the lower bits in orderly counters to 1 for a non-orderly startup |
| 832 | // It is a prerequisite that NV be available for writing before this function is called. |
| 833 | // |
| 834 | void |
| 835 | NvEntityStartup( |
| 836 | STARTUP_TYPE type // IN: start up type |
| 837 | ) |
| 838 | { |
| 839 | NV_ITER iter = NV_ITER_INIT; |
| 840 | UINT32 currentAddr; // offset points to the current entity |
| 841 | // Restore RAM index data |
| 842 | _plat__NvMemoryRead(s_ramIndexSizeAddr, sizeof(UINT32), &s_ramIndexSize); |
| 843 | _plat__NvMemoryRead(s_ramIndexAddr, RAM_INDEX_SPACE, s_ramIndex); |
| 844 | // If recovering from state save, do nothing |
| 845 | if(type == SU_RESUME) |
| 846 | return; |
| 847 | // Iterate all the NV Index to clear the locks |
| 848 | while((currentAddr = NvNextIndex(&iter)) != 0) |
| 849 | { |
| 850 | NV_INDEX nvIndex; |
| 851 | UINT32 indexAddr; // NV address points to index info |
| 852 | TPMA_NV attributes; |
Jocelyn Bohr | 71e3b99 | 2015-08-14 12:05:59 -0700 | [diff] [blame] | 853 | UINT32 attributesValue; |
| 854 | UINT32 publicAreaAttributesValue; |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 855 | indexAddr = currentAddr + sizeof(TPM_HANDLE); |
| 856 | // Read NV Index info structure |
| 857 | _plat__NvMemoryRead(indexAddr, sizeof(NV_INDEX), &nvIndex); |
| 858 | attributes = nvIndex.publicArea.attributes; |
| 859 | // Clear read/write lock |
| 860 | if(attributes.TPMA_NV_READLOCKED == SET) |
| 861 | attributes.TPMA_NV_READLOCKED = CLEAR; |
| 862 | if( attributes.TPMA_NV_WRITELOCKED == SET |
| 863 | && ( attributes.TPMA_NV_WRITTEN == CLEAR |
| 864 | || attributes.TPMA_NV_WRITEDEFINE == CLEAR |
| 865 | ) |
| 866 | ) |
| 867 | attributes.TPMA_NV_WRITELOCKED = CLEAR; |
| 868 | // Reset NV data for TPMA_NV_CLEAR_STCLEAR |
| 869 | if(attributes.TPMA_NV_CLEAR_STCLEAR == SET) |
| 870 | { |
| 871 | attributes.TPMA_NV_WRITTEN = CLEAR; |
| 872 | attributes.TPMA_NV_WRITELOCKED = CLEAR; |
| 873 | } |
| 874 | // Reset NV data for orderly values that are not counters |
| 875 | // NOTE: The function has already exited on a TPM Resume, so the only |
| 876 | // things being processed are TPM Restart and TPM Reset |
| 877 | if( type == SU_RESET |
| 878 | && attributes.TPMA_NV_ORDERLY == SET |
| 879 | && attributes.TPMA_NV_COUNTER == CLEAR |
| 880 | ) |
| 881 | attributes.TPMA_NV_WRITTEN = CLEAR; |
| 882 | // Write NV Index info back if it has changed |
Jocelyn Bohr | 71e3b99 | 2015-08-14 12:05:59 -0700 | [diff] [blame] | 883 | memcpy(&attributesValue, &attributes, sizeof(attributesValue)); |
| 884 | memcpy(&publicAreaAttributesValue, &nvIndex.publicArea.attributes, |
| 885 | sizeof(publicAreaAttributesValue)); |
| 886 | if(attributesValue != publicAreaAttributesValue) |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 887 | { |
| 888 | nvIndex.publicArea.attributes = attributes; |
| 889 | _plat__NvMemoryWrite(indexAddr, sizeof(NV_INDEX), &nvIndex); |
| 890 | // Set the flag that a NV write happens |
| 891 | g_updateNV = TRUE; |
| 892 | } |
| 893 | // Set the lower bits in an orderly counter to 1 for a non-orderly startup |
| 894 | if( g_prevOrderlyState == SHUTDOWN_NONE |
| 895 | && attributes.TPMA_NV_WRITTEN == SET) |
| 896 | { |
| 897 | if( attributes.TPMA_NV_ORDERLY == SET |
| 898 | && attributes.TPMA_NV_COUNTER == SET) |
| 899 | { |
| 900 | TPMI_RH_NV_INDEX nvHandle; |
| 901 | UINT64 counter; |
| 902 | // Read NV handle |
| 903 | _plat__NvMemoryRead(currentAddr, sizeof(TPM_HANDLE), &nvHandle); |
| 904 | // Read the counter value saved to NV upon the last roll over. |
| 905 | // Do not use RAM backed storage for this once. |
| 906 | nvIndex.publicArea.attributes.TPMA_NV_ORDERLY = CLEAR; |
| 907 | NvGetIntIndexData(nvHandle, &nvIndex, &counter); |
| 908 | nvIndex.publicArea.attributes.TPMA_NV_ORDERLY = SET; |
| 909 | // Set the lower bits of counter to 1's |
| 910 | counter |= MAX_ORDERLY_COUNT; |
| 911 | // Write back to RAM |
| 912 | NvWriteIndexData(nvHandle, &nvIndex, 0, sizeof(counter), &counter); |
| 913 | // No write to NV because an orderly shutdown will update the |
| 914 | // counters. |
| 915 | } |
| 916 | } |
| 917 | } |
| 918 | return; |
| 919 | } |
| 920 | // |
| 921 | // |
| 922 | // NV Access Functions |
| 923 | // |
| 924 | // Introduction |
| 925 | // |
| 926 | // This set of functions provide accessing NV Index and persistent objects based using a handle for |
| 927 | // reference to the entity. |
| 928 | // |
| 929 | // NvIsUndefinedIndex() |
| 930 | // |
| 931 | // This function is used to verify that an NV Index is not defined. This is only used by |
| 932 | // TPM2_NV_DefineSpace(). |
| 933 | // |
| 934 | // |
| 935 | // |
| 936 | // |
| 937 | // Return Value Meaning |
| 938 | // |
| 939 | // TRUE the handle points to an existing NV Index |
| 940 | // FALSE the handle points to a non-existent Index |
| 941 | // |
| 942 | BOOL |
| 943 | NvIsUndefinedIndex( |
| 944 | TPMI_RH_NV_INDEX handle // IN: handle |
| 945 | ) |
| 946 | { |
| 947 | UINT32 entityAddr; // offset points to the entity |
| 948 | pAssert(HandleGetType(handle) == TPM_HT_NV_INDEX); |
| 949 | // Find the address of index |
| 950 | entityAddr = NvFindHandle(handle); |
| 951 | // If handle is not found, return TPM_RC_SUCCESS |
| 952 | if(entityAddr == 0) |
| 953 | return TPM_RC_SUCCESS; |
| 954 | // NV Index is defined |
| 955 | return TPM_RC_NV_DEFINED; |
| 956 | } |
| 957 | // |
| 958 | // |
| 959 | // NvIndexIsAccessible() |
| 960 | // |
| 961 | // This function validates that a handle references a defined NV Index and that the Index is currently |
| 962 | // accessible. |
| 963 | // |
| 964 | // Error Returns Meaning |
| 965 | // |
| 966 | // TPM_RC_HANDLE the handle points to an undefined NV Index If shEnable is CLEAR, |
| 967 | // this would include an index created using ownerAuth. If phEnableNV |
| 968 | // is CLEAR, this would include and index created using platform auth |
| 969 | // TPM_RC_NV_READLOCKED Index is present but locked for reading and command does not write |
| 970 | // to the index |
| 971 | // TPM_RC_NV_WRITELOCKED Index is present but locked for writing and command writes to the |
| 972 | // index |
| 973 | // |
| 974 | TPM_RC |
| 975 | NvIndexIsAccessible( |
| 976 | TPMI_RH_NV_INDEX handle, // IN: handle |
| 977 | TPM_CC commandCode // IN: the command |
| 978 | ) |
| 979 | { |
| 980 | UINT32 entityAddr; // offset points to the entity |
| 981 | NV_INDEX nvIndex; // |
| 982 | pAssert(HandleGetType(handle) == TPM_HT_NV_INDEX); |
| 983 | // Find the address of index |
| 984 | entityAddr = NvFindHandle(handle); |
| 985 | // If handle is not found, return TPM_RC_HANDLE |
| 986 | if(entityAddr == 0) |
| 987 | return TPM_RC_HANDLE; |
| 988 | // Read NV Index info structure |
| 989 | _plat__NvMemoryRead(entityAddr + sizeof(TPM_HANDLE), sizeof(NV_INDEX), |
| 990 | &nvIndex); |
| 991 | if(gc.shEnable == FALSE || gc.phEnableNV == FALSE) |
| 992 | { |
| 993 | // if shEnable is CLEAR, an ownerCreate NV Index should not be |
| 994 | // indicated as present |
| 995 | if(nvIndex.publicArea.attributes.TPMA_NV_PLATFORMCREATE == CLEAR) |
| 996 | { |
| 997 | if(gc.shEnable == FALSE) |
| 998 | return TPM_RC_HANDLE; |
| 999 | } |
| 1000 | // if phEnableNV is CLEAR, a platform created Index should not |
| 1001 | // be visible |
| 1002 | else if(gc.phEnableNV == FALSE) |
| 1003 | return TPM_RC_HANDLE; |
| 1004 | } |
| 1005 | // If the Index is write locked and this is an NV Write operation... |
| 1006 | if( nvIndex.publicArea.attributes.TPMA_NV_WRITELOCKED |
| 1007 | && IsWriteOperation(commandCode)) |
| 1008 | { |
| 1009 | // then return a locked indication unless the command is TPM2_NV_WriteLock |
| 1010 | if(commandCode != TPM_CC_NV_WriteLock) |
| 1011 | return TPM_RC_NV_LOCKED; |
| 1012 | return TPM_RC_SUCCESS; |
| 1013 | } |
| 1014 | // If the Index is read locked and this is an NV Read operation... |
| 1015 | if( nvIndex.publicArea.attributes.TPMA_NV_READLOCKED |
| 1016 | && IsReadOperation(commandCode)) |
| 1017 | { |
| 1018 | // then return a locked indication unless the command is TPM2_NV_ReadLock |
| 1019 | if(commandCode != TPM_CC_NV_ReadLock) |
| 1020 | return TPM_RC_NV_LOCKED; |
| 1021 | return TPM_RC_SUCCESS; |
| 1022 | } |
| 1023 | // NV Index is accessible |
| 1024 | return TPM_RC_SUCCESS; |
| 1025 | } |
| 1026 | // |
| 1027 | // |
| 1028 | // NvIsUndefinedEvictHandle() |
| 1029 | // |
| 1030 | // This function indicates if a handle does not reference an existing persistent object. This function requires |
| 1031 | // that the handle be in the proper range for persistent objects. |
| 1032 | // |
| 1033 | // Return Value Meaning |
| 1034 | // |
| 1035 | // TRUE handle does not reference an existing persistent object |
| 1036 | // FALSE handle does reference an existing persistent object |
| 1037 | // |
| 1038 | static BOOL |
| 1039 | NvIsUndefinedEvictHandle( |
| 1040 | TPM_HANDLE handle // IN: handle |
| 1041 | ) |
| 1042 | { |
| 1043 | UINT32 entityAddr; // offset points to the entity |
| 1044 | pAssert(HandleGetType(handle) == TPM_HT_PERSISTENT); |
| 1045 | // Find the address of evict object |
| 1046 | entityAddr = NvFindHandle(handle); |
| 1047 | // If handle is not found, return TRUE |
| 1048 | if(entityAddr == 0) |
| 1049 | return TRUE; |
| 1050 | else |
| 1051 | return FALSE; |
| 1052 | } |
| 1053 | // |
| 1054 | // |
| 1055 | // NvGetEvictObject() |
| 1056 | // |
| 1057 | // This function is used to dereference an evict object handle and get a pointer to the object. |
| 1058 | // |
| 1059 | // Error Returns Meaning |
| 1060 | // |
| 1061 | // TPM_RC_HANDLE the handle does not point to an existing persistent object |
| 1062 | // |
| 1063 | TPM_RC |
| 1064 | NvGetEvictObject( |
| 1065 | TPM_HANDLE handle, // IN: handle |
| 1066 | OBJECT *object // OUT: object data |
| 1067 | ) |
| 1068 | { |
| 1069 | UINT32 entityAddr; // offset points to the entity |
| 1070 | TPM_RC result = TPM_RC_SUCCESS; |
| 1071 | pAssert(HandleGetType(handle) == TPM_HT_PERSISTENT); |
| 1072 | // Find the address of evict object |
| 1073 | entityAddr = NvFindHandle(handle); |
| 1074 | // If handle is not found, return an error |
| 1075 | if(entityAddr == 0) |
| 1076 | result = TPM_RC_HANDLE; |
| 1077 | else |
| 1078 | // Read evict object |
| 1079 | _plat__NvMemoryRead(entityAddr + sizeof(TPM_HANDLE), |
| 1080 | sizeof(OBJECT), |
| 1081 | object); |
| 1082 | // whether there is an error or not, make sure that the evict |
| 1083 | // status of the object is set so that the slot will get freed on exit |
| 1084 | object->attributes.evict = SET; |
| 1085 | return result; |
| 1086 | } |
| 1087 | // |
| 1088 | // |
| 1089 | // NvGetIndexInfo() |
| 1090 | // |
| 1091 | // This function is used to retrieve the contents of an NV Index. |
| 1092 | // An implementation is allowed to save the NV Index in a vendor-defined format. If the format is different |
| 1093 | // from the default used by the reference code, then this function would be changed to reformat the data into |
| 1094 | // the default format. |
| 1095 | // A prerequisite to calling this function is that the handle must be known to reference a defined NV Index. |
| 1096 | // |
| 1097 | void |
| 1098 | NvGetIndexInfo( |
| 1099 | TPMI_RH_NV_INDEX handle, // IN: handle |
| 1100 | NV_INDEX *nvIndex // OUT: NV index structure |
| 1101 | ) |
| 1102 | { |
| 1103 | UINT32 entityAddr; // offset points to the entity |
| 1104 | pAssert(HandleGetType(handle) == TPM_HT_NV_INDEX); |
| 1105 | // Find the address of NV index |
| 1106 | entityAddr = NvFindHandle(handle); |
| 1107 | pAssert(entityAddr != 0); |
| 1108 | // This implementation uses the default format so just |
| 1109 | // read the data in |
| 1110 | _plat__NvMemoryRead(entityAddr + sizeof(TPM_HANDLE), sizeof(NV_INDEX), |
| 1111 | nvIndex); |
| 1112 | return; |
| 1113 | } |
| 1114 | // |
| 1115 | // |
| 1116 | // NvInitialCounter() |
| 1117 | // |
| 1118 | // This function returns the value to be used when a counter index is initialized. It will scan the NV counters |
| 1119 | // and find the highest value in any active counter. It will use that value as the starting point. If there are no |
| 1120 | // active counters, it will use the value of the previous largest counter. |
| 1121 | // |
| 1122 | UINT64 |
| 1123 | NvInitialCounter( |
| 1124 | void |
| 1125 | ) |
| 1126 | { |
| 1127 | UINT64 maxCount; |
| 1128 | NV_ITER iter = NV_ITER_INIT; |
| 1129 | UINT32 currentAddr; |
| 1130 | // Read the maxCount value |
| 1131 | maxCount = NvReadMaxCount(); |
| 1132 | // Iterate all existing counters |
| 1133 | while((currentAddr = NvNextIndex(&iter)) != 0) |
| 1134 | { |
| 1135 | TPMI_RH_NV_INDEX nvHandle; |
| 1136 | NV_INDEX nvIndex; |
| 1137 | // Read NV handle |
| 1138 | _plat__NvMemoryRead(currentAddr, sizeof(TPM_HANDLE), &nvHandle); |
| 1139 | // Get NV Index |
| 1140 | NvGetIndexInfo(nvHandle, &nvIndex); |
| 1141 | if( nvIndex.publicArea.attributes.TPMA_NV_COUNTER == SET |
| 1142 | && nvIndex.publicArea.attributes.TPMA_NV_WRITTEN == SET) |
| 1143 | { |
| 1144 | UINT64 countValue; |
| 1145 | // Read counter value |
| 1146 | NvGetIntIndexData(nvHandle, &nvIndex, &countValue); |
| 1147 | if(countValue > maxCount) |
| 1148 | maxCount = countValue; |
| 1149 | } |
| 1150 | } |
| 1151 | // Initialize the new counter value to be maxCount + 1 |
| 1152 | // A counter is only initialized the first time it is written. The |
| 1153 | // way to write a counter is with TPM2_NV_INCREMENT(). Since the |
| 1154 | // "initial" value of a defined counter is the largest count value that |
| 1155 | // may have existed in this index previously, then the first use would |
| 1156 | // add one to that value. |
| 1157 | return maxCount; |
| 1158 | } |
| 1159 | // |
| 1160 | // |
| 1161 | // NvGetIndexData() |
| 1162 | // |
| 1163 | // This function is used to access the data in an NV Index. The data is returned as a byte sequence. Since |
| 1164 | // counter values are kept in native format, they are converted to canonical form before being returned. |
| 1165 | // Family "2.0" TCG Published Page 139 |
| 1166 | // Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014 |
| 1167 | // Trusted Platform Module Library Part 4: Supporting Routines |
| 1168 | // |
| 1169 | // |
| 1170 | // This function requires that the NV Index be defined, and that the required data is within the data range. It |
| 1171 | // also requires that TPMA_NV_WRITTEN of the Index is SET. |
| 1172 | // |
| 1173 | void |
| 1174 | NvGetIndexData( |
| 1175 | TPMI_RH_NV_INDEX handle, // IN: handle |
| 1176 | NV_INDEX *nvIndex, // IN: RAM image of index header |
| 1177 | UINT32 offset, // IN: offset of NV data |
| 1178 | UINT16 size, // IN: size of NV data |
| 1179 | void *data // OUT: data buffer |
| 1180 | ) |
| 1181 | { |
| 1182 | pAssert(nvIndex->publicArea.attributes.TPMA_NV_WRITTEN == SET); |
| 1183 | if( nvIndex->publicArea.attributes.TPMA_NV_BITS == SET |
| 1184 | || nvIndex->publicArea.attributes.TPMA_NV_COUNTER == SET) |
| 1185 | { |
| 1186 | // Read bit or counter data in canonical form |
| 1187 | UINT64 dataInInt; |
| 1188 | NvGetIntIndexData(handle, nvIndex, &dataInInt); |
| 1189 | UINT64_TO_BYTE_ARRAY(dataInInt, (BYTE *)data); |
| 1190 | } |
| 1191 | else |
| 1192 | { |
| 1193 | if(nvIndex->publicArea.attributes.TPMA_NV_ORDERLY == SET) |
| 1194 | { |
| 1195 | UINT32 ramAddr; |
| 1196 | // Get data from RAM buffer |
| 1197 | ramAddr = NvGetRAMIndexOffset(handle); |
| 1198 | MemoryCopy(data, s_ramIndex + ramAddr + offset, size, size); |
| 1199 | } |
| 1200 | else |
| 1201 | { |
| 1202 | UINT32 entityAddr; |
| 1203 | entityAddr = NvFindHandle(handle); |
| 1204 | // Get data from NV |
| 1205 | // Skip NV Index info, read data buffer |
| 1206 | entityAddr += sizeof(TPM_HANDLE) + sizeof(NV_INDEX) + offset; |
| 1207 | // Read the data |
| 1208 | _plat__NvMemoryRead(entityAddr, size, data); |
| 1209 | } |
| 1210 | } |
| 1211 | return; |
| 1212 | } |
| 1213 | // |
| 1214 | // |
| 1215 | // NvGetIntIndexData() |
| 1216 | // |
| 1217 | // Get data in integer format of a bit or counter NV Index. |
| 1218 | // This function requires that the NV Index is defined and that the NV Index previously has been written. |
| 1219 | // |
| 1220 | void |
| 1221 | NvGetIntIndexData( |
| 1222 | TPMI_RH_NV_INDEX handle, // IN: handle |
| 1223 | NV_INDEX *nvIndex, // IN: RAM image of NV Index header |
| 1224 | UINT64 *data // IN: UINT64 pointer for counter or bit |
| 1225 | ) |
| 1226 | { |
| 1227 | // Validate that index has been written and is the right type |
| 1228 | pAssert( nvIndex->publicArea.attributes.TPMA_NV_WRITTEN == SET |
| 1229 | && ( nvIndex->publicArea.attributes.TPMA_NV_BITS == SET |
| 1230 | || nvIndex->publicArea.attributes.TPMA_NV_COUNTER == SET |
| 1231 | ) |
| 1232 | ); |
| 1233 | // bit and counter value is store in native format for TPM CPU. So we directly |
| 1234 | // copy the contents of NV to output data buffer |
| 1235 | if(nvIndex->publicArea.attributes.TPMA_NV_ORDERLY == SET) |
| 1236 | { |
| 1237 | UINT32 ramAddr; |
| 1238 | // Get data from RAM buffer |
| 1239 | ramAddr = NvGetRAMIndexOffset(handle); |
| 1240 | MemoryCopy(data, s_ramIndex + ramAddr, sizeof(*data), sizeof(*data)); |
| 1241 | } |
| 1242 | else |
| 1243 | { |
| 1244 | UINT32 entityAddr; |
| 1245 | entityAddr = NvFindHandle(handle); |
| 1246 | // Get data from NV |
| 1247 | // Skip NV Index info, read data buffer |
| 1248 | _plat__NvMemoryRead( |
| 1249 | entityAddr + sizeof(TPM_HANDLE) + sizeof(NV_INDEX), |
| 1250 | sizeof(UINT64), data); |
| 1251 | } |
| 1252 | return; |
| 1253 | } |
| 1254 | // |
| 1255 | // |
| 1256 | // NvWriteIndexInfo() |
| 1257 | // |
| 1258 | // This function is called to queue the write of NV Index data to persistent memory. |
| 1259 | // This function requires that NV Index is defined. |
| 1260 | // |
| 1261 | // Error Returns Meaning |
| 1262 | // |
| 1263 | // TPM_RC_NV_RATE NV is rate limiting so retry |
| 1264 | // TPM_RC_NV_UNAVAILABLE NV is not available |
| 1265 | // |
| 1266 | TPM_RC |
| 1267 | NvWriteIndexInfo( |
| 1268 | TPMI_RH_NV_INDEX handle, // IN: handle |
| 1269 | NV_INDEX *nvIndex // IN: NV Index info to be written |
| 1270 | ) |
| 1271 | { |
| 1272 | UINT32 entryAddr; |
| 1273 | TPM_RC result; |
| 1274 | // Get the starting offset for the index in the RAM image of NV |
| 1275 | entryAddr = NvFindHandle(handle); |
| 1276 | pAssert(entryAddr != 0); |
| 1277 | // Step over the link value |
| 1278 | entryAddr = entryAddr + sizeof(TPM_HANDLE); |
| 1279 | // If the index data is actually changed, then a write to NV is required |
| 1280 | if(_plat__NvIsDifferent(entryAddr, sizeof(NV_INDEX),nvIndex)) |
| 1281 | { |
| 1282 | // Make sure that NV is available |
| 1283 | result = NvIsAvailable(); |
| 1284 | if(result != TPM_RC_SUCCESS) |
| 1285 | return result; |
| 1286 | _plat__NvMemoryWrite(entryAddr, sizeof(NV_INDEX), nvIndex); |
| 1287 | g_updateNV = TRUE; |
| 1288 | } |
| 1289 | return TPM_RC_SUCCESS; |
| 1290 | } |
| 1291 | // |
| 1292 | // |
| 1293 | // NvWriteIndexData() |
| 1294 | // |
| 1295 | // This function is used to write NV index data. |
| 1296 | // This function requires that the NV Index is defined, and the data is within the defined data range for the |
| 1297 | // index. |
| 1298 | // |
| 1299 | // Error Returns Meaning |
| 1300 | // |
| 1301 | // TPM_RC_NV_RATE NV is rate limiting so retry |
| 1302 | // TPM_RC_NV_UNAVAILABLE NV is not available |
| 1303 | // |
| 1304 | TPM_RC |
| 1305 | NvWriteIndexData( |
| 1306 | TPMI_RH_NV_INDEX handle, // IN: handle |
| 1307 | NV_INDEX *nvIndex, // IN: RAM copy of NV Index |
| 1308 | UINT32 offset, // IN: offset of NV data |
| 1309 | UINT32 size, // IN: size of NV data |
| 1310 | void *data // OUT: data buffer |
| 1311 | ) |
| 1312 | { |
| 1313 | TPM_RC result; |
| 1314 | // Validate that write falls within range of the index |
| 1315 | pAssert(nvIndex->publicArea.dataSize >= offset + size); |
| 1316 | // Update TPMA_NV_WRITTEN bit if necessary |
| 1317 | if(nvIndex->publicArea.attributes.TPMA_NV_WRITTEN == CLEAR) |
| 1318 | { |
| 1319 | nvIndex->publicArea.attributes.TPMA_NV_WRITTEN = SET; |
| 1320 | result = NvWriteIndexInfo(handle, nvIndex); |
| 1321 | if(result != TPM_RC_SUCCESS) |
| 1322 | return result; |
| 1323 | } |
| 1324 | // Check to see if process for an orderly index is required. |
| 1325 | if(nvIndex->publicArea.attributes.TPMA_NV_ORDERLY == SET) |
| 1326 | { |
| 1327 | UINT32 ramAddr; |
| 1328 | // Write data to RAM buffer |
| 1329 | ramAddr = NvGetRAMIndexOffset(handle); |
| 1330 | MemoryCopy(s_ramIndex + ramAddr + offset, data, size, |
| 1331 | sizeof(s_ramIndex) - ramAddr - offset); |
| 1332 | // NV update does not happen for orderly index. Have |
| 1333 | // to clear orderlyState to reflect that we have changed the |
| 1334 | // NV and an orderly shutdown is required. Only going to do this if we |
| 1335 | // are not processing a counter that has just rolled over |
| 1336 | if(g_updateNV == FALSE) |
| 1337 | g_clearOrderly = TRUE; |
| 1338 | } |
| 1339 | // Need to process this part if the Index isn't orderly or if it is |
| 1340 | // an orderly counter that just rolled over. |
| 1341 | if(g_updateNV || nvIndex->publicArea.attributes.TPMA_NV_ORDERLY == CLEAR) |
| 1342 | { |
| 1343 | // Processing for an index with TPMA_NV_ORDERLY CLEAR |
| 1344 | UINT32 entryAddr = NvFindHandle(handle); |
| 1345 | pAssert(entryAddr != 0); |
| 1346 | // |
| 1347 | // Offset into the index to the first byte of the data to be written |
| 1348 | entryAddr += sizeof(TPM_HANDLE) + sizeof(NV_INDEX) + offset; |
| 1349 | // If the data is actually changed, then a write to NV is required |
| 1350 | if(_plat__NvIsDifferent(entryAddr, size, data)) |
| 1351 | { |
| 1352 | // Make sure that NV is available |
| 1353 | result = NvIsAvailable(); |
| 1354 | if(result != TPM_RC_SUCCESS) |
| 1355 | return result; |
| 1356 | _plat__NvMemoryWrite(entryAddr, size, data); |
| 1357 | g_updateNV = TRUE; |
| 1358 | } |
| 1359 | } |
| 1360 | return TPM_RC_SUCCESS; |
| 1361 | } |
| 1362 | // |
| 1363 | // |
| 1364 | // NvGetName() |
| 1365 | // |
| 1366 | // This function is used to compute the Name of an NV Index. |
| 1367 | // The name buffer receives the bytes of the Name and the return value is the number of octets in the |
| 1368 | // Name. |
| 1369 | // This function requires that the NV Index is defined. |
| 1370 | // |
| 1371 | UINT16 |
| 1372 | NvGetName( |
| 1373 | TPMI_RH_NV_INDEX handle, // IN: handle of the index |
| 1374 | NAME *name // OUT: name of the index |
| 1375 | ) |
| 1376 | { |
| 1377 | UINT16 dataSize, digestSize; |
| 1378 | NV_INDEX nvIndex; |
| 1379 | BYTE marshalBuffer[sizeof(TPMS_NV_PUBLIC)]; |
| 1380 | BYTE *buffer; |
Jocelyn Bohr | 32be404 | 2015-07-29 15:14:01 -0700 | [diff] [blame] | 1381 | INT32 bufferSize; |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1382 | HASH_STATE hashState; |
| 1383 | // Get NV public info |
| 1384 | NvGetIndexInfo(handle, &nvIndex); |
| 1385 | // Marshal public area |
| 1386 | buffer = marshalBuffer; |
Jocelyn Bohr | 32be404 | 2015-07-29 15:14:01 -0700 | [diff] [blame] | 1387 | bufferSize = sizeof(TPMS_NV_PUBLIC); |
| 1388 | dataSize = TPMS_NV_PUBLIC_Marshal(&nvIndex.publicArea, &buffer, &bufferSize); |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1389 | // hash public area |
| 1390 | digestSize = CryptStartHash(nvIndex.publicArea.nameAlg, &hashState); |
| 1391 | CryptUpdateDigest(&hashState, dataSize, marshalBuffer); |
| 1392 | // Complete digest leaving room for the nameAlg |
| 1393 | CryptCompleteHash(&hashState, digestSize, &((BYTE *)name)[2]); |
| 1394 | // Include the nameAlg |
Vadim Bendebury | 99e8883 | 2015-06-04 20:32:54 -0700 | [diff] [blame] | 1395 | UINT16_TO_BYTE_ARRAY(nvIndex.publicArea.nameAlg, (BYTE *)name); |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1396 | return digestSize + 2; |
| 1397 | } |
| 1398 | // |
| 1399 | // |
| 1400 | // NvDefineIndex() |
| 1401 | // |
| 1402 | // This function is used to assign NV memory to an NV Index. |
| 1403 | // |
| 1404 | // |
| 1405 | // |
| 1406 | // Error Returns Meaning |
| 1407 | // |
| 1408 | // TPM_RC_NV_SPACE insufficient NV space |
| 1409 | // |
| 1410 | TPM_RC |
| 1411 | NvDefineIndex( |
| 1412 | TPMS_NV_PUBLIC *publicArea, // IN: A template for an area to create. |
| 1413 | TPM2B_AUTH *authValue // IN: The initial authorization value |
| 1414 | ) |
| 1415 | { |
| 1416 | // The buffer to be written to NV memory |
| 1417 | BYTE nvBuffer[sizeof(TPM_HANDLE) + sizeof(NV_INDEX)]; |
| 1418 | NV_INDEX *nvIndex; // a pointer to the NV_INDEX data in |
| 1419 | // nvBuffer |
| 1420 | UINT16 entrySize; // size of entry |
| 1421 | entrySize = sizeof(TPM_HANDLE) + sizeof(NV_INDEX) + publicArea->dataSize; |
| 1422 | // Check if we have enough space to create the NV Index |
| 1423 | // In this implementation, the only resource limitation is the available NV |
| 1424 | // space. Other implementation may have other limitation on counter or on |
| 1425 | // NV slot |
| 1426 | if(!NvTestSpace(entrySize, TRUE)) return TPM_RC_NV_SPACE; |
| 1427 | // if the index to be defined is RAM backed, check RAM space availability |
| 1428 | // as well |
| 1429 | if(publicArea->attributes.TPMA_NV_ORDERLY == SET |
| 1430 | && !NvTestRAMSpace(publicArea->dataSize)) |
| 1431 | return TPM_RC_NV_SPACE; |
| 1432 | // Copy input value to nvBuffer |
| 1433 | // Copy handle |
Jocelyn Bohr | 71e3b99 | 2015-08-14 12:05:59 -0700 | [diff] [blame] | 1434 | memcpy(nvBuffer, &publicArea->nvIndex, sizeof(TPM_HANDLE)); |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1435 | // Copy NV_INDEX |
| 1436 | nvIndex = (NV_INDEX *) (nvBuffer + sizeof(TPM_HANDLE)); |
| 1437 | nvIndex->publicArea = *publicArea; |
| 1438 | nvIndex->authValue = *authValue; |
| 1439 | // Add index to NV memory |
| 1440 | NvAdd(entrySize, sizeof(TPM_HANDLE) + sizeof(NV_INDEX), nvBuffer); |
| 1441 | // If the data of NV Index is RAM backed, add the data area in RAM as well |
| 1442 | if(publicArea->attributes.TPMA_NV_ORDERLY == SET) |
| 1443 | NvAddRAM(publicArea->nvIndex, publicArea->dataSize); |
| 1444 | return TPM_RC_SUCCESS; |
| 1445 | } |
| 1446 | // |
| 1447 | // |
| 1448 | // NvAddEvictObject() |
| 1449 | // |
| 1450 | // This function is used to assign NV memory to a persistent object. |
| 1451 | // |
| 1452 | // Error Returns Meaning |
| 1453 | // |
| 1454 | // TPM_RC_NV_HANDLE the requested handle is already in use |
| 1455 | // TPM_RC_NV_SPACE insufficient NV space |
| 1456 | // |
| 1457 | TPM_RC |
| 1458 | NvAddEvictObject( |
| 1459 | TPMI_DH_OBJECT evictHandle, // IN: new evict handle |
| 1460 | // |
| 1461 | OBJECT *object // IN: object to be added |
| 1462 | ) |
| 1463 | { |
| 1464 | // The buffer to be written to NV memory |
| 1465 | BYTE nvBuffer[sizeof(TPM_HANDLE) + sizeof(OBJECT)]; |
| 1466 | OBJECT *nvObject; // a pointer to the OBJECT data in |
| 1467 | // nvBuffer |
| 1468 | UINT16 entrySize; // size of entry |
| 1469 | // evict handle type should match the object hierarchy |
| 1470 | pAssert( ( NvIsPlatformPersistentHandle(evictHandle) |
| 1471 | && object->attributes.ppsHierarchy == SET) |
| 1472 | || ( NvIsOwnerPersistentHandle(evictHandle) |
| 1473 | && ( object->attributes.spsHierarchy == SET |
| 1474 | || object->attributes.epsHierarchy == SET))); |
| 1475 | // An evict needs 4 bytes of handle + sizeof OBJECT |
| 1476 | entrySize = sizeof(TPM_HANDLE) + sizeof(OBJECT); |
| 1477 | // Check if we have enough space to add the evict object |
| 1478 | // An evict object needs 8 bytes in index table + sizeof OBJECT |
| 1479 | // In this implementation, the only resource limitation is the available NV |
| 1480 | // space. Other implementation may have other limitation on evict object |
| 1481 | // handle space |
| 1482 | if(!NvTestSpace(entrySize, FALSE)) return TPM_RC_NV_SPACE; |
| 1483 | // Allocate a new evict handle |
| 1484 | if(!NvIsUndefinedEvictHandle(evictHandle)) |
| 1485 | return TPM_RC_NV_DEFINED; |
| 1486 | // Copy evict object to nvBuffer |
| 1487 | // Copy handle |
Jocelyn Bohr | 71e3b99 | 2015-08-14 12:05:59 -0700 | [diff] [blame] | 1488 | memcpy(nvBuffer, &evictHandle, sizeof(TPM_HANDLE)); |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1489 | // Copy OBJECT |
| 1490 | nvObject = (OBJECT *) (nvBuffer + sizeof(TPM_HANDLE)); |
| 1491 | *nvObject = *object; |
| 1492 | // Set evict attribute and handle |
| 1493 | nvObject->attributes.evict = SET; |
| 1494 | nvObject->evictHandle = evictHandle; |
| 1495 | // Add evict to NV memory |
| 1496 | NvAdd(entrySize, entrySize, nvBuffer); |
| 1497 | return TPM_RC_SUCCESS; |
| 1498 | } |
| 1499 | // |
| 1500 | // |
| 1501 | // NvDeleteEntity() |
| 1502 | // |
| 1503 | // This function will delete a NV Index or an evict object. |
| 1504 | // This function requires that the index/evict object has been defined. |
| 1505 | // |
| 1506 | void |
| 1507 | NvDeleteEntity( |
| 1508 | TPM_HANDLE handle // IN: handle of entity to be deleted |
| 1509 | ) |
| 1510 | { |
| 1511 | UINT32 entityAddr; // pointer to entity |
| 1512 | entityAddr = NvFindHandle(handle); |
| 1513 | pAssert(entityAddr != 0); |
| 1514 | if(HandleGetType(handle) == TPM_HT_NV_INDEX) |
| 1515 | { |
| 1516 | NV_INDEX nvIndex; |
| 1517 | // Read the NV Index info |
| 1518 | _plat__NvMemoryRead(entityAddr + sizeof(TPM_HANDLE), sizeof(NV_INDEX), |
| 1519 | &nvIndex); |
| 1520 | // If the entity to be deleted is a counter with the maximum counter |
| 1521 | // value, record it in NV memory |
| 1522 | if(nvIndex.publicArea.attributes.TPMA_NV_COUNTER == SET |
| 1523 | && nvIndex.publicArea.attributes.TPMA_NV_WRITTEN == SET) |
| 1524 | { |
| 1525 | UINT64 countValue; |
| 1526 | UINT64 maxCount; |
| 1527 | NvGetIntIndexData(handle, &nvIndex, &countValue); |
| 1528 | maxCount = NvReadMaxCount(); |
| 1529 | if(countValue > maxCount) |
| 1530 | NvWriteMaxCount(countValue); |
| 1531 | } |
| 1532 | // If the NV Index is RAM back, delete the RAM data as well |
| 1533 | if(nvIndex.publicArea.attributes.TPMA_NV_ORDERLY == SET) |
| 1534 | NvDeleteRAM(handle); |
| 1535 | } |
| 1536 | NvDelete(entityAddr); |
| 1537 | return; |
| 1538 | } |
| 1539 | // |
| 1540 | // |
| 1541 | // NvFlushHierarchy() |
| 1542 | // |
| 1543 | // This function will delete persistent objects belonging to the indicated If the storage hierarchy is selected, |
| 1544 | // the function will also delete any NV Index define using ownerAuth. |
| 1545 | // |
| 1546 | void |
| 1547 | NvFlushHierarchy( |
| 1548 | TPMI_RH_HIERARCHY hierarchy // IN: hierarchy to be flushed. |
| 1549 | ) |
| 1550 | { |
| 1551 | NV_ITER iter = NV_ITER_INIT; |
| 1552 | UINT32 currentAddr; |
| 1553 | while((currentAddr = NvNext(&iter)) != 0) |
| 1554 | { |
| 1555 | TPM_HANDLE entityHandle; |
| 1556 | // Read handle information. |
| 1557 | _plat__NvMemoryRead(currentAddr, sizeof(TPM_HANDLE), &entityHandle); |
| 1558 | if(HandleGetType(entityHandle) == TPM_HT_NV_INDEX) |
| 1559 | { |
| 1560 | // Handle NV Index |
| 1561 | NV_INDEX nvIndex; |
| 1562 | // If flush endorsement or platform hierarchy, no NV Index would be |
| 1563 | // flushed |
| 1564 | if(hierarchy == TPM_RH_ENDORSEMENT || hierarchy == TPM_RH_PLATFORM) |
| 1565 | continue; |
| 1566 | _plat__NvMemoryRead(currentAddr + sizeof(TPM_HANDLE), |
| 1567 | sizeof(NV_INDEX), &nvIndex); |
| 1568 | // For storage hierarchy, flush OwnerCreated index |
| 1569 | if( nvIndex.publicArea.attributes.TPMA_NV_PLATFORMCREATE == CLEAR) |
| 1570 | { |
| 1571 | // Delete the NV Index |
| 1572 | NvDelete(currentAddr); |
| 1573 | // Re-iterate from beginning after a delete |
| 1574 | iter = NV_ITER_INIT; |
| 1575 | // If the NV Index is RAM back, delete the RAM data as well |
| 1576 | if(nvIndex.publicArea.attributes.TPMA_NV_ORDERLY == SET) |
| 1577 | NvDeleteRAM(entityHandle); |
| 1578 | } |
| 1579 | } |
| 1580 | else if(HandleGetType(entityHandle) == TPM_HT_PERSISTENT) |
| 1581 | { |
| 1582 | OBJECT object; |
| 1583 | // Get evict object |
| 1584 | NvGetEvictObject(entityHandle, &object); |
| 1585 | // If the evict object belongs to the hierarchy to be flushed |
| 1586 | if( ( hierarchy == TPM_RH_PLATFORM |
| 1587 | && object.attributes.ppsHierarchy == SET) |
| 1588 | || ( hierarchy == TPM_RH_OWNER |
| 1589 | && object.attributes.spsHierarchy == SET) |
| 1590 | || ( hierarchy == TPM_RH_ENDORSEMENT |
| 1591 | && object.attributes.epsHierarchy == SET) |
| 1592 | ) |
| 1593 | { |
| 1594 | // Delete the evict object |
| 1595 | NvDelete(currentAddr); |
| 1596 | // Re-iterate from beginning after a delete |
| 1597 | iter = NV_ITER_INIT; |
| 1598 | } |
| 1599 | } |
| 1600 | else |
| 1601 | { |
| 1602 | pAssert(FALSE); |
| 1603 | } |
| 1604 | } |
| 1605 | return; |
| 1606 | } |
| 1607 | // |
| 1608 | // |
| 1609 | // NvSetGlobalLock() |
| 1610 | // |
| 1611 | // This function is used to SET the TPMA_NV_WRITELOCKED attribute for all NV Indices that have |
| 1612 | // TPMA_NV_GLOBALLOCK SET. This function is use by TPM2_NV_GlobalWriteLock(). |
| 1613 | // |
| 1614 | void |
| 1615 | NvSetGlobalLock( |
| 1616 | void |
| 1617 | ) |
| 1618 | { |
| 1619 | NV_ITER iter = NV_ITER_INIT; |
| 1620 | UINT32 currentAddr; |
| 1621 | // Check all Indices |
| 1622 | while((currentAddr = NvNextIndex(&iter)) != 0) |
| 1623 | { |
| 1624 | NV_INDEX nvIndex; |
| 1625 | // Read the index data |
| 1626 | _plat__NvMemoryRead(currentAddr + sizeof(TPM_HANDLE), |
| 1627 | sizeof(NV_INDEX), &nvIndex); |
| 1628 | // See if it should be locked |
| 1629 | if(nvIndex.publicArea.attributes.TPMA_NV_GLOBALLOCK == SET) |
| 1630 | { |
| 1631 | // if so, lock it |
| 1632 | nvIndex.publicArea.attributes.TPMA_NV_WRITELOCKED = SET; |
| 1633 | _plat__NvMemoryWrite(currentAddr + sizeof(TPM_HANDLE), |
| 1634 | sizeof(NV_INDEX), &nvIndex); |
| 1635 | // Set the flag that a NV write happens |
| 1636 | g_updateNV = TRUE; |
| 1637 | } |
| 1638 | } |
| 1639 | return; |
| 1640 | } |
| 1641 | // |
| 1642 | // |
| 1643 | // InsertSort() |
| 1644 | // |
| 1645 | // Sort a handle into handle list in ascending order. The total handle number in the list should not exceed |
| 1646 | // MAX_CAP_HANDLES |
| 1647 | // |
| 1648 | static void |
| 1649 | InsertSort( |
| 1650 | TPML_HANDLE *handleList, // IN/OUT: sorted handle list |
| 1651 | UINT32 count, // IN: maximum count in the handle list |
| 1652 | TPM_HANDLE entityHandle // IN: handle to be inserted |
| 1653 | ) |
| 1654 | { |
| 1655 | UINT32 i, j; |
| 1656 | UINT32 originalCount; |
| 1657 | // For a corner case that the maximum count is 0, do nothing |
| 1658 | if(count == 0) return; |
| 1659 | // For empty list, add the handle at the beginning and return |
| 1660 | if(handleList->count == 0) |
| 1661 | { |
| 1662 | handleList->handle[0] = entityHandle; |
| 1663 | handleList->count++; |
| 1664 | return; |
| 1665 | } |
| 1666 | // Check if the maximum of the list has been reached |
| 1667 | originalCount = handleList->count; |
| 1668 | if(originalCount < count) |
| 1669 | handleList->count++; |
| 1670 | // Insert the handle to the list |
| 1671 | for(i = 0; i < originalCount; i++) |
| 1672 | { |
| 1673 | if(handleList->handle[i] > entityHandle) |
| 1674 | { |
| 1675 | for(j = handleList->count - 1; j > i; j--) |
| 1676 | { |
| 1677 | handleList->handle[j] = handleList->handle[j-1]; |
| 1678 | } |
| 1679 | break; |
| 1680 | } |
| 1681 | } |
| 1682 | // If a slot was found, insert the handle in this position |
| 1683 | if(i < originalCount || handleList->count > originalCount) |
| 1684 | handleList->handle[i] = entityHandle; |
| 1685 | return; |
| 1686 | } |
| 1687 | // |
| 1688 | // |
| 1689 | // NvCapGetPersistent() |
| 1690 | // |
| 1691 | // This function is used to get a list of handles of the persistent objects, starting at handle. |
| 1692 | // Handle must be in valid persistent object handle range, but does not have to reference an existing |
| 1693 | // persistent object. |
| 1694 | // |
| 1695 | // Return Value Meaning |
| 1696 | // |
| 1697 | // YES if there are more handles available |
| 1698 | // NO all the available handles has been returned |
| 1699 | // |
| 1700 | TPMI_YES_NO |
| 1701 | NvCapGetPersistent( |
| 1702 | TPMI_DH_OBJECT handle, // IN: start handle |
| 1703 | UINT32 count, // IN: maximum number of returned handle |
| 1704 | TPML_HANDLE *handleList // OUT: list of handle |
| 1705 | ) |
| 1706 | { |
| 1707 | TPMI_YES_NO more = NO; |
| 1708 | NV_ITER iter = NV_ITER_INIT; |
| 1709 | UINT32 currentAddr; |
| 1710 | pAssert(HandleGetType(handle) == TPM_HT_PERSISTENT); |
| 1711 | // Initialize output handle list |
| 1712 | handleList->count = 0; |
| 1713 | // The maximum count of handles we may return is MAX_CAP_HANDLES |
| 1714 | if(count > MAX_CAP_HANDLES) count = MAX_CAP_HANDLES; |
| 1715 | while((currentAddr = NvNextEvict(&iter)) != 0) |
| 1716 | { |
| 1717 | TPM_HANDLE entityHandle; |
| 1718 | // Read handle information. |
| 1719 | _plat__NvMemoryRead(currentAddr, sizeof(TPM_HANDLE), &entityHandle); |
| 1720 | // Ignore persistent handles that have values less than the input handle |
| 1721 | if(entityHandle < handle) |
| 1722 | continue; |
| 1723 | // if the handles in the list have reached the requested count, and there |
| 1724 | // are still handles need to be inserted, indicate that there are more. |
| 1725 | if(handleList->count == count) |
| 1726 | more = YES; |
| 1727 | // A handle with a value larger than start handle is a candidate |
| 1728 | // for return. Insert sort it to the return list. Insert sort algorithm |
| 1729 | // is chosen here for simplicity based on the assumption that the total |
| 1730 | // number of NV Indices is small. For an implementation that may allow |
| 1731 | // large number of NV Indices, a more efficient sorting algorithm may be |
| 1732 | // used here. |
| 1733 | InsertSort(handleList, count, entityHandle); |
| 1734 | // |
| 1735 | } |
| 1736 | return more; |
| 1737 | } |
| 1738 | // |
| 1739 | // |
| 1740 | // NvCapGetIndex() |
| 1741 | // |
| 1742 | // This function returns a list of handles of NV Indices, starting from handle. Handle must be in the range of |
| 1743 | // NV Indices, but does not have to reference an existing NV Index. |
| 1744 | // |
| 1745 | // Return Value Meaning |
| 1746 | // |
| 1747 | // YES if there are more handles to report |
| 1748 | // NO all the available handles has been reported |
| 1749 | // |
| 1750 | TPMI_YES_NO |
| 1751 | NvCapGetIndex( |
| 1752 | TPMI_DH_OBJECT handle, // IN: start handle |
| 1753 | UINT32 count, // IN: maximum number of returned handle |
| 1754 | TPML_HANDLE *handleList // OUT: list of handle |
| 1755 | ) |
| 1756 | { |
| 1757 | TPMI_YES_NO more = NO; |
| 1758 | NV_ITER iter = NV_ITER_INIT; |
| 1759 | UINT32 currentAddr; |
| 1760 | pAssert(HandleGetType(handle) == TPM_HT_NV_INDEX); |
| 1761 | // Initialize output handle list |
| 1762 | handleList->count = 0; |
| 1763 | // The maximum count of handles we may return is MAX_CAP_HANDLES |
| 1764 | if(count > MAX_CAP_HANDLES) count = MAX_CAP_HANDLES; |
| 1765 | while((currentAddr = NvNextIndex(&iter)) != 0) |
| 1766 | { |
| 1767 | TPM_HANDLE entityHandle; |
| 1768 | // Read handle information. |
| 1769 | _plat__NvMemoryRead(currentAddr, sizeof(TPM_HANDLE), &entityHandle); |
| 1770 | // Ignore index handles that have values less than the 'handle' |
| 1771 | if(entityHandle < handle) |
| 1772 | continue; |
| 1773 | // if the count of handles in the list has reached the requested count, |
| 1774 | // and there are still handles to report, set more. |
| 1775 | if(handleList->count == count) |
| 1776 | more = YES; |
| 1777 | // A handle with a value larger than start handle is a candidate |
| 1778 | // for return. Insert sort it to the return list. Insert sort algorithm |
| 1779 | // is chosen here for simplicity based on the assumption that the total |
| 1780 | // number of NV Indices is small. For an implementation that may allow |
| 1781 | // large number of NV Indices, a more efficient sorting algorithm may be |
| 1782 | // used here. |
| 1783 | InsertSort(handleList, count, entityHandle); |
| 1784 | } |
| 1785 | return more; |
| 1786 | } |
| 1787 | // |
| 1788 | // |
| 1789 | // |
| 1790 | // NvCapGetIndexNumber() |
| 1791 | // |
| 1792 | // This function returns the count of NV Indexes currently defined. |
| 1793 | // |
| 1794 | UINT32 |
| 1795 | NvCapGetIndexNumber( |
| 1796 | void |
| 1797 | ) |
| 1798 | { |
| 1799 | UINT32 num = 0; |
| 1800 | NV_ITER iter = NV_ITER_INIT; |
| 1801 | while(NvNextIndex(&iter) != 0) num++; |
| 1802 | return num; |
| 1803 | } |
| 1804 | // |
| 1805 | // |
| 1806 | // NvCapGetPersistentNumber() |
| 1807 | // |
| 1808 | // Function returns the count of persistent objects currently in NV memory. |
| 1809 | // |
| 1810 | UINT32 |
| 1811 | NvCapGetPersistentNumber( |
| 1812 | void |
| 1813 | ) |
| 1814 | { |
| 1815 | UINT32 num = 0; |
| 1816 | NV_ITER iter = NV_ITER_INIT; |
| 1817 | while(NvNextEvict(&iter) != 0) num++; |
| 1818 | return num; |
| 1819 | } |
| 1820 | // |
| 1821 | // |
| 1822 | // NvCapGetPersistentAvail() |
| 1823 | // |
| 1824 | // This function returns an estimate of the number of additional persistent objects that could be loaded into |
| 1825 | // NV memory. |
| 1826 | // |
| 1827 | UINT32 |
| 1828 | NvCapGetPersistentAvail( |
| 1829 | void |
| 1830 | ) |
| 1831 | { |
| 1832 | UINT32 availSpace; |
| 1833 | UINT32 objectSpace; |
| 1834 | // Compute the available space in NV storage |
| 1835 | availSpace = NvGetFreeByte(); |
| 1836 | // Get the space needed to add a persistent object to NV storage |
| 1837 | objectSpace = NvGetEvictObjectSize(); |
| 1838 | return availSpace / objectSpace; |
| 1839 | } |
| 1840 | // |
| 1841 | // |
| 1842 | // NvCapGetCounterNumber() |
| 1843 | // |
| 1844 | // Get the number of defined NV Indexes that have NV TPMA_NV_COUNTER attribute SET. |
| 1845 | // |
| 1846 | // |
| 1847 | UINT32 |
| 1848 | NvCapGetCounterNumber( |
| 1849 | void |
| 1850 | ) |
| 1851 | { |
| 1852 | NV_ITER iter = NV_ITER_INIT; |
| 1853 | UINT32 currentAddr; |
| 1854 | UINT32 num = 0; |
| 1855 | while((currentAddr = NvNextIndex(&iter)) != 0) |
| 1856 | { |
| 1857 | NV_INDEX nvIndex; |
| 1858 | // Get NV Index info |
| 1859 | _plat__NvMemoryRead(currentAddr + sizeof(TPM_HANDLE), |
| 1860 | sizeof(NV_INDEX), &nvIndex); |
| 1861 | if(nvIndex.publicArea.attributes.TPMA_NV_COUNTER == SET) num++; |
| 1862 | } |
| 1863 | return num; |
| 1864 | } |
| 1865 | // |
| 1866 | // |
| 1867 | // NvCapGetCounterAvail() |
| 1868 | // |
| 1869 | // This function returns an estimate of the number of additional counter type NV Indices that can be defined. |
| 1870 | // |
| 1871 | UINT32 |
| 1872 | NvCapGetCounterAvail( |
| 1873 | void |
| 1874 | ) |
| 1875 | { |
| 1876 | UINT32 availNVSpace; |
| 1877 | UINT32 availRAMSpace; |
| 1878 | UINT32 counterNVSpace; |
| 1879 | UINT32 counterRAMSpace; |
| 1880 | UINT32 persistentNum = NvCapGetPersistentNumber(); |
| 1881 | // Get the available space in NV storage |
| 1882 | availNVSpace = NvGetFreeByte(); |
| 1883 | if (persistentNum < MIN_EVICT_OBJECTS) |
| 1884 | { |
| 1885 | // Some space have to be reserved for evict object. Adjust availNVSpace. |
| 1886 | UINT32 reserved = (MIN_EVICT_OBJECTS - persistentNum) |
| 1887 | * NvGetEvictObjectSize(); |
| 1888 | if (reserved > availNVSpace) |
| 1889 | availNVSpace = 0; |
| 1890 | else |
| 1891 | availNVSpace -= reserved; |
| 1892 | } |
| 1893 | // Get the space needed to add a counter index to NV storage |
| 1894 | counterNVSpace = NvGetCounterSize(); |
| 1895 | // Compute the available space in RAM |
| 1896 | availRAMSpace = RAM_INDEX_SPACE - s_ramIndexSize; |
| 1897 | // Compute the space needed to add a counter index to RAM storage |
| 1898 | // It takes an size field, a handle and sizeof(UINT64) for counter data |
| 1899 | counterRAMSpace = sizeof(UINT32) + sizeof(TPM_HANDLE) + sizeof(UINT64); |
| 1900 | // Return the min of counter number in NV and in RAM |
| 1901 | if(availNVSpace / counterNVSpace > availRAMSpace / counterRAMSpace) |
| 1902 | return availRAMSpace / counterRAMSpace; |
| 1903 | else |
| 1904 | return availNVSpace / counterNVSpace; |
| 1905 | } |