Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1 | // This file was extracted from the TCG Published |
| 2 | // Trusted Platform Module Library |
| 3 | // Part 4: Supporting Routines |
| 4 | // Family "2.0" |
| 5 | // Level 00 Revision 01.16 |
| 6 | // October 30, 2014 |
| 7 | |
| 8 | #include "InternalRoutines.h" |
| 9 | #include "Platform.h" |
| 10 | // Functions |
| 11 | // |
| 12 | // TimePowerOn() |
| 13 | // |
| 14 | // This function initialize time info at _TPM_Init(). |
| 15 | // |
| 16 | void |
| 17 | TimePowerOn( |
| 18 | void |
| 19 | ) |
| 20 | { |
| 21 | TPM_SU orderlyShutDown; |
| 22 | // Read orderly data info from NV memory |
| 23 | NvReadReserved(NV_ORDERLY_DATA, &go); |
| 24 | // Read orderly shut down state flag |
| 25 | NvReadReserved(NV_ORDERLY, &orderlyShutDown); |
| 26 | // If the previous cycle is orderly shut down, the value of the safe bit |
| 27 | // the same as previously saved. Otherwise, it is not safe. |
| 28 | if(orderlyShutDown == SHUTDOWN_NONE) |
| 29 | go.clockSafe= NO; |
| 30 | else |
| 31 | go.clockSafe = YES; |
| 32 | // Set the initial state of the DRBG |
| 33 | CryptDrbgGetPutState(PUT_STATE); |
| 34 | // Clear time since TPM power on |
| 35 | g_time = 0; |
| 36 | return; |
| 37 | } |
| 38 | // |
| 39 | // |
| 40 | // TimeStartup() |
| 41 | // |
| 42 | // This function updates the resetCount and restartCount components of TPMS_CLOCK_INFO structure at |
| 43 | // TPM2_Startup(). |
| 44 | // |
| 45 | void |
| 46 | TimeStartup( |
| 47 | STARTUP_TYPE type // IN: start up type |
| 48 | ) |
| 49 | { |
| 50 | if(type == SU_RESUME) |
| 51 | { |
| 52 | // Resume sequence |
| 53 | gr.restartCount++; |
| 54 | } |
| 55 | else |
| 56 | { |
| 57 | if(type == SU_RESTART) |
| 58 | { |
| 59 | // Hibernate sequence |
| 60 | gr.clearCount++; |
| 61 | gr.restartCount++; |
| 62 | } |
| 63 | else |
| 64 | { |
| 65 | // Reset sequence |
| 66 | // Increase resetCount |
| 67 | gp.resetCount++; |
| 68 | // Write resetCount to NV |
| 69 | NvWriteReserved(NV_RESET_COUNT, &gp.resetCount); |
| 70 | gp.totalResetCount++; |
| 71 | // We do not expect the total reset counter overflow during the life |
| 72 | // time of TPM. if it ever happens, TPM will be put to failure mode |
| 73 | // and there is no way to recover it. |
| 74 | // The reason that there is no recovery is that we don't increment |
| 75 | // the NV totalResetCount when incrementing would make it 0. When the |
| 76 | // TPM starts up again, the old value of totalResetCount will be read |
| 77 | // and we will get right back to here with the increment failing. |
| 78 | if(gp.totalResetCount == 0) |
| 79 | FAIL(FATAL_ERROR_INTERNAL); |
| 80 | // Write total reset counter to NV |
| 81 | NvWriteReserved(NV_TOTAL_RESET_COUNT, &gp.totalResetCount); |
| 82 | // Reset restartCount |
| 83 | gr.restartCount = 0; |
| 84 | } |
| 85 | } |
| 86 | return; |
| 87 | } |
| 88 | // |
| 89 | // |
| 90 | // TimeUpdateToCurrent() |
| 91 | // |
| 92 | // This function updates the Time and Clock in the global TPMS_TIME_INFO structure. |
| 93 | // In this implementation, Time and Clock are updated at the beginning of each command and the values |
| 94 | // are unchanged for the duration of the command. |
| 95 | // Because Clock updates may require a write to NV memory, Time and Clock are not allowed to advance if |
| 96 | // NV is not available. When clock is not advancing, any function that uses Clock will fail and return |
| 97 | // TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE. |
| 98 | // This implementations does not do rate limiting. If the implementation does do rate limiting, then the Clock |
| 99 | // update should not be inhibited even when doing rather limiting. |
| 100 | // |
| 101 | void |
| 102 | TimeUpdateToCurrent( |
| 103 | void |
| 104 | ) |
| 105 | { |
| 106 | UINT64 oldClock; |
| 107 | UINT64 elapsed; |
| 108 | #define CLOCK_UPDATE_MASK ((1ULL << NV_CLOCK_UPDATE_INTERVAL)- 1) |
| 109 | // Can't update time during the dark interval or when rate limiting. |
| 110 | if(NvIsAvailable() != TPM_RC_SUCCESS) |
| 111 | return; |
| 112 | // Save the old clock value |
| 113 | oldClock = go.clock; |
| 114 | // Update the time info to current |
| 115 | elapsed = _plat__ClockTimeElapsed(); |
| 116 | go.clock += elapsed; |
| 117 | g_time += elapsed; |
| 118 | // Check to see if the update has caused a need for an nvClock update |
| 119 | // CLOCK_UPDATE_MASK is measured by second, while the value in go.clock is |
| 120 | // recorded by millisecond. Align the clock value to second before the bit |
| 121 | // |
| 122 | // operations |
| 123 | if( ((go.clock/1000) | CLOCK_UPDATE_MASK) |
| 124 | > ((oldClock/1000) | CLOCK_UPDATE_MASK)) |
| 125 | { |
| 126 | // Going to update the time state so the safe flag |
| 127 | // should be set |
| 128 | go.clockSafe = YES; |
| 129 | // Get the DRBG state before updating orderly data |
| 130 | CryptDrbgGetPutState(GET_STATE); |
| 131 | NvWriteReserved(NV_ORDERLY_DATA, &go); |
| 132 | } |
| 133 | // Call self healing logic for dictionary attack parameters |
| 134 | DASelfHeal(); |
| 135 | return; |
| 136 | } |
| 137 | // |
| 138 | // |
| 139 | // TimeSetAdjustRate() |
| 140 | // |
| 141 | // This function is used to perform rate adjustment on Time and Clock. |
| 142 | // |
| 143 | void |
| 144 | TimeSetAdjustRate( |
| 145 | TPM_CLOCK_ADJUST adjust // IN: adjust constant |
| 146 | ) |
| 147 | { |
| 148 | switch(adjust) |
| 149 | { |
| 150 | case TPM_CLOCK_COARSE_SLOWER: |
| 151 | _plat__ClockAdjustRate(CLOCK_ADJUST_COARSE); |
| 152 | break; |
| 153 | case TPM_CLOCK_COARSE_FASTER: |
| 154 | _plat__ClockAdjustRate(-CLOCK_ADJUST_COARSE); |
| 155 | break; |
| 156 | case TPM_CLOCK_MEDIUM_SLOWER: |
| 157 | _plat__ClockAdjustRate(CLOCK_ADJUST_MEDIUM); |
| 158 | break; |
| 159 | case TPM_CLOCK_MEDIUM_FASTER: |
| 160 | _plat__ClockAdjustRate(-CLOCK_ADJUST_MEDIUM); |
| 161 | break; |
| 162 | case TPM_CLOCK_FINE_SLOWER: |
| 163 | _plat__ClockAdjustRate(CLOCK_ADJUST_FINE); |
| 164 | break; |
| 165 | case TPM_CLOCK_FINE_FASTER: |
| 166 | _plat__ClockAdjustRate(-CLOCK_ADJUST_FINE); |
| 167 | break; |
| 168 | case TPM_CLOCK_NO_CHANGE: |
| 169 | break; |
| 170 | default: |
| 171 | pAssert(FALSE); |
| 172 | break; |
| 173 | } |
| 174 | return; |
| 175 | } |
| 176 | // |
| 177 | // |
| 178 | // TimeGetRange() |
| 179 | // |
| 180 | // This function is used to access TPMS_TIME_INFO. The TPMS_TIME_INFO structure is treaded as an |
| 181 | // array of bytes, and a byte offset and length determine what bytes are returned. |
| 182 | // |
| 183 | // Error Returns Meaning |
| 184 | // |
| 185 | // TPM_RC_RANGE invalid data range |
| 186 | // |
| 187 | TPM_RC |
| 188 | TimeGetRange( |
| 189 | UINT16 offset, // IN: offset in TPMS_TIME_INFO |
| 190 | UINT16 size, // IN: size of data |
| 191 | TIME_INFO *dataBuffer // OUT: result buffer |
| 192 | ) |
| 193 | { |
| 194 | TPMS_TIME_INFO timeInfo; |
| 195 | UINT16 infoSize; |
| 196 | BYTE infoData[sizeof(TPMS_TIME_INFO)]; |
| 197 | BYTE *buffer; |
| 198 | // Fill TPMS_TIME_INFO structure |
| 199 | timeInfo.time = g_time; |
| 200 | TimeFillInfo(&timeInfo.clockInfo); |
| 201 | // Marshal TPMS_TIME_INFO to canonical form |
| 202 | buffer = infoData; |
| 203 | infoSize = TPMS_TIME_INFO_Marshal(&timeInfo, &buffer, NULL); |
| 204 | // Check if the input range is valid |
| 205 | if(offset + size > infoSize) return TPM_RC_RANGE; |
| 206 | // Copy info data to output buffer |
| 207 | MemoryCopy(dataBuffer, infoData + offset, size, sizeof(TIME_INFO)); |
| 208 | return TPM_RC_SUCCESS; |
| 209 | } |
| 210 | // |
| 211 | // |
| 212 | // TimeFillInfo |
| 213 | // |
| 214 | // This function gathers information to fill in a TPMS_CLOCK_INFO structure. |
| 215 | // |
| 216 | void |
| 217 | TimeFillInfo( |
| 218 | TPMS_CLOCK_INFO *clockInfo |
| 219 | ) |
| 220 | { |
| 221 | clockInfo->clock = go.clock; |
| 222 | clockInfo->resetCount = gp.resetCount; |
| 223 | clockInfo->restartCount = gr.restartCount; |
| 224 | // If NV is not available, clock stopped advancing and the value reported is |
| 225 | // not "safe". |
| 226 | if(NvIsAvailable() == TPM_RC_SUCCESS) |
| 227 | clockInfo->safe = go.clockSafe; |
| 228 | else |
| 229 | clockInfo->safe = NO; |
| 230 | return; |
| 231 | } |