Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1 | // This file was extracted from the TCG Published |
| 2 | // Trusted Platform Module Library |
| 3 | // Part 4: Supporting Routines |
| 4 | // Family "2.0" |
| 5 | // Level 00 Revision 01.16 |
| 6 | // October 30, 2014 |
| 7 | |
| 8 | #include "TPM_Types.h" |
| 9 | #include "CryptoEngine.h" // types shared by CryptUtil and CryptoEngine. |
| 10 | // Includes the function prototypes for the |
| 11 | // CryptoEngine functions. |
| 12 | #include "Global.h" |
| 13 | #include "InternalRoutines.h" |
| 14 | #include "MemoryLib_fp.h" |
| 15 | //#include "CryptSelfTest_fp.h" |
| 16 | // |
| 17 | // |
| 18 | // 10.2.2 TranslateCryptErrors() |
| 19 | // |
| 20 | // This function converts errors from the cryptographic library into TPM_RC_VALUES. |
| 21 | // |
| 22 | // Error Returns Meaning |
| 23 | // |
| 24 | // TPM_RC_VALUE CRYPT_FAIL |
| 25 | // TPM_RC_NO_RESULT CRYPT_NO_RESULT |
| 26 | // TPM_RC_SCHEME CRYPT_SCHEME |
| 27 | // TPM_RC_VALUE CRYPT_PARAMETER |
| 28 | // TPM_RC_SIZE CRYPT_UNDERFLOW |
| 29 | // TPM_RC_ECC_POINT CRYPT_POINT |
| 30 | // TPM_RC_CANCELLED CRYPT_CANCEL |
| 31 | // |
| 32 | static TPM_RC |
| 33 | TranslateCryptErrors ( |
| 34 | CRYPT_RESULT retVal // IN: crypt error to evaluate |
| 35 | ) |
| 36 | { |
| 37 | switch (retVal) |
| 38 | { |
| 39 | case CRYPT_SUCCESS: |
| 40 | return TPM_RC_SUCCESS; |
| 41 | case CRYPT_FAIL: |
| 42 | return TPM_RC_VALUE; |
| 43 | case CRYPT_NO_RESULT: |
| 44 | return TPM_RC_NO_RESULT; |
| 45 | case CRYPT_SCHEME: |
| 46 | return TPM_RC_SCHEME; |
| 47 | case CRYPT_PARAMETER: |
| 48 | return TPM_RC_VALUE; |
| 49 | case CRYPT_UNDERFLOW: |
| 50 | return TPM_RC_SIZE; |
| 51 | case CRYPT_POINT: |
| 52 | return TPM_RC_ECC_POINT; |
| 53 | case CRYPT_CANCEL: |
| 54 | return TPM_RC_CANCELED; |
| 55 | default: // Other unknown warnings |
| 56 | return TPM_RC_FAILURE; |
| 57 | } |
| 58 | } |
| 59 | // |
| 60 | // |
| 61 | // 10.2.3 Random Number Generation Functions |
| 62 | // |
| 63 | #ifdef TPM_ALG_NULL //% |
| 64 | #ifdef _DRBG_STATE_SAVE //% |
| 65 | // |
| 66 | // |
| 67 | // 10.2.3.1 CryptDrbgGetPutState() |
| 68 | // |
| 69 | // Read or write the current state from the DRBG in the cryptoEngine. |
| 70 | // |
| 71 | void |
| 72 | CryptDrbgGetPutState( |
| 73 | GET_PUT direction // IN: Get from or put to DRBG |
| 74 | ) |
| 75 | { |
| 76 | _cpri__DrbgGetPutState(direction, |
| 77 | sizeof(go.drbgState), |
| 78 | (BYTE *)&go.drbgState); |
| 79 | } |
| 80 | #else //% 00 |
| 81 | //%#define CryptDrbgGetPutState(ignored) // If not doing state save, turn this |
| 82 | //% // into a null macro |
| 83 | #endif //% |
| 84 | // |
| 85 | // |
| 86 | // 10.2.3.2 CryptStirRandom() |
| 87 | // |
| 88 | // Stir random entropy |
| 89 | // |
| 90 | void |
| 91 | CryptStirRandom( |
| 92 | UINT32 entropySize, // IN: size of entropy buffer |
| 93 | BYTE *buffer // IN: entropy buffer |
| 94 | ) |
| 95 | { |
| 96 | // RNG self testing code may be inserted here |
| 97 | // Call crypto engine random number stirring function |
| 98 | _cpri__StirRandom(entropySize, buffer); |
| 99 | return; |
| 100 | } |
| 101 | // |
| 102 | // |
| 103 | // 10.2.3.3 CryptGenerateRandom() |
| 104 | // |
| 105 | // This is the interface to _cpri__GenerateRandom(). |
| 106 | // |
| 107 | UINT16 |
| 108 | CryptGenerateRandom( |
| 109 | UINT16 randomSize, // IN: size of random number |
| 110 | BYTE *buffer // OUT: buffer of random number |
| 111 | ) |
| 112 | { |
| 113 | UINT16 result; |
| 114 | pAssert(randomSize <= MAX_RSA_KEY_BYTES || randomSize <= PRIMARY_SEED_SIZE); |
| 115 | if(randomSize == 0) |
| 116 | return 0; |
| 117 | // Call crypto engine random number generation |
| 118 | result = _cpri__GenerateRandom(randomSize, buffer); |
| 119 | if(result != randomSize) |
| 120 | FAIL(FATAL_ERROR_INTERNAL); |
| 121 | return result; |
| 122 | } |
| 123 | #endif //TPM_ALG_NULL //% |
| 124 | // |
| 125 | // |
| 126 | // 10.2.4 Hash/HMAC Functions |
| 127 | // |
| 128 | // 10.2.4.1 CryptGetContextAlg() |
| 129 | // |
| 130 | // This function returns the hash algorithm associated with a hash context. |
| 131 | // |
| 132 | #ifdef TPM_ALG_KEYEDHASH //% 1 |
| 133 | TPM_ALG_ID |
| 134 | CryptGetContextAlg( |
| 135 | void *state // IN: the context to check |
| 136 | ) |
| 137 | { |
| 138 | HASH_STATE *context = (HASH_STATE *)state; |
| 139 | return _cpri__GetContextAlg(&context->state); |
| 140 | } |
| 141 | // |
| 142 | // |
| 143 | // 10.2.4.2 CryptStartHash() |
| 144 | // |
| 145 | // This function starts a hash and return the size, in bytes, of the digest. |
| 146 | // |
| 147 | // Return Value Meaning |
| 148 | // |
| 149 | // >0 the digest size of the algorithm |
| 150 | // =0 the hashAlg was TPM_ALG_NULL |
| 151 | // |
| 152 | UINT16 |
| 153 | CryptStartHash( |
| 154 | TPMI_ALG_HASH hashAlg, // IN: hash algorithm |
| 155 | HASH_STATE *hashState // OUT: the state of hash stack. It will be used |
| 156 | // in hash update and completion |
| 157 | ) |
| 158 | { |
| 159 | CRYPT_RESULT retVal = 0; |
| 160 | pAssert(hashState != NULL); |
| 161 | TEST_HASH(hashAlg); |
| 162 | hashState->type = HASH_STATE_EMPTY; |
| 163 | // Call crypto engine start hash function |
| 164 | if((retVal = _cpri__StartHash(hashAlg, FALSE, &hashState->state)) > 0) |
| 165 | hashState->type = HASH_STATE_HASH; |
| 166 | return retVal; |
| 167 | } |
| 168 | // |
| 169 | // |
| 170 | // |
| 171 | // 10.2.4.3 CryptStartHashSequence() |
| 172 | // |
| 173 | // Start a hash stack for a sequence object and return the size, in bytes, of the digest. This call uses the |
| 174 | // form of the hash state that requires context save and restored. |
| 175 | // |
| 176 | // Return Value Meaning |
| 177 | // |
| 178 | // >0 the digest size of the algorithm |
| 179 | // =0 the hashAlg was TPM_ALG_NULL |
| 180 | // |
| 181 | UINT16 |
| 182 | CryptStartHashSequence( |
| 183 | TPMI_ALG_HASH hashAlg, // IN: hash algorithm |
| 184 | HASH_STATE *hashState // OUT: the state of hash stack. It will be used |
| 185 | // in hash update and completion |
| 186 | ) |
| 187 | { |
| 188 | CRYPT_RESULT retVal = 0; |
| 189 | pAssert(hashState != NULL); |
| 190 | TEST_HASH(hashAlg); |
| 191 | hashState->type = HASH_STATE_EMPTY; |
| 192 | // Call crypto engine start hash function |
| 193 | if((retVal = _cpri__StartHash(hashAlg, TRUE, &hashState->state)) > 0) |
| 194 | hashState->type = HASH_STATE_HASH; |
| 195 | return retVal; |
| 196 | } |
| 197 | // |
| 198 | // |
| 199 | // 10.2.4.4 CryptStartHMAC() |
| 200 | // |
| 201 | // This function starts an HMAC sequence and returns the size of the digest that will be produced. |
| 202 | // The caller must provide a block of memory in which the hash sequence state is kept. The caller should |
| 203 | // not alter the contents of this buffer until the hash sequence is completed or abandoned. |
| 204 | // |
| 205 | // Return Value Meaning |
| 206 | // |
| 207 | // >0 the digest size of the algorithm |
| 208 | // =0 the hashAlg was TPM_ALG_NULL |
| 209 | // |
| 210 | UINT16 |
| 211 | CryptStartHMAC( |
| 212 | TPMI_ALG_HASH hashAlg, // IN: hash algorithm |
| 213 | UINT16 keySize, // IN: the size of HMAC key in byte |
| 214 | BYTE *key, // IN: HMAC key |
| 215 | HMAC_STATE *hmacState // OUT: the state of HMAC stack. It will be used |
| 216 | // in HMAC update and completion |
| 217 | ) |
| 218 | { |
| 219 | HASH_STATE *hashState = (HASH_STATE *)hmacState; |
| 220 | CRYPT_RESULT retVal; |
| 221 | // This has to come before the pAssert in case we all calling this function |
| 222 | // during testing. If so, the first instance will have no arguments but the |
| 223 | // hash algorithm. The call from the test routine will have arguments. When |
| 224 | // the second call is done, then we return to the test dispatcher. |
| 225 | TEST_HASH(hashAlg); |
| 226 | pAssert(hashState != NULL); |
| 227 | hashState->type = HASH_STATE_EMPTY; |
| 228 | if((retVal = _cpri__StartHMAC(hashAlg, FALSE, &hashState->state, keySize, key, |
| 229 | &hmacState->hmacKey.b)) > 0) |
| 230 | hashState->type = HASH_STATE_HMAC; |
| 231 | return retVal; |
| 232 | } |
| 233 | // |
| 234 | // |
| 235 | // 10.2.4.5 CryptStartHMACSequence() |
| 236 | // |
| 237 | // This function starts an HMAC sequence and returns the size of the digest that will be produced. |
| 238 | // The caller must provide a block of memory in which the hash sequence state is kept. The caller should |
| 239 | // not alter the contents of this buffer until the hash sequence is completed or abandoned. |
| 240 | // This call is used to start a sequence HMAC that spans multiple TPM commands. |
| 241 | // |
| 242 | // Return Value Meaning |
| 243 | // |
| 244 | // >0 the digest size of the algorithm |
| 245 | // =0 the hashAlg was TPM_ALG_NULL |
| 246 | // |
| 247 | UINT16 |
| 248 | CryptStartHMACSequence( |
| 249 | TPMI_ALG_HASH hashAlg, // IN: hash algorithm |
| 250 | UINT16 keySize, // IN: the size of HMAC key in byte |
| 251 | BYTE *key, // IN: HMAC key |
| 252 | HMAC_STATE *hmacState // OUT: the state of HMAC stack. It will be used |
| 253 | // in HMAC update and completion |
| 254 | ) |
| 255 | { |
| 256 | HASH_STATE *hashState = (HASH_STATE *)hmacState; |
| 257 | CRYPT_RESULT retVal; |
| 258 | TEST_HASH(hashAlg); |
| 259 | hashState->type = HASH_STATE_EMPTY; |
| 260 | if((retVal = _cpri__StartHMAC(hashAlg, TRUE, &hashState->state, |
| 261 | keySize, key, &hmacState->hmacKey.b)) > 0) |
| 262 | hashState->type = HASH_STATE_HMAC; |
| 263 | return retVal; |
| 264 | } |
| 265 | // |
| 266 | // |
| 267 | // 10.2.4.6 CryptStartHMAC2B() |
| 268 | // |
| 269 | // This function starts an HMAC and returns the size of the digest that will be produced. |
| 270 | // This function is provided to support the most common use of starting an HMAC with a TPM2B key. |
| 271 | // The caller must provide a block of memory in which the hash sequence state is kept. The caller should |
| 272 | // not alter the contents of this buffer until the hash sequence is completed or abandoned. |
| 273 | // |
| 274 | // |
| 275 | // |
| 276 | // |
| 277 | // Return Value Meaning |
| 278 | // |
| 279 | // >0 the digest size of the algorithm |
| 280 | // =0 the hashAlg was TPM_ALG_NULL |
| 281 | // |
| 282 | LIB_EXPORT UINT16 |
| 283 | CryptStartHMAC2B( |
| 284 | TPMI_ALG_HASH hashAlg, // IN: hash algorithm |
| 285 | TPM2B *key, // IN: HMAC key |
| 286 | HMAC_STATE *hmacState // OUT: the state of HMAC stack. It will be used |
| 287 | // in HMAC update and completion |
| 288 | ) |
| 289 | { |
| 290 | return CryptStartHMAC(hashAlg, key->size, key->buffer, hmacState); |
| 291 | } |
| 292 | // |
| 293 | // |
| 294 | // 10.2.4.7 CryptStartHMACSequence2B() |
| 295 | // |
| 296 | // This function starts an HMAC sequence and returns the size of the digest that will be produced. |
| 297 | // This function is provided to support the most common use of starting an HMAC with a TPM2B key. |
| 298 | // The caller must provide a block of memory in which the hash sequence state is kept. The caller should |
| 299 | // not alter the contents of this buffer until the hash sequence is completed or abandoned. |
| 300 | // |
| 301 | // Return Value Meaning |
| 302 | // |
| 303 | // >0 the digest size of the algorithm |
| 304 | // =0 the hashAlg was TPM_ALG_NULL |
| 305 | // |
| 306 | UINT16 |
| 307 | CryptStartHMACSequence2B( |
| 308 | TPMI_ALG_HASH hashAlg, // IN: hash algorithm |
| 309 | TPM2B *key, // IN: HMAC key |
| 310 | HMAC_STATE *hmacState // OUT: the state of HMAC stack. It will be used |
| 311 | // in HMAC update and completion |
| 312 | ) |
| 313 | { |
| 314 | return CryptStartHMACSequence(hashAlg, key->size, key->buffer, hmacState); |
| 315 | } |
| 316 | // |
| 317 | // |
| 318 | // 10.2.4.8 CryptUpdateDigest() |
| 319 | // |
| 320 | // This function updates a digest (hash or HMAC) with an array of octets. |
| 321 | // This function can be used for both HMAC and hash functions so the digestState is void so that either |
| 322 | // state type can be passed. |
| 323 | // |
| 324 | LIB_EXPORT void |
| 325 | CryptUpdateDigest( |
| 326 | void *digestState, // IN: the state of hash stack |
| 327 | UINT32 dataSize, // IN: the size of data |
| 328 | BYTE *data // IN: data to be hashed |
| 329 | ) |
| 330 | { |
| 331 | HASH_STATE *hashState = (HASH_STATE *)digestState; |
| 332 | pAssert(digestState != NULL); |
| 333 | if(hashState->type != HASH_STATE_EMPTY && data != NULL && dataSize != 0) |
| 334 | { |
| 335 | // Call crypto engine update hash function |
| 336 | _cpri__UpdateHash(&hashState->state, dataSize, data); |
| 337 | } |
| 338 | return; |
| 339 | } |
| 340 | // |
| 341 | // |
| 342 | // 10.2.4.9 CryptUpdateDigest2B() |
| 343 | // |
| 344 | // This function updates a digest (hash or HMAC) with a TPM2B. |
| 345 | // This function can be used for both HMAC and hash functions so the digestState is void so that either |
| 346 | // state type can be passed. |
| 347 | // |
| 348 | LIB_EXPORT void |
| 349 | CryptUpdateDigest2B( |
| 350 | void *digestState, // IN: the digest state |
| 351 | TPM2B *bIn // IN: 2B containing the data |
| 352 | ) |
| 353 | { |
| 354 | // Only compute the digest if a pointer to the 2B is provided. |
| 355 | // In CryptUpdateDigest(), if size is zero or buffer is NULL, then no change |
| 356 | // to the digest occurs. This function should not provide a buffer if bIn is |
| 357 | // not provided. |
| 358 | if(bIn != NULL) |
| 359 | CryptUpdateDigest(digestState, bIn->size, bIn->buffer); |
| 360 | return; |
| 361 | } |
| 362 | // |
| 363 | // |
| 364 | // 10.2.4.10 CryptUpdateDigestInt() |
| 365 | // |
| 366 | // This function is used to include an integer value to a hash stack. The function marshals the integer into its |
| 367 | // canonical form before calling CryptUpdateHash(). |
| 368 | // |
| 369 | LIB_EXPORT void |
| 370 | CryptUpdateDigestInt( |
| 371 | void *state, // IN: the state of hash stack |
| 372 | UINT32 intSize, // IN: the size of 'intValue' in byte |
| 373 | void *intValue // IN: integer value to be hashed |
| 374 | ) |
| 375 | { |
| 376 | #if BIG_ENDIAN_TPM == YES |
| 377 | pAssert( intValue != NULL && (intSize == 1 || intSize == 2 |
| 378 | || intSize == 4 || intSize == 8)); |
| 379 | CryptUpdateHash(state, inSize, (BYTE *)intValue); |
| 380 | #else |
| 381 | BYTE marshalBuffer[8]; |
| 382 | // Point to the big end of an little-endian value |
| 383 | BYTE *p = &((BYTE *)intValue)[intSize - 1]; |
| 384 | // Point to the big end of an big-endian value |
| 385 | BYTE *q = marshalBuffer; |
| 386 | pAssert(intValue != NULL); |
| 387 | switch (intSize) |
| 388 | { |
| 389 | case 8: |
| 390 | *q++ = *p--; |
| 391 | *q++ = *p--; |
| 392 | *q++ = *p--; |
| 393 | *q++ = *p--; |
| 394 | case 4: |
| 395 | *q++ = *p--; |
| 396 | *q++ = *p--; |
| 397 | case 2: |
| 398 | *q++ = *p--; |
| 399 | case 1: |
| 400 | *q = *p; |
| 401 | // Call update the hash |
| 402 | CryptUpdateDigest(state, intSize, marshalBuffer); |
| 403 | break; |
| 404 | default: |
| 405 | FAIL(0); |
| 406 | } |
| 407 | #endif |
| 408 | return; |
| 409 | } |
| 410 | // |
| 411 | // |
| 412 | // 10.2.4.11 CryptCompleteHash() |
| 413 | // |
| 414 | // This function completes a hash sequence and returns the digest. |
| 415 | // This function can be called to complete either an HMAC or hash sequence. The state type determines if |
| 416 | // the context type is a hash or HMAC. If an HMAC, then the call is forwarded to CryptCompleteHash(). |
| 417 | // If digestSize is smaller than the digest size of hash/HMAC algorithm, the most significant bytes of |
| 418 | // required size will be returned |
| 419 | // |
| 420 | // Return Value Meaning |
| 421 | // |
| 422 | // >=0 the number of bytes placed in digest |
| 423 | // |
| 424 | LIB_EXPORT UINT16 |
| 425 | CryptCompleteHash( |
| 426 | void *state, // IN: the state of hash stack |
| 427 | UINT16 digestSize, // IN: size of digest buffer |
| 428 | BYTE *digest // OUT: hash digest |
| 429 | ) |
| 430 | { |
| 431 | HASH_STATE *hashState = (HASH_STATE *)state; // local value |
| 432 | // If the session type is HMAC, then could forward this to |
| 433 | // the HMAC processing and not cause an error. However, if no |
| 434 | // function calls this routine to forward it, then we can't get |
| 435 | // test coverage. The decision is to assert if this is called with |
| 436 | // the type == HMAC and fix anything that makes the wrong call. |
| 437 | pAssert(hashState->type == HASH_STATE_HASH); |
| 438 | // Set the state to empty so that it doesn't get used again |
| 439 | hashState->type = HASH_STATE_EMPTY; |
| 440 | // Call crypto engine complete hash function |
| 441 | return _cpri__CompleteHash(&hashState->state, digestSize, digest); |
| 442 | } |
| 443 | // |
| 444 | // |
| 445 | // 10.2.4.12 CryptCompleteHash2B() |
| 446 | // |
| 447 | // This function is the same as CypteCompleteHash() but the digest is placed in a TPM2B. This is the most |
| 448 | // common use and this is provided for specification clarity. 'digest.size' should be set to indicate the number |
| 449 | // of bytes to place in the buffer |
| 450 | // |
| 451 | // |
| 452 | // |
| 453 | // |
| 454 | // Return Value Meaning |
| 455 | // |
| 456 | // >=0 the number of bytes placed in 'digest.buffer' |
| 457 | // |
| 458 | LIB_EXPORT UINT16 |
| 459 | CryptCompleteHash2B( |
| 460 | void *state, // IN: the state of hash stack |
| 461 | TPM2B *digest // IN: the size of the buffer Out: requested |
| 462 | // number of byte |
| 463 | ) |
| 464 | { |
| 465 | UINT16 retVal = 0; |
| 466 | if(digest != NULL) |
| 467 | retVal = CryptCompleteHash(state, digest->size, digest->buffer); |
| 468 | return retVal; |
| 469 | } |
| 470 | // |
| 471 | // |
| 472 | // 10.2.4.13 CryptHashBlock() |
| 473 | // |
| 474 | // Hash a block of data and return the results. If the digest is larger than retSize, it is truncated and with the |
| 475 | // least significant octets dropped. |
| 476 | // |
| 477 | // Return Value Meaning |
| 478 | // |
| 479 | // >=0 the number of bytes placed in ret |
| 480 | // |
| 481 | LIB_EXPORT UINT16 |
| 482 | CryptHashBlock( |
| 483 | TPM_ALG_ID algId, // IN: the hash algorithm to use |
| 484 | UINT16 blockSize, // IN: size of the data block |
| 485 | BYTE *block, // IN: address of the block to hash |
| 486 | UINT16 retSize, // IN: size of the return buffer |
| 487 | BYTE *ret // OUT: address of the buffer |
| 488 | ) |
| 489 | { |
| 490 | TEST_HASH(algId); |
| 491 | return _cpri__HashBlock(algId, blockSize, block, retSize, ret); |
| 492 | } |
| 493 | // |
| 494 | // |
| 495 | // 10.2.4.14 CryptCompleteHMAC() |
| 496 | // |
| 497 | // This function completes a HMAC sequence and returns the digest. If digestSize is smaller than the digest |
| 498 | // size of the HMAC algorithm, the most significant bytes of required size will be returned. |
| 499 | // |
| 500 | // Return Value Meaning |
| 501 | // |
| 502 | // >=0 the number of bytes placed in digest |
| 503 | // |
| 504 | LIB_EXPORT UINT16 |
| 505 | CryptCompleteHMAC( |
| 506 | HMAC_STATE *hmacState, // IN: the state of HMAC stack |
| 507 | UINT32 digestSize, // IN: size of digest buffer |
| 508 | BYTE *digest // OUT: HMAC digest |
| 509 | ) |
| 510 | { |
| 511 | HASH_STATE *hashState; |
| 512 | pAssert(hmacState != NULL); |
| 513 | hashState = &hmacState->hashState; |
| 514 | pAssert(hashState->type == HASH_STATE_HMAC); |
| 515 | hashState->type = HASH_STATE_EMPTY; |
| 516 | return _cpri__CompleteHMAC(&hashState->state, &hmacState->hmacKey.b, |
| 517 | digestSize, digest); |
| 518 | } |
| 519 | // |
| 520 | // |
| 521 | // 10.2.4.15 CryptCompleteHMAC2B() |
| 522 | // |
| 523 | // This function is the same as CryptCompleteHMAC() but the HMAC result is returned in a TPM2B which is |
| 524 | // the most common use. |
| 525 | // |
| 526 | // Return Value Meaning |
| 527 | // |
| 528 | // >=0 the number of bytes placed in digest |
| 529 | // |
| 530 | LIB_EXPORT UINT16 |
| 531 | CryptCompleteHMAC2B( |
| 532 | HMAC_STATE *hmacState, // IN: the state of HMAC stack |
| 533 | TPM2B *digest // OUT: HMAC |
| 534 | ) |
| 535 | { |
| 536 | UINT16 retVal = 0; |
| 537 | if(digest != NULL) |
| 538 | retVal = CryptCompleteHMAC(hmacState, digest->size, digest->buffer); |
| 539 | return retVal; |
| 540 | } |
| 541 | // |
| 542 | // |
| 543 | // 10.2.4.16 CryptHashStateImportExport() |
| 544 | // |
| 545 | // This function is used to prepare a hash state context for LIB_EXPORT or to import it into the internal |
| 546 | // format. It is used by TPM2_ContextSave() and TPM2_ContextLoad() via SequenceDataImportExport(). |
| 547 | // This is just a pass-through function to the crypto library. |
| 548 | // |
| 549 | void |
| 550 | CryptHashStateImportExport( |
| 551 | HASH_STATE *internalFmt, // IN: state to LIB_EXPORT |
| 552 | HASH_STATE *externalFmt, // OUT: exported state |
| 553 | IMPORT_EXPORT direction |
| 554 | ) |
| 555 | { |
| 556 | _cpri__ImportExportHashState(&internalFmt->state, |
| 557 | (EXPORT_HASH_STATE *)&externalFmt->state, |
| 558 | direction); |
| 559 | } |
| 560 | // |
| 561 | // |
| 562 | // 10.2.4.17 CryptGetHashDigestSize() |
| 563 | // |
| 564 | // This function returns the digest size in bytes for a hash algorithm. |
| 565 | // |
| 566 | // Return Value Meaning |
| 567 | // |
| 568 | // 0 digest size for TPM_ALG_NULL |
| 569 | // >0 digest size |
| 570 | // |
| 571 | LIB_EXPORT UINT16 |
| 572 | CryptGetHashDigestSize( |
| 573 | TPM_ALG_ID hashAlg // IN: hash algorithm |
| 574 | ) |
| 575 | { |
| 576 | return _cpri__GetDigestSize(hashAlg); |
| 577 | } |
| 578 | // |
| 579 | // |
| 580 | // 10.2.4.18 CryptGetHashBlockSize() |
| 581 | // |
| 582 | // Get the digest size in byte of a hash algorithm. |
| 583 | // |
| 584 | // Return Value Meaning |
| 585 | // |
| 586 | // 0 block size for TPM_ALG_NULL |
| 587 | // >0 block size |
| 588 | // |
| 589 | LIB_EXPORT UINT16 |
| 590 | CryptGetHashBlockSize( |
| 591 | TPM_ALG_ID hash // IN: hash algorithm to look up |
| 592 | ) |
| 593 | { |
| 594 | return _cpri__GetHashBlockSize(hash); |
| 595 | } |
| 596 | // |
| 597 | // |
| 598 | // 10.2.4.19 CryptGetHashAlgByIndex() |
| 599 | // |
| 600 | // This function is used to iterate through the hashes. TPM_ALG_NULL is returned for all indexes that are |
| 601 | // not valid hashes. If the TPM implements 3 hashes, then an index value of 0 will return the first |
| 602 | // implemented hash and an index value of 2 will return the last implemented hash. All other index values |
| 603 | // will return TPM_ALG_NULL. |
| 604 | // |
| 605 | // Return Value Meaning |
| 606 | // |
| 607 | // TPM_ALG_xxx() a hash algorithm |
| 608 | // TPM_ALG_NULL this can be used as a stop value |
| 609 | // |
| 610 | LIB_EXPORT TPM_ALG_ID |
| 611 | CryptGetHashAlgByIndex( |
| 612 | UINT32 index // IN: the index |
| 613 | ) |
| 614 | { |
| 615 | return _cpri__GetHashAlgByIndex(index); |
| 616 | } |
| 617 | // |
| 618 | // |
| 619 | // 10.2.4.20 CryptSignHMAC() |
| 620 | // |
| 621 | // Sign a digest using an HMAC key. This an HMAC of a digest, not an HMAC of a message. |
| 622 | // |
| 623 | // Error Returns Meaning |
| 624 | // |
| 625 | static TPM_RC |
| 626 | CryptSignHMAC( |
| 627 | OBJECT *signKey, // IN: HMAC key sign the hash |
| 628 | TPMT_SIG_SCHEME *scheme, // IN: signing scheme |
| 629 | TPM2B_DIGEST *hashData, // IN: hash to be signed |
| 630 | TPMT_SIGNATURE *signature // OUT: signature |
| 631 | ) |
| 632 | { |
| 633 | // |
| 634 | HMAC_STATE hmacState; |
| 635 | UINT32 digestSize; |
| 636 | // HMAC algorithm self testing code may be inserted here |
| 637 | digestSize = CryptStartHMAC2B(scheme->details.hmac.hashAlg, |
| 638 | &signKey->sensitive.sensitive.bits.b, |
| 639 | &hmacState); |
| 640 | // The hash algorithm must be a valid one. |
| 641 | pAssert(digestSize > 0); |
| 642 | CryptUpdateDigest2B(&hmacState, &hashData->b); |
| 643 | CryptCompleteHMAC(&hmacState, digestSize, |
| 644 | (BYTE *) &signature->signature.hmac.digest); |
| 645 | // Set HMAC algorithm |
| 646 | signature->signature.hmac.hashAlg = scheme->details.hmac.hashAlg; |
| 647 | return TPM_RC_SUCCESS; |
| 648 | } |
| 649 | // |
| 650 | // |
| 651 | // 10.2.4.21 CryptHMACVerifySignature() |
| 652 | // |
| 653 | // This function will verify a signature signed by a HMAC key. |
| 654 | // |
| 655 | // Error Returns Meaning |
| 656 | // |
| 657 | // TPM_RC_SIGNATURE if invalid input or signature is not genuine |
| 658 | // |
| 659 | static TPM_RC |
| 660 | CryptHMACVerifySignature( |
| 661 | OBJECT *signKey, // IN: HMAC key signed the hash |
| 662 | TPM2B_DIGEST *hashData, // IN: digest being verified |
| 663 | TPMT_SIGNATURE *signature // IN: signature to be verified |
| 664 | ) |
| 665 | { |
| 666 | HMAC_STATE hmacState; |
| 667 | TPM2B_DIGEST digestToCompare; |
| 668 | digestToCompare.t.size = CryptStartHMAC2B(signature->signature.hmac.hashAlg, |
| 669 | &signKey->sensitive.sensitive.bits.b, &hmacState); |
| 670 | CryptUpdateDigest2B(&hmacState, &hashData->b); |
| 671 | CryptCompleteHMAC2B(&hmacState, &digestToCompare.b); |
| 672 | // Compare digest |
| 673 | if(MemoryEqual(digestToCompare.t.buffer, |
| 674 | (BYTE *) &signature->signature.hmac.digest, |
| 675 | digestToCompare.t.size)) |
| 676 | return TPM_RC_SUCCESS; |
| 677 | else |
| 678 | return TPM_RC_SIGNATURE; |
| 679 | } |
| 680 | // |
| 681 | // |
| 682 | // 10.2.4.22 CryptGenerateKeyedHash() |
| 683 | // |
| 684 | // This function creates a keyedHash object. |
| 685 | // |
| 686 | // |
| 687 | // |
| 688 | // Error Returns Meaning |
| 689 | // |
| 690 | // TPM_RC_SIZE sensitive data size is larger than allowed for the scheme |
| 691 | // |
| 692 | static TPM_RC |
| 693 | CryptGenerateKeyedHash( |
| 694 | TPMT_PUBLIC *publicArea, // IN/OUT: the public area template |
| 695 | // for the new key. |
| 696 | TPMS_SENSITIVE_CREATE *sensitiveCreate, // IN: sensitive creation data |
| 697 | TPMT_SENSITIVE *sensitive, // OUT: sensitive area |
| 698 | TPM_ALG_ID kdfHashAlg, // IN: algorithm for the KDF |
| 699 | TPM2B_SEED *seed, // IN: the seed |
| 700 | TPM2B_NAME *name // IN: name of the object |
| 701 | ) |
| 702 | { |
| 703 | TPMT_KEYEDHASH_SCHEME *scheme; |
| 704 | TPM_ALG_ID hashAlg; |
| 705 | UINT16 hashBlockSize; |
| 706 | scheme = &publicArea->parameters.keyedHashDetail.scheme; |
| 707 | pAssert(publicArea->type == TPM_ALG_KEYEDHASH); |
| 708 | // Pick the limiting hash algorithm |
| 709 | if(scheme->scheme == TPM_ALG_NULL) |
| 710 | hashAlg = publicArea->nameAlg; |
| 711 | else if(scheme->scheme == TPM_ALG_XOR) |
| 712 | hashAlg = scheme->details.xor.hashAlg; |
| 713 | else |
| 714 | hashAlg = scheme->details.hmac.hashAlg; |
| 715 | hashBlockSize = CryptGetHashBlockSize(hashAlg); |
| 716 | // if this is a signing or a decryption key, then then the limit |
| 717 | // for the data size is the block size of the hash. This limit |
| 718 | // is set because larger values have lower entropy because of the |
| 719 | // HMAC function. |
| 720 | if(publicArea->objectAttributes.sensitiveDataOrigin == CLEAR) |
| 721 | { |
| 722 | if( ( publicArea->objectAttributes.decrypt |
| 723 | || publicArea->objectAttributes.sign) |
| 724 | && sensitiveCreate->data.t.size > hashBlockSize) |
| 725 | return TPM_RC_SIZE; |
| 726 | } |
| 727 | else |
| 728 | { |
| 729 | // If the TPM is going to generate the data, then set the size to be the |
| 730 | // size of the digest of the algorithm |
| 731 | sensitive->sensitive.sym.t.size = CryptGetHashDigestSize(hashAlg); |
| 732 | sensitiveCreate->data.t.size = 0; |
| 733 | } |
| 734 | // Fill in the sensitive area |
| 735 | CryptGenerateNewSymmetric(sensitiveCreate, sensitive, kdfHashAlg, |
| 736 | seed, name); |
| 737 | // Create unique area in public |
| 738 | CryptComputeSymmetricUnique(publicArea->nameAlg, |
| 739 | sensitive, &publicArea->unique.sym); |
| 740 | return TPM_RC_SUCCESS; |
| 741 | } |
| 742 | // |
| 743 | // |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 744 | // 10.2.4.25 KDFa() |
| 745 | // |
| 746 | // This function is used by functions outside of CryptUtil() to access _cpri_KDFa(). |
| 747 | // |
| 748 | void |
| 749 | KDFa( |
| 750 | TPM_ALG_ID hash, // IN: hash algorithm used in HMAC |
| 751 | TPM2B *key, // IN: HMAC key |
| 752 | const char *label, // IN: a null-terminated label for KDF |
| 753 | TPM2B *contextU, // IN: context U |
| 754 | TPM2B *contextV, // IN: context V |
| 755 | UINT32 sizeInBits, // IN: size of generated key in bit |
| 756 | BYTE *keyStream, // OUT: key buffer |
| 757 | UINT32 *counterInOut // IN/OUT: caller may provide the iteration |
| 758 | // counter for incremental operations to |
| 759 | // avoid large intermediate buffers. |
| 760 | ) |
| 761 | { |
| 762 | CryptKDFa(hash, key, label, contextU, contextV, sizeInBits, |
| 763 | keyStream, counterInOut); |
| 764 | } |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 765 | #endif //TPM_ALG_KEYEDHASH //% 1 |
| 766 | // |
| 767 | // |
| 768 | // 10.2.5 RSA Functions |
| 769 | // |
| 770 | // 10.2.5.1 BuildRSA() |
| 771 | // |
| 772 | // Function to set the cryptographic elements of an RSA key into a structure to simplify the interface to |
| 773 | // _cpri__ RSA function. This can/should be eliminated by building this structure into the object structure. |
| 774 | // |
| 775 | #ifdef TPM_ALG_RSA //% 2 |
| 776 | static void |
| 777 | BuildRSA( |
| 778 | OBJECT *rsaKey, |
| 779 | RSA_KEY *key |
| 780 | ) |
| 781 | { |
| 782 | key->exponent = rsaKey->publicArea.parameters.rsaDetail.exponent; |
| 783 | if(key->exponent == 0) |
| 784 | key->exponent = RSA_DEFAULT_PUBLIC_EXPONENT; |
| 785 | key->publicKey = &rsaKey->publicArea.unique.rsa.b; |
| 786 | if(rsaKey->attributes.publicOnly || rsaKey->privateExponent.t.size == 0) |
| 787 | key->privateKey = NULL; |
| 788 | else |
| 789 | key->privateKey = &(rsaKey->privateExponent.b); |
| 790 | } |
| 791 | // |
| 792 | // |
| 793 | // 10.2.5.2 CryptTestKeyRSA() |
| 794 | // |
| 795 | // This function provides the interface to _cpri__TestKeyRSA(). If both p and q are provided, n will be set to |
| 796 | // p*q. |
| 797 | // If only p is provided, q is computed by q = n/p. If n mod p != 0, TPM_RC_BINDING is returned. |
| 798 | // The key is validated by checking that a d can be found such that e d mod ((p-1)*(q-1)) = 1. If d is found |
| 799 | // that satisfies this requirement, it will be placed in d. |
| 800 | // Page 286 TCG Published Family "2.0" |
| 801 | // October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16 |
| 802 | // Part 4: Supporting Routines Trusted Platform Module Library |
| 803 | // |
| 804 | // |
| 805 | // Error Returns Meaning |
| 806 | // |
| 807 | // TPM_RC_BINDING the public and private portions of the key are not matched |
| 808 | // |
| 809 | TPM_RC |
| 810 | CryptTestKeyRSA( |
| 811 | TPM2B *d, // OUT: receives the private exponent |
| 812 | UINT32 e, // IN: public exponent |
| 813 | TPM2B *n, // IN/OUT: public modulu |
| 814 | TPM2B *p, // IN: a first prime |
| 815 | TPM2B *q // IN: an optional second prime |
| 816 | ) |
| 817 | { |
| 818 | CRYPT_RESULT retVal; |
| 819 | TEST(ALG_NULL_VALUE); |
| 820 | pAssert(d != NULL && n != NULL && p != NULL); |
| 821 | // Set the exponent |
| 822 | if(e == 0) |
| 823 | e = RSA_DEFAULT_PUBLIC_EXPONENT; |
| 824 | // CRYPT_PARAMETER |
| 825 | retVal =_cpri__TestKeyRSA(d, e, n, p, q); |
| 826 | if(retVal == CRYPT_SUCCESS) |
| 827 | return TPM_RC_SUCCESS; |
| 828 | else |
| 829 | return TPM_RC_BINDING; // convert CRYPT_PARAMETER |
| 830 | } |
| 831 | // |
| 832 | // |
| 833 | // 10.2.5.3 CryptGenerateKeyRSA() |
| 834 | // |
| 835 | // This function is called to generate an RSA key from a provided seed. It calls _cpri__GenerateKeyRSA() |
| 836 | // to perform the computations. The implementation is vendor specific. |
| 837 | // |
| 838 | // Error Returns Meaning |
| 839 | // |
| 840 | // TPM_RC_RANGE the exponent value is not supported |
| 841 | // TPM_RC_CANCELLED key generation has been canceled |
| 842 | // TPM_RC_VALUE exponent is not prime or is less than 3; or could not find a prime using |
| 843 | // the provided parameters |
| 844 | // |
| 845 | static TPM_RC |
| 846 | CryptGenerateKeyRSA( |
| 847 | TPMT_PUBLIC *publicArea, // IN/OUT: The public area template for |
| 848 | // the new key. The public key |
| 849 | // area will be replaced by the |
| 850 | // product of two primes found by |
| 851 | // this function |
| 852 | TPMT_SENSITIVE *sensitive, // OUT: the sensitive area will be |
| 853 | // updated to contain the first |
| 854 | // prime and the symmetric |
| 855 | // encryption key |
| 856 | TPM_ALG_ID hashAlg, // IN: the hash algorithm for the KDF |
| 857 | TPM2B_SEED *seed, // IN: Seed for the creation |
| 858 | TPM2B_NAME *name, // IN: Object name |
| 859 | UINT32 *counter // OUT: last iteration of the counter |
| 860 | ) |
| 861 | { |
| 862 | CRYPT_RESULT retVal; |
| 863 | UINT32 exponent = publicArea->parameters.rsaDetail.exponent; |
| 864 | TEST_HASH(hashAlg); |
| 865 | TEST(ALG_NULL_VALUE); |
| 866 | // In this implementation, only the default exponent is allowed |
| 867 | if(exponent != 0 && exponent != RSA_DEFAULT_PUBLIC_EXPONENT) |
| 868 | return TPM_RC_RANGE; |
| 869 | exponent = RSA_DEFAULT_PUBLIC_EXPONENT; |
| 870 | *counter = 0; |
| 871 | // _cpri_GenerateKeyRSA can return CRYPT_CANCEL or CRYPT_FAIL |
| 872 | retVal = _cpri__GenerateKeyRSA(&publicArea->unique.rsa.b, |
| 873 | &sensitive->sensitive.rsa.b, |
| 874 | publicArea->parameters.rsaDetail.keyBits, |
| 875 | exponent, |
| 876 | hashAlg, |
| 877 | &seed->b, |
| 878 | "RSA key by vendor", |
| 879 | &name->b, |
| 880 | counter); |
| 881 | // CRYPT_CANCEL -> TPM_RC_CANCELLED; CRYPT_FAIL -> TPM_RC_VALUE |
| 882 | return TranslateCryptErrors(retVal); |
| 883 | } |
| 884 | // |
| 885 | // |
| 886 | // 10.2.5.4 CryptLoadPrivateRSA() |
| 887 | // |
| 888 | // This function is called to generate the private exponent of an RSA key. It uses CryptTestKeyRSA(). |
| 889 | // |
| 890 | // Error Returns Meaning |
| 891 | // |
| 892 | // TPM_RC_BINDING public and private parts of rsaKey are not matched |
| 893 | // |
| 894 | TPM_RC |
| 895 | CryptLoadPrivateRSA( |
| 896 | OBJECT *rsaKey // IN: the RSA key object |
| 897 | ) |
| 898 | { |
| 899 | TPM_RC result; |
| 900 | TPMT_PUBLIC *publicArea = &rsaKey->publicArea; |
| 901 | TPMT_SENSITIVE *sensitive = &rsaKey->sensitive; |
| 902 | // Load key by computing the private exponent |
| 903 | // TPM_RC_BINDING |
| 904 | result = CryptTestKeyRSA(&(rsaKey->privateExponent.b), |
| 905 | publicArea->parameters.rsaDetail.exponent, |
| 906 | &(publicArea->unique.rsa.b), |
| 907 | &(sensitive->sensitive.rsa.b), |
| 908 | NULL); |
| 909 | if(result == TPM_RC_SUCCESS) |
| 910 | rsaKey->attributes.privateExp = SET; |
| 911 | return result; |
| 912 | } |
| 913 | // |
| 914 | // |
| 915 | // 10.2.5.5 CryptSelectRSAScheme() |
| 916 | // |
| 917 | // This function is used by TPM2_RSA_Decrypt() and TPM2_RSA_Encrypt(). It sets up the rules to select a |
| 918 | // scheme between input and object default. This function assume the RSA object is loaded. If a default |
| 919 | // scheme is defined in object, the default scheme should be chosen, otherwise, the input scheme should |
| 920 | // be chosen. In the case that both the object and scheme are not TPM_ALG_NULL, then if the schemes |
| 921 | // |
| 922 | // |
| 923 | // are the same, the input scheme will be chosen. if the scheme are not compatible, a NULL pointer will be |
| 924 | // returned. |
| 925 | // The return pointer may point to a TPM_ALG_NULL scheme. |
| 926 | // |
| 927 | TPMT_RSA_DECRYPT* |
| 928 | CryptSelectRSAScheme( |
| 929 | TPMI_DH_OBJECT rsaHandle, // IN: handle of sign key |
| 930 | TPMT_RSA_DECRYPT *scheme // IN: a sign or decrypt scheme |
| 931 | ) |
| 932 | { |
| 933 | OBJECT *rsaObject; |
| 934 | TPMT_ASYM_SCHEME *keyScheme; |
| 935 | TPMT_RSA_DECRYPT *retVal = NULL; |
| 936 | // Get sign object pointer |
| 937 | rsaObject = ObjectGet(rsaHandle); |
| 938 | keyScheme = &rsaObject->publicArea.parameters.asymDetail.scheme; |
| 939 | // if the default scheme of the object is TPM_ALG_NULL, then select the |
| 940 | // input scheme |
| 941 | if(keyScheme->scheme == TPM_ALG_NULL) |
| 942 | { |
| 943 | retVal = scheme; |
| 944 | } |
| 945 | // if the object scheme is not TPM_ALG_NULL and the input scheme is |
| 946 | // TPM_ALG_NULL, then select the default scheme of the object. |
| 947 | else if(scheme->scheme == TPM_ALG_NULL) |
| 948 | { |
| 949 | // if input scheme is NULL |
| 950 | retVal = (TPMT_RSA_DECRYPT *)keyScheme; |
| 951 | } |
| 952 | // get here if both the object scheme and the input scheme are |
| 953 | // not TPM_ALG_NULL. Need to insure that they are the same. |
| 954 | // IMPLEMENTATION NOTE: This could cause problems if future versions have |
| 955 | // schemes that have more values than just a hash algorithm. A new function |
| 956 | // (IsSchemeSame()) might be needed then. |
| 957 | else if( keyScheme->scheme == scheme->scheme |
| 958 | && keyScheme->details.anySig.hashAlg == scheme->details.anySig.hashAlg) |
| 959 | { |
| 960 | retVal = scheme; |
| 961 | } |
| 962 | // two different, incompatible schemes specified will return NULL |
| 963 | return retVal; |
| 964 | } |
| 965 | // |
| 966 | // |
| 967 | // 10.2.5.6 CryptDecryptRSA() |
| 968 | // |
| 969 | // This function is the interface to _cpri__DecryptRSA(). It handles the return codes from that function and |
| 970 | // converts them from CRYPT_RESULT to TPM_RC values. The rsaKey parameter must reference an RSA |
| 971 | // decryption key |
| 972 | // |
| 973 | // Error Returns Meaning |
| 974 | // |
| 975 | // TPM_RC_BINDING Public and private parts of the key are not cryptographically bound. |
| 976 | // TPM_RC_SIZE Size of data to decrypt is not the same as the key size. |
| 977 | // TPM_RC_VALUE Numeric value of the encrypted data is greater than the public |
| 978 | // exponent, or output buffer is too small for the decrypted message. |
| 979 | // |
| 980 | TPM_RC |
| 981 | CryptDecryptRSA( |
| 982 | UINT16 *dataOutSize, // OUT: size of plain text in byte |
| 983 | BYTE *dataOut, // OUT: plain text |
| 984 | OBJECT *rsaKey, // IN: internal RSA key |
| 985 | TPMT_RSA_DECRYPT *scheme, // IN: selects the padding scheme |
| 986 | UINT16 cipherInSize, // IN: size of cipher text in byte |
| 987 | BYTE *cipherIn, // IN: cipher text |
| 988 | const char *label // IN: a label, when needed |
| 989 | ) |
| 990 | { |
| 991 | RSA_KEY key; |
| 992 | CRYPT_RESULT retVal = CRYPT_SUCCESS; |
| 993 | UINT32 dSize; // Place to put temporary value for the |
| 994 | // returned data size |
| 995 | TPMI_ALG_HASH hashAlg = TPM_ALG_NULL; // hash algorithm in the selected |
| 996 | // padding scheme |
| 997 | TPM_RC result = TPM_RC_SUCCESS; |
| 998 | // pointer checks |
| 999 | pAssert( (dataOutSize != NULL) && (dataOut != NULL) |
| 1000 | && (rsaKey != NULL) && (cipherIn != NULL)); |
| 1001 | // The public type is a RSA decrypt key |
| 1002 | pAssert( (rsaKey->publicArea.type == TPM_ALG_RSA |
| 1003 | && rsaKey->publicArea.objectAttributes.decrypt == SET)); |
| 1004 | // Must have the private portion loaded. This check is made before this |
| 1005 | // function is called. |
| 1006 | pAssert(rsaKey->attributes.publicOnly == CLEAR); |
| 1007 | // decryption requires that the private modulus be present |
| 1008 | if(rsaKey->attributes.privateExp == CLEAR) |
| 1009 | { |
| 1010 | // Load key by computing the private exponent |
| 1011 | // CryptLoadPrivateRSA may return TPM_RC_BINDING |
| 1012 | result = CryptLoadPrivateRSA(rsaKey); |
| 1013 | } |
| 1014 | // the input buffer must be the size of the key |
| 1015 | if(result == TPM_RC_SUCCESS) |
| 1016 | { |
| 1017 | if(cipherInSize != rsaKey->publicArea.unique.rsa.t.size) |
| 1018 | result = TPM_RC_SIZE; |
| 1019 | else |
| 1020 | { |
| 1021 | BuildRSA(rsaKey, &key); |
| 1022 | // Initialize the dOutSize parameter |
| 1023 | dSize = *dataOutSize; |
| 1024 | // For OAEP scheme, initialize the hash algorithm for padding |
| 1025 | if(scheme->scheme == TPM_ALG_OAEP) |
| 1026 | { |
| 1027 | hashAlg = scheme->details.oaep.hashAlg; |
| 1028 | TEST_HASH(hashAlg); |
| 1029 | } |
| 1030 | // See if the padding mode needs to be tested |
| 1031 | TEST(scheme->scheme); |
| 1032 | // _cpri__DecryptRSA may return CRYPT_PARAMETER CRYPT_FAIL CRYPT_SCHEME |
| 1033 | retVal = _cpri__DecryptRSA(&dSize, dataOut, &key, scheme->scheme, |
| 1034 | cipherInSize, cipherIn, hashAlg, label); |
| 1035 | // Scheme must have been validated when the key was loaded/imported |
| 1036 | pAssert(retVal != CRYPT_SCHEME); |
| 1037 | // Set the return size |
| 1038 | pAssert(dSize <= UINT16_MAX); |
| 1039 | *dataOutSize = (UINT16)dSize; |
| 1040 | // CRYPT_PARAMETER -> TPM_RC_VALUE, CRYPT_FAIL -> TPM_RC_VALUE |
| 1041 | result = TranslateCryptErrors(retVal); |
| 1042 | } |
| 1043 | } |
| 1044 | return result; |
| 1045 | } |
| 1046 | // |
| 1047 | // |
| 1048 | // 10.2.5.7 CryptEncryptRSA() |
| 1049 | // |
| 1050 | // This function provides the interface to _cpri__EncryptRSA(). The object referenced by rsaKey is required |
| 1051 | // to be an RSA decryption key. |
| 1052 | // |
| 1053 | // Error Returns Meaning |
| 1054 | // |
| 1055 | // TPM_RC_SCHEME scheme is not supported |
| 1056 | // TPM_RC_VALUE numeric value of dataIn is greater than the key modulus |
| 1057 | // |
| 1058 | TPM_RC |
| 1059 | CryptEncryptRSA( |
| 1060 | UINT16 *cipherOutSize, // OUT: size of cipher text in byte |
| 1061 | BYTE *cipherOut, // OUT: cipher text |
| 1062 | OBJECT *rsaKey, // IN: internal RSA key |
| 1063 | TPMT_RSA_DECRYPT *scheme, // IN: selects the padding scheme |
| 1064 | UINT16 dataInSize, // IN: size of plain text in byte |
| 1065 | BYTE *dataIn, // IN: plain text |
| 1066 | const char *label // IN: an optional label |
| 1067 | ) |
| 1068 | { |
| 1069 | RSA_KEY key; |
| 1070 | CRYPT_RESULT retVal; |
| 1071 | UINT32 cOutSize; // Conversion variable |
| 1072 | TPMI_ALG_HASH hashAlg = TPM_ALG_NULL; // hash algorithm in selected |
| 1073 | // padding scheme |
| 1074 | // must have a pointer to a key and some data to encrypt |
| 1075 | pAssert(rsaKey != NULL && dataIn != NULL); |
| 1076 | // The public type is a RSA decryption key |
| 1077 | pAssert( rsaKey->publicArea.type == TPM_ALG_RSA |
| 1078 | && rsaKey->publicArea.objectAttributes.decrypt == SET); |
| 1079 | // If the cipher buffer must be provided and it must be large enough |
| 1080 | // for the result |
| 1081 | pAssert( cipherOut != NULL |
| 1082 | && cipherOutSize != NULL |
| 1083 | && *cipherOutSize >= rsaKey->publicArea.unique.rsa.t.size); |
| 1084 | // Only need the public key and exponent for encryption |
| 1085 | BuildRSA(rsaKey, &key); |
| 1086 | // Copy the size to the conversion buffer |
| 1087 | cOutSize = *cipherOutSize; |
| 1088 | // For OAEP scheme, initialize the hash algorithm for padding |
| 1089 | if(scheme->scheme == TPM_ALG_OAEP) |
| 1090 | { |
| 1091 | hashAlg = scheme->details.oaep.hashAlg; |
| 1092 | TEST_HASH(hashAlg); |
| 1093 | } |
| 1094 | // This is a public key operation and does not require that the private key |
| 1095 | // be loaded. To verify this, need to do the full algorithm |
| 1096 | TEST(scheme->scheme); |
| 1097 | // Encrypt the data with the public exponent |
| 1098 | // _cpri__EncryptRSA may return CRYPT_PARAMETER or CRYPT_SCHEME |
| 1099 | retVal = _cpri__EncryptRSA(&cOutSize,cipherOut, &key, scheme->scheme, |
| 1100 | dataInSize, dataIn, hashAlg, label); |
| 1101 | pAssert (cOutSize <= UINT16_MAX); |
| 1102 | *cipherOutSize = (UINT16)cOutSize; |
| 1103 | // CRYPT_PARAMETER -> TPM_RC_VALUE, CRYPT_SCHEME -> TPM_RC_SCHEME |
| 1104 | return TranslateCryptErrors(retVal); |
| 1105 | } |
| 1106 | // |
| 1107 | // |
| 1108 | // 10.2.5.8 CryptSignRSA() |
| 1109 | // |
| 1110 | // This function is used to sign a digest with an RSA signing key. |
| 1111 | // |
| 1112 | // Error Returns Meaning |
| 1113 | // |
| 1114 | // TPM_RC_BINDING public and private part of signKey are not properly bound |
| 1115 | // TPM_RC_SCHEME scheme is not supported |
| 1116 | // TPM_RC_VALUE hashData is larger than the modulus of signKey, or the size of |
| 1117 | // hashData does not match hash algorithm in scheme |
| 1118 | // |
| 1119 | static TPM_RC |
| 1120 | CryptSignRSA( |
| 1121 | OBJECT *signKey, // IN: RSA key signs the hash |
| 1122 | TPMT_SIG_SCHEME *scheme, // IN: sign scheme |
| 1123 | TPM2B_DIGEST *hashData, // IN: hash to be signed |
| 1124 | TPMT_SIGNATURE *sig // OUT: signature |
| 1125 | ) |
| 1126 | { |
| 1127 | UINT32 signSize; |
| 1128 | RSA_KEY key; |
| 1129 | CRYPT_RESULT retVal; |
| 1130 | TPM_RC result = TPM_RC_SUCCESS; |
| 1131 | pAssert( (signKey != NULL) && (scheme != NULL) |
| 1132 | && (hashData != NULL) && (sig != NULL)); |
| 1133 | // assume that the key has private part loaded and that it is a signing key. |
| 1134 | pAssert( (signKey->attributes.publicOnly == CLEAR) |
| 1135 | && (signKey->publicArea.objectAttributes.sign == SET)); |
| 1136 | // check if the private exponent has been computed |
| 1137 | if(signKey->attributes.privateExp == CLEAR) |
| 1138 | // May return TPM_RC_BINDING |
| 1139 | result = CryptLoadPrivateRSA(signKey); |
| 1140 | if(result == TPM_RC_SUCCESS) |
| 1141 | { |
| 1142 | BuildRSA(signKey, &key); |
| 1143 | // Make sure that the hash is tested |
| 1144 | TEST_HASH(sig->signature.any.hashAlg); |
| 1145 | // Run a test of the RSA sign |
| 1146 | TEST(scheme->scheme); |
| 1147 | // _crypi__SignRSA can return CRYPT_SCHEME and CRYPT_PARAMETER |
| 1148 | retVal = _cpri__SignRSA(&signSize, |
| 1149 | sig->signature.rsassa.sig.t.buffer, |
| 1150 | &key, |
| 1151 | sig->sigAlg, |
| 1152 | sig->signature.any.hashAlg, |
| 1153 | hashData->t.size, hashData->t.buffer); |
| 1154 | pAssert(signSize <= UINT16_MAX); |
| 1155 | sig->signature.rsassa.sig.t.size = (UINT16)signSize; |
| 1156 | // CRYPT_SCHEME -> TPM_RC_SCHEME; CRYPT_PARAMTER -> TPM_RC_VALUE |
| 1157 | result = TranslateCryptErrors(retVal); |
| 1158 | } |
| 1159 | return result; |
| 1160 | } |
| 1161 | // |
| 1162 | // |
| 1163 | // 10.2.5.9 CryptRSAVerifySignature() |
| 1164 | // |
| 1165 | // This function is used to verify signature signed by a RSA key. |
| 1166 | // |
| 1167 | // Error Returns Meaning |
| 1168 | // |
| 1169 | // TPM_RC_SIGNATURE if signature is not genuine |
| 1170 | // TPM_RC_SCHEME signature scheme not supported |
| 1171 | // |
| 1172 | static TPM_RC |
| 1173 | CryptRSAVerifySignature( |
| 1174 | OBJECT *signKey, // IN: RSA key signed the hash |
| 1175 | TPM2B_DIGEST *digestData, // IN: digest being signed |
| 1176 | TPMT_SIGNATURE *sig // IN: signature to be verified |
| 1177 | ) |
| 1178 | { |
| 1179 | RSA_KEY key; |
| 1180 | CRYPT_RESULT retVal; |
| 1181 | TPM_RC result; |
| 1182 | // Validate parameter assumptions |
| 1183 | pAssert((signKey != NULL) && (digestData != NULL) && (sig != NULL)); |
| 1184 | TEST_HASH(sig->signature.any.hashAlg); |
| 1185 | TEST(sig->sigAlg); |
| 1186 | // This is a public-key-only operation |
| 1187 | BuildRSA(signKey, &key); |
| 1188 | // Call crypto engine to verify signature |
| 1189 | // _cpri_ValidateSignaturRSA may return CRYPT_FAIL or CRYPT_SCHEME |
| 1190 | retVal = _cpri__ValidateSignatureRSA(&key, |
| 1191 | sig->sigAlg, |
| 1192 | sig->signature.any.hashAlg, |
| 1193 | digestData->t.size, |
| 1194 | digestData->t.buffer, |
| 1195 | sig->signature.rsassa.sig.t.size, |
| 1196 | sig->signature.rsassa.sig.t.buffer, |
| 1197 | 0); |
| 1198 | // _cpri__ValidateSignatureRSA can return CRYPT_SUCCESS, CRYPT_FAIL, or |
| 1199 | // CRYPT_SCHEME. Translate CRYPT_FAIL to TPM_RC_SIGNATURE |
| 1200 | if(retVal == CRYPT_FAIL) |
| 1201 | result = TPM_RC_SIGNATURE; |
| 1202 | else |
| 1203 | // CRYPT_SCHEME -> TPM_RC_SCHEME |
| 1204 | result = TranslateCryptErrors(retVal); |
| 1205 | return result; |
| 1206 | } |
| 1207 | // |
| 1208 | #endif //TPM_ALG_RSA //% 2 |
| 1209 | // |
| 1210 | // |
| 1211 | // 10.2.6 ECC Functions |
| 1212 | // |
| 1213 | // 10.2.6.1 CryptEccGetCurveDataPointer() |
| 1214 | // |
| 1215 | // This function returns a pointer to an ECC_CURVE_VALUES structure that contains the parameters for |
| 1216 | // the key size and schemes for a given curve. |
| 1217 | // |
| 1218 | #ifdef TPM_ALG_ECC //% 3 |
| 1219 | static const ECC_CURVE * |
| 1220 | CryptEccGetCurveDataPointer( |
| 1221 | TPM_ECC_CURVE curveID // IN: id of the curve |
| 1222 | ) |
| 1223 | { |
| 1224 | return _cpri__EccGetParametersByCurveId(curveID); |
| 1225 | } |
| 1226 | // |
| 1227 | // |
| 1228 | // 10.2.6.2 CryptEccGetKeySizeInBits() |
| 1229 | // |
| 1230 | // This function returns the size in bits of the key associated with a curve. |
| 1231 | // |
| 1232 | UINT16 |
| 1233 | CryptEccGetKeySizeInBits( |
| 1234 | TPM_ECC_CURVE curveID // IN: id of the curve |
| 1235 | ) |
| 1236 | { |
| 1237 | const ECC_CURVE *curve = CryptEccGetCurveDataPointer(curveID); |
| 1238 | UINT16 keySizeInBits = 0; |
| 1239 | if(curve != NULL) |
| 1240 | keySizeInBits = curve->keySizeBits; |
| 1241 | return keySizeInBits; |
| 1242 | } |
| 1243 | // |
| 1244 | // |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1245 | // 10.2.6.4 CryptEccGetParameter() |
| 1246 | // |
| 1247 | // This function returns a pointer to an ECC curve parameter. The parameter is selected by a single |
| 1248 | // character designator from the set of {pnabxyh}. |
| 1249 | // |
| 1250 | LIB_EXPORT const TPM2B * |
| 1251 | CryptEccGetParameter( |
| 1252 | char p, // IN: the parameter selector |
| 1253 | TPM_ECC_CURVE curveId // IN: the curve id |
| 1254 | ) |
| 1255 | { |
| 1256 | const ECC_CURVE *curve = _cpri__EccGetParametersByCurveId(curveId); |
| 1257 | const TPM2B *parameter = NULL; |
| 1258 | if(curve != NULL) |
| 1259 | { |
| 1260 | switch (p) |
| 1261 | { |
| 1262 | case 'p': |
| 1263 | parameter = curve->curveData->p; |
| 1264 | break; |
| 1265 | case 'n': |
| 1266 | parameter = curve->curveData->n; |
| 1267 | break; |
| 1268 | case 'a': |
| 1269 | parameter = curve->curveData->a; |
| 1270 | break; |
| 1271 | case 'b': |
| 1272 | parameter = curve->curveData->b; |
| 1273 | break; |
| 1274 | case 'x': |
| 1275 | parameter = curve->curveData->x; |
| 1276 | break; |
| 1277 | case 'y': |
| 1278 | parameter = curve->curveData->y; |
| 1279 | break; |
| 1280 | case 'h': |
| 1281 | parameter = curve->curveData->h; |
| 1282 | break; |
| 1283 | default: |
| 1284 | break; |
| 1285 | } |
| 1286 | } |
| 1287 | return parameter; |
| 1288 | } |
| 1289 | // |
| 1290 | // |
| 1291 | // 10.2.6.5 CryptGetCurveSignScheme() |
| 1292 | // |
| 1293 | // This function will return a pointer to the scheme of the curve. |
| 1294 | // |
| 1295 | const TPMT_ECC_SCHEME * |
| 1296 | CryptGetCurveSignScheme( |
| 1297 | TPM_ECC_CURVE curveId // IN: The curve selector |
| 1298 | ) |
| 1299 | { |
| 1300 | const ECC_CURVE *curve = _cpri__EccGetParametersByCurveId(curveId); |
| 1301 | const TPMT_ECC_SCHEME *scheme = NULL; |
| 1302 | if(curve != NULL) |
| 1303 | scheme = &(curve->sign); |
| 1304 | return scheme; |
| 1305 | } |
| 1306 | // |
| 1307 | // |
| 1308 | // 10.2.6.6 CryptEccIsPointOnCurve() |
| 1309 | // |
| 1310 | // This function will validate that an ECC point is on the curve of given curveID. |
| 1311 | // |
| 1312 | // Return Value Meaning |
| 1313 | // |
| 1314 | // TRUE if the point is on curve |
| 1315 | // FALSE if the point is not on curve |
| 1316 | // |
| 1317 | BOOL |
| 1318 | CryptEccIsPointOnCurve( |
| 1319 | TPM_ECC_CURVE curveID, // IN: ECC curve ID |
| 1320 | TPMS_ECC_POINT *Q // IN: ECC point |
| 1321 | ) |
| 1322 | { |
| 1323 | // Make sure that point multiply is working |
| 1324 | TEST(TPM_ALG_ECC); |
| 1325 | // Check point on curve logic by seeing if the test key is on the curve |
| 1326 | // Call crypto engine function to check if a ECC public point is on the |
| 1327 | // given curve |
| 1328 | if(_cpri__EccIsPointOnCurve(curveID, Q)) |
| 1329 | return TRUE; |
| 1330 | else |
| 1331 | return FALSE; |
| 1332 | } |
| 1333 | // |
| 1334 | // |
| 1335 | // 10.2.6.7 CryptNewEccKey() |
| 1336 | // |
| 1337 | // This function creates a random ECC key that is not derived from other parameters as is a Primary Key. |
| 1338 | // |
| 1339 | TPM_RC |
| 1340 | CryptNewEccKey( |
| 1341 | TPM_ECC_CURVE curveID, // IN: ECC curve |
| 1342 | TPMS_ECC_POINT *publicPoint, // OUT: public point |
| 1343 | TPM2B_ECC_PARAMETER *sensitive // OUT: private area |
| 1344 | ) |
| 1345 | { |
| 1346 | TPM_RC result = TPM_RC_SUCCESS; |
| 1347 | // _cpri__GetEphemeralECC may return CRYPT_PARAMETER |
| 1348 | if(_cpri__GetEphemeralEcc(publicPoint, sensitive, curveID) != CRYPT_SUCCESS) |
| 1349 | // Something is wrong with the key. |
| 1350 | result = TPM_RC_KEY; |
| 1351 | return result; |
| 1352 | } |
| 1353 | // |
| 1354 | // |
| 1355 | // 10.2.6.8 CryptEccPointMultiply() |
| 1356 | // |
| 1357 | // This function is used to perform a point multiply R = [d]Q. If Q is not provided, the multiplication is |
| 1358 | // performed using the generator point of the curve. |
| 1359 | // |
| 1360 | // Error Returns Meaning |
| 1361 | // |
| 1362 | // TPM_RC_ECC_POINT invalid optional ECC point pIn |
| 1363 | // TPM_RC_NO_RESULT multiplication resulted in a point at infinity |
| 1364 | // TPM_RC_CANCELED if a self-test was done, it might have been aborted |
| 1365 | // |
| 1366 | TPM_RC |
| 1367 | CryptEccPointMultiply( |
| 1368 | TPMS_ECC_POINT *pOut, // OUT: output point |
| 1369 | TPM_ECC_CURVE curveId, // IN: curve selector |
| 1370 | TPM2B_ECC_PARAMETER *dIn, // IN: public scalar |
| 1371 | TPMS_ECC_POINT *pIn // IN: optional point |
| 1372 | ) |
| 1373 | { |
| 1374 | TPM2B_ECC_PARAMETER *n = NULL; |
| 1375 | CRYPT_RESULT retVal; |
| 1376 | pAssert(pOut != NULL && dIn != NULL); |
| 1377 | if(pIn != NULL) |
| 1378 | { |
| 1379 | n = dIn; |
| 1380 | dIn = NULL; |
| 1381 | } |
| 1382 | // Do a test of point multiply |
| 1383 | TEST(TPM_ALG_ECC); |
| 1384 | // _cpri__EccPointMultiply may return CRYPT_POINT or CRYPT_NO_RESULT |
| 1385 | retVal = _cpri__EccPointMultiply(pOut, curveId, dIn, pIn, n); |
| 1386 | // CRYPT_POINT->TPM_RC_ECC_POINT and CRYPT_NO_RESULT->TPM_RC_NO_RESULT |
| 1387 | return TranslateCryptErrors(retVal); |
| 1388 | } |
| 1389 | // |
| 1390 | // |
| 1391 | // 10.2.6.9 CryptGenerateKeyECC() |
| 1392 | // |
| 1393 | // This function generates an ECC key from a seed value. |
| 1394 | // The method here may not work for objects that have an order (G) that with a different size than a private |
| 1395 | // key. |
| 1396 | // |
| 1397 | // Error Returns Meaning |
| 1398 | // |
| 1399 | // TPM_RC_VALUE hash algorithm is not supported |
| 1400 | // |
| 1401 | static TPM_RC |
| 1402 | CryptGenerateKeyECC( |
| 1403 | TPMT_PUBLIC *publicArea, // IN/OUT: The public area template for the new |
| 1404 | // key. |
| 1405 | TPMT_SENSITIVE *sensitive, // IN/OUT: the sensitive area |
| 1406 | TPM_ALG_ID hashAlg, // IN: algorithm for the KDF |
| 1407 | TPM2B_SEED *seed, // IN: the seed value |
| 1408 | TPM2B_NAME *name, // IN: the name of the object |
| 1409 | UINT32 *counter // OUT: the iteration counter |
| 1410 | ) |
| 1411 | { |
| 1412 | CRYPT_RESULT retVal; |
| 1413 | TEST_HASH(hashAlg); |
| 1414 | TEST(ALG_ECDSA_VALUE); // ECDSA is used to verify each key |
| 1415 | // The iteration counter has no meaning for ECC key generation. The parameter |
| 1416 | // will be overloaded for those implementations that have a requirement for |
| 1417 | // doing pair-wise consistency checks on signing keys. If the counter parameter |
| 1418 | // is 0 or NULL, then no consistency check is done. If it is other than 0, then |
| 1419 | // a consistency check is run. This modification allow this code to work with |
| 1420 | // the existing versions of the CrytpoEngine and with FIPS-compliant versions |
| 1421 | // as well. |
| 1422 | *counter = (UINT32)(publicArea->objectAttributes.sign == SET); |
| 1423 | // _cpri__GenerateKeyEcc only has one error return (CRYPT_PARAMETER) which means |
| 1424 | // that the hash algorithm is not supported. This should not be possible |
| 1425 | retVal = _cpri__GenerateKeyEcc(&publicArea->unique.ecc, |
| 1426 | &sensitive->sensitive.ecc, |
| 1427 | publicArea->parameters.eccDetail.curveID, |
| 1428 | hashAlg, &seed->b, "ECC key by vendor", |
| 1429 | &name->b, counter); |
| 1430 | // This will only be useful if _cpri__GenerateKeyEcc return CRYPT_CANCEL |
| 1431 | return TranslateCryptErrors(retVal); |
| 1432 | } |
| 1433 | // |
| 1434 | // |
| 1435 | // 10.2.6.10 CryptSignECC() |
| 1436 | // |
| 1437 | // This function is used for ECC signing operations. If the signing scheme is a split scheme, and the signing |
| 1438 | // operation is successful, the commit value is retired. |
| 1439 | // |
| 1440 | // |
| 1441 | // Error Returns Meaning |
| 1442 | // |
| 1443 | // TPM_RC_SCHEME unsupported scheme |
| 1444 | // TPM_RC_VALUE invalid commit status (in case of a split scheme) or failed to generate |
| 1445 | // r value. |
| 1446 | // |
| 1447 | static TPM_RC |
| 1448 | CryptSignECC( |
| 1449 | OBJECT *signKey, // IN: ECC key to sign the hash |
| 1450 | TPMT_SIG_SCHEME *scheme, // IN: sign scheme |
| 1451 | TPM2B_DIGEST *hashData, // IN: hash to be signed |
| 1452 | TPMT_SIGNATURE *signature // OUT: signature |
| 1453 | ) |
| 1454 | { |
| 1455 | TPM2B_ECC_PARAMETER r; |
| 1456 | TPM2B_ECC_PARAMETER *pr = NULL; |
| 1457 | CRYPT_RESULT retVal; |
| 1458 | // Run a test of the ECC sign and verify if it has not already been run |
| 1459 | TEST_HASH(scheme->details.any.hashAlg); |
| 1460 | TEST(scheme->scheme); |
| 1461 | if(CryptIsSplitSign(scheme->scheme)) |
| 1462 | { |
| 1463 | // When this code was written, the only split scheme was ECDAA |
| 1464 | // (which can also be used for U-Prove). |
| 1465 | if(!CryptGenerateR(&r, |
| 1466 | &scheme->details.ecdaa.count, |
| 1467 | signKey->publicArea.parameters.eccDetail.curveID, |
| 1468 | &signKey->name)) |
| 1469 | return TPM_RC_VALUE; |
| 1470 | pr = &r; |
| 1471 | } |
| 1472 | // Call crypto engine function to sign |
| 1473 | // _cpri__SignEcc may return CRYPT_SCHEME |
| 1474 | retVal = _cpri__SignEcc(&signature->signature.ecdsa.signatureR, |
| 1475 | &signature->signature.ecdsa.signatureS, |
| 1476 | scheme->scheme, |
| 1477 | scheme->details.any.hashAlg, |
| 1478 | signKey->publicArea.parameters.eccDetail.curveID, |
| 1479 | &signKey->sensitive.sensitive.ecc, |
| 1480 | &hashData->b, |
| 1481 | pr |
| 1482 | ); |
| 1483 | if(CryptIsSplitSign(scheme->scheme) && retVal == CRYPT_SUCCESS) |
| 1484 | CryptEndCommit(scheme->details.ecdaa.count); |
| 1485 | // CRYPT_SCHEME->TPM_RC_SCHEME |
| 1486 | return TranslateCryptErrors(retVal); |
| 1487 | } |
| 1488 | // |
| 1489 | // |
| 1490 | // 10.2.6.11 CryptECCVerifySignature() |
| 1491 | // |
| 1492 | // This function is used to verify a signature created with an ECC key. |
| 1493 | // |
| 1494 | // Error Returns Meaning |
| 1495 | // |
| 1496 | // TPM_RC_SIGNATURE if signature is not valid |
| 1497 | // TPM_RC_SCHEME the signing scheme or hashAlg is not supported |
| 1498 | // |
| 1499 | static TPM_RC |
| 1500 | CryptECCVerifySignature( |
| 1501 | OBJECT *signKey, // IN: ECC key signed the hash |
| 1502 | TPM2B_DIGEST *digestData, // IN: digest being signed |
| 1503 | TPMT_SIGNATURE *signature // IN: signature to be verified |
| 1504 | ) |
| 1505 | { |
| 1506 | CRYPT_RESULT retVal; |
| 1507 | TEST_HASH(signature->signature.any.hashAlg); |
| 1508 | TEST(signature->sigAlg); |
| 1509 | // This implementation uses the fact that all the defined ECC signing |
| 1510 | // schemes have the hash as the first parameter. |
| 1511 | // _cpriValidateSignatureEcc may return CRYPT_FAIL or CRYP_SCHEME |
| 1512 | retVal = _cpri__ValidateSignatureEcc(&signature->signature.ecdsa.signatureR, |
| 1513 | &signature->signature.ecdsa.signatureS, |
| 1514 | signature->sigAlg, |
| 1515 | signature->signature.any.hashAlg, |
| 1516 | signKey->publicArea.parameters.eccDetail.curveID, |
| 1517 | &signKey->publicArea.unique.ecc, |
| 1518 | &digestData->b); |
| 1519 | if(retVal == CRYPT_FAIL) |
| 1520 | return TPM_RC_SIGNATURE; |
| 1521 | // CRYPT_SCHEME->TPM_RC_SCHEME |
| 1522 | return TranslateCryptErrors(retVal); |
| 1523 | } |
| 1524 | // |
| 1525 | // |
| 1526 | // 10.2.6.12 CryptGenerateR() |
| 1527 | // |
| 1528 | // This function computes the commit random value for a split signing scheme. |
| 1529 | // If c is NULL, it indicates that r is being generated for TPM2_Commit(). If c is not NULL, the TPM will |
| 1530 | // validate that the gr.commitArray bit associated with the input value of c is SET. If not, the TPM returns |
| 1531 | // FALSE and no r value is generated. |
| 1532 | // |
| 1533 | // Return Value Meaning |
| 1534 | // |
| 1535 | // TRUE r value computed |
| 1536 | // FALSE no r value computed |
| 1537 | // |
| 1538 | BOOL |
| 1539 | CryptGenerateR( |
| 1540 | TPM2B_ECC_PARAMETER *r, // OUT: the generated random value |
| 1541 | UINT16 *c, // IN/OUT: count value. |
| 1542 | TPMI_ECC_CURVE curveID, // IN: the curve for the value |
| 1543 | TPM2B_NAME *name // IN: optional name of a key to |
| 1544 | // associate with 'r' |
| 1545 | ) |
| 1546 | { |
| 1547 | // This holds the marshaled g_commitCounter. |
| 1548 | TPM2B_TYPE(8B, 8); |
Vadim Bendebury | c00055c | 2015-05-29 22:50:18 -0700 | [diff] [blame] | 1549 | TPM2B_8B cntr = {.b.size = 8}; |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1550 | UINT32 iterations; |
| 1551 | const TPM2B *n; |
| 1552 | UINT64 currentCount = gr.commitCounter; |
| 1553 | // This is just to suppress a compiler warning about a conditional expression |
| 1554 | // being a constant. This is because of the macro expansion of ryptKDFa |
| 1555 | TPMI_ALG_HASH hashAlg = CONTEXT_INTEGRITY_HASH_ALG; |
| 1556 | n = CryptEccGetParameter('n', curveID); |
| 1557 | pAssert(r != NULL && n != NULL); |
| 1558 | // If this is the commit phase, use the current value of the commit counter |
| 1559 | if(c != NULL) |
| 1560 | // |
| 1561 | { |
| 1562 | UINT16 t1; |
| 1563 | // if the array bit is not set, can't use the value. |
| 1564 | if(!BitIsSet((*c & COMMIT_INDEX_MASK), gr.commitArray, |
| 1565 | sizeof(gr.commitArray))) |
| 1566 | return FALSE; |
| 1567 | // If it is the sign phase, figure out what the counter value was |
| 1568 | // when the commitment was made. |
| 1569 | // |
| 1570 | // When gr.commitArray has less than 64K bits, the extra |
| 1571 | // bits of 'c' are used as a check to make sure that the |
| 1572 | // signing operation is not using an out of range count value |
| 1573 | t1 = (UINT16)currentCount; |
| 1574 | // If the lower bits of c are greater or equal to the lower bits of t1 |
| 1575 | // then the upper bits of t1 must be one more than the upper bits |
| 1576 | // of c |
| 1577 | if((*c & COMMIT_INDEX_MASK) >= (t1 & COMMIT_INDEX_MASK)) |
| 1578 | // Since the counter is behind, reduce the current count |
| 1579 | currentCount = currentCount - (COMMIT_INDEX_MASK + 1); |
| 1580 | t1 = (UINT16)currentCount; |
| 1581 | if((t1 & ~COMMIT_INDEX_MASK) != (*c & ~COMMIT_INDEX_MASK)) |
| 1582 | return FALSE; |
| 1583 | // set the counter to the value that was |
| 1584 | // present when the commitment was made |
| 1585 | currentCount = (currentCount & 0xffffffffffff0000) | *c; |
| 1586 | } |
| 1587 | // Marshal the count value to a TPM2B buffer for the KDF |
| 1588 | cntr.t.size = sizeof(currentCount); |
| 1589 | UINT64_TO_BYTE_ARRAY(currentCount, cntr.t.buffer); |
| 1590 | // Now can do the KDF to create the random value for the signing operation |
| 1591 | // During the creation process, we may generate an r that does not meet the |
| 1592 | // requirements of the random value. |
| 1593 | // want to generate a new r. |
| 1594 | r->t.size = n->size; |
| 1595 | // Arbitrary upper limit on the number of times that we can look for |
| 1596 | // a suitable random value. The normally number of tries will be 1. |
| 1597 | for(iterations = 1; iterations < 1000000;) |
| 1598 | { |
| 1599 | BYTE *pr = &r->b.buffer[0]; |
| 1600 | int i; |
| 1601 | CryptKDFa(hashAlg, &gr.commitNonce.b, "ECDAA Commit", |
| 1602 | name, &cntr.b, n->size * 8, r->t.buffer, &iterations); |
| 1603 | // random value must be less than the prime |
| 1604 | if(CryptCompare(r->b.size, r->b.buffer, n->size, n->buffer) >= 0) |
| 1605 | continue; |
| 1606 | // in this implementation it is required that at least bit |
| 1607 | // in the upper half of the number be set |
| 1608 | for(i = n->size/2; i > 0; i--) |
| 1609 | if(*pr++ != 0) |
| 1610 | return TRUE; |
| 1611 | } |
| 1612 | return FALSE; |
| 1613 | } |
| 1614 | // |
| 1615 | // |
| 1616 | // |
| 1617 | // 10.2.6.13 CryptCommit() |
| 1618 | // |
| 1619 | // This function is called when the count value is committed. The gr.commitArray value associated with the |
| 1620 | // current count value is SET and g_commitCounter is incremented. The low-order 16 bits of old value of the |
| 1621 | // counter is returned. |
| 1622 | // |
| 1623 | UINT16 |
| 1624 | CryptCommit( |
| 1625 | void |
| 1626 | ) |
| 1627 | { |
| 1628 | UINT16 oldCount = (UINT16)gr.commitCounter; |
| 1629 | gr.commitCounter++; |
| 1630 | BitSet(oldCount & COMMIT_INDEX_MASK, gr.commitArray, sizeof(gr.commitArray)); |
| 1631 | return oldCount; |
| 1632 | } |
| 1633 | // |
| 1634 | // |
| 1635 | // 10.2.6.14 CryptEndCommit() |
| 1636 | // |
| 1637 | // This function is called when the signing operation using the committed value is completed. It clears the |
| 1638 | // gr.commitArray bit associated with the count value so that it can't be used again. |
| 1639 | // |
| 1640 | void |
| 1641 | CryptEndCommit( |
| 1642 | UINT16 c // IN: the counter value of the commitment |
| 1643 | ) |
| 1644 | { |
| 1645 | BitClear((c & COMMIT_INDEX_MASK), gr.commitArray, sizeof(gr.commitArray)); |
| 1646 | } |
| 1647 | // |
| 1648 | // |
| 1649 | // 10.2.6.15 CryptCommitCompute() |
| 1650 | // |
| 1651 | // This function performs the computations for the TPM2_Commit() command. This could be a macro. |
| 1652 | // |
| 1653 | // Error Returns Meaning |
| 1654 | // |
| 1655 | // TPM_RC_NO_RESULT K, L, or E is the point at infinity |
| 1656 | // TPM_RC_CANCELLED command was canceled |
| 1657 | // |
| 1658 | TPM_RC |
| 1659 | CryptCommitCompute( |
| 1660 | TPMS_ECC_POINT *K, // OUT: [d]B |
| 1661 | TPMS_ECC_POINT *L, // OUT: [r]B |
| 1662 | TPMS_ECC_POINT *E, // OUT: [r]M |
| 1663 | TPM_ECC_CURVE curveID, // IN: The curve for the computation |
| 1664 | TPMS_ECC_POINT *M, // IN: M (P1) |
| 1665 | TPMS_ECC_POINT *B, // IN: B (x2, y2) |
| 1666 | TPM2B_ECC_PARAMETER *d, // IN: the private scalar |
| 1667 | TPM2B_ECC_PARAMETER *r // IN: the computed r value |
| 1668 | ) |
| 1669 | { |
| 1670 | TEST(ALG_ECDH_VALUE); |
| 1671 | // CRYPT_NO_RESULT->TPM_RC_NO_RESULT CRYPT_CANCEL->TPM_RC_CANCELLED |
| 1672 | return TranslateCryptErrors( |
| 1673 | _cpri__EccCommitCompute(K, L , E, curveID, M, B, d, r)); |
| 1674 | } |
| 1675 | // |
| 1676 | // |
| 1677 | // |
| 1678 | // 10.2.6.16 CryptEccGetParameters() |
| 1679 | // |
| 1680 | // This function returns the ECC parameter details of the given curve |
| 1681 | // |
| 1682 | // Return Value Meaning |
| 1683 | // |
| 1684 | // TRUE Get parameters success |
| 1685 | // FALSE Unsupported ECC curve ID |
| 1686 | // |
| 1687 | BOOL |
| 1688 | CryptEccGetParameters( |
| 1689 | TPM_ECC_CURVE curveId, // IN: ECC curve ID |
| 1690 | TPMS_ALGORITHM_DETAIL_ECC *parameters // OUT: ECC parameter |
| 1691 | ) |
| 1692 | { |
| 1693 | const ECC_CURVE *curve = _cpri__EccGetParametersByCurveId(curveId); |
| 1694 | const ECC_CURVE_DATA *data; |
| 1695 | BOOL found = curve != NULL; |
| 1696 | if(found) |
| 1697 | { |
| 1698 | data = curve->curveData; |
| 1699 | parameters->curveID = curve->curveId; |
| 1700 | // Key size in bit |
| 1701 | parameters->keySize = curve->keySizeBits; |
| 1702 | // KDF |
| 1703 | parameters->kdf = curve->kdf; |
| 1704 | // Sign |
| 1705 | parameters->sign = curve->sign; |
| 1706 | // Copy p value |
| 1707 | MemoryCopy2B(¶meters->p.b, data->p, sizeof(parameters->p.t.buffer)); |
| 1708 | // Copy a value |
| 1709 | MemoryCopy2B(¶meters->a.b, data->a, sizeof(parameters->a.t.buffer)); |
| 1710 | // Copy b value |
| 1711 | MemoryCopy2B(¶meters->b.b, data->b, sizeof(parameters->b.t.buffer)); |
| 1712 | // Copy Gx value |
| 1713 | MemoryCopy2B(¶meters->gX.b, data->x, sizeof(parameters->gX.t.buffer)); |
| 1714 | // Copy Gy value |
| 1715 | MemoryCopy2B(¶meters->gY.b, data->y, sizeof(parameters->gY.t.buffer)); |
| 1716 | // Copy n value |
| 1717 | MemoryCopy2B(¶meters->n.b, data->n, sizeof(parameters->n.t.buffer)); |
| 1718 | // Copy h value |
| 1719 | MemoryCopy2B(¶meters->h.b, data->h, sizeof(parameters->h.t.buffer)); |
| 1720 | } |
| 1721 | return found; |
| 1722 | } |
| 1723 | #if CC_ZGen_2Phase == YES |
| 1724 | // |
| 1725 | // CryptEcc2PhaseKeyExchange() This is the interface to the key exchange function. |
| 1726 | // |
| 1727 | TPM_RC |
| 1728 | CryptEcc2PhaseKeyExchange( |
| 1729 | TPMS_ECC_POINT *outZ1, // OUT: the computed point |
| 1730 | TPMS_ECC_POINT *outZ2, // OUT: optional second point |
| 1731 | TPM_ALG_ID scheme, // IN: the key exchange scheme |
| 1732 | TPM_ECC_CURVE curveId, // IN: the curve for the computation |
| 1733 | TPM2B_ECC_PARAMETER *dsA, // IN: static private TPM key |
| 1734 | TPM2B_ECC_PARAMETER *deA, // IN: ephemeral private TPM key |
| 1735 | TPMS_ECC_POINT *QsB, // IN: static public party B key |
| 1736 | TPMS_ECC_POINT *QeB // IN: ephemeral public party B key |
| 1737 | ) |
| 1738 | { |
| 1739 | return (TranslateCryptErrors(_cpri__C_2_2_KeyExchange(outZ1, |
| 1740 | outZ2, |
| 1741 | scheme, |
| 1742 | curveId, |
| 1743 | dsA, |
| 1744 | deA, |
| 1745 | QsB, |
| 1746 | QeB))); |
| 1747 | } |
| 1748 | #endif // CC_ZGen_2Phase |
| 1749 | #endif //TPM_ALG_ECC //% 3 |
| 1750 | // |
| 1751 | // |
| 1752 | // 10.2.6.17 CryptIsSchemeAnonymous() |
| 1753 | // |
| 1754 | // This function is used to test a scheme to see if it is an anonymous scheme The only anonymous scheme |
| 1755 | // is ECDAA. ECDAA can be used to do things like U-Prove. |
| 1756 | // |
| 1757 | BOOL |
| 1758 | CryptIsSchemeAnonymous( |
| 1759 | TPM_ALG_ID scheme // IN: the scheme algorithm to test |
| 1760 | ) |
| 1761 | { |
| 1762 | #ifdef TPM_ALG_ECDAA |
| 1763 | return (scheme == TPM_ALG_ECDAA); |
| 1764 | #else |
| 1765 | UNREFERENCED(scheme); |
| 1766 | return 0; |
| 1767 | #endif |
| 1768 | } |
| 1769 | // |
| 1770 | // |
| 1771 | // 10.2.7 Symmetric Functions |
| 1772 | // |
| 1773 | // 10.2.7.1 ParmDecryptSym() |
| 1774 | // |
| 1775 | // This function performs parameter decryption using symmetric block cipher. |
| 1776 | // |
| 1777 | void |
| 1778 | ParmDecryptSym( |
| 1779 | TPM_ALG_ID symAlg, // IN: the symmetric algorithm |
| 1780 | TPM_ALG_ID hash, // IN: hash algorithm for KDFa |
| 1781 | UINT16 keySizeInBits, // IN: key key size in bit |
| 1782 | TPM2B *key, // IN: KDF HMAC key |
| 1783 | TPM2B *nonceCaller, // IN: nonce caller |
| 1784 | TPM2B *nonceTpm, // IN: nonce TPM |
| 1785 | UINT32 dataSize, // IN: size of parameter buffer |
| 1786 | BYTE *data // OUT: buffer to be decrypted |
| 1787 | ) |
| 1788 | { |
| 1789 | // KDF output buffer |
| 1790 | // It contains parameters for the CFB encryption |
| 1791 | // From MSB to LSB, they are the key and iv |
| 1792 | BYTE symParmString[MAX_SYM_KEY_BYTES + MAX_SYM_BLOCK_SIZE]; |
| 1793 | // Symmetric key size in byte |
| 1794 | UINT16 keySize = (keySizeInBits + 7) / 8; |
| 1795 | TPM2B_IV iv; |
| 1796 | iv.t.size = CryptGetSymmetricBlockSize(symAlg, keySizeInBits); |
| 1797 | // If there is decryption to do... |
| 1798 | if(iv.t.size > 0) |
| 1799 | { |
| 1800 | // Generate key and iv |
| 1801 | CryptKDFa(hash, key, "CFB", nonceCaller, nonceTpm, |
| 1802 | keySizeInBits + (iv.t.size * 8), symParmString, NULL); |
| 1803 | MemoryCopy(iv.t.buffer, &symParmString[keySize], iv.t.size, |
| 1804 | sizeof(iv.t.buffer)); |
| 1805 | CryptSymmetricDecrypt(data, symAlg, keySizeInBits, TPM_ALG_CFB, |
| 1806 | symParmString, &iv, dataSize, data); |
| 1807 | } |
| 1808 | return; |
| 1809 | } |
| 1810 | // |
| 1811 | // |
| 1812 | // 10.2.7.2 ParmEncryptSym() |
| 1813 | // |
| 1814 | // This function performs parameter encryption using symmetric block cipher. |
| 1815 | // |
| 1816 | void |
| 1817 | ParmEncryptSym( |
| 1818 | TPM_ALG_ID symAlg, // IN: symmetric algorithm |
| 1819 | TPM_ALG_ID hash, // IN: hash algorithm for KDFa |
| 1820 | UINT16 keySizeInBits, // IN: AES key size in bit |
| 1821 | TPM2B *key, // IN: KDF HMAC key |
| 1822 | TPM2B *nonceCaller, // IN: nonce caller |
| 1823 | TPM2B *nonceTpm, // IN: nonce TPM |
| 1824 | UINT32 dataSize, // IN: size of parameter buffer |
| 1825 | BYTE *data // OUT: buffer to be encrypted |
| 1826 | ) |
| 1827 | { |
| 1828 | // KDF output buffer |
| 1829 | // It contains parameters for the CFB encryption |
| 1830 | BYTE symParmString[MAX_SYM_KEY_BYTES + MAX_SYM_BLOCK_SIZE]; |
| 1831 | // Symmetric key size in bytes |
| 1832 | UINT16 keySize = (keySizeInBits + 7) / 8; |
| 1833 | TPM2B_IV iv; |
| 1834 | iv.t.size = CryptGetSymmetricBlockSize(symAlg, keySizeInBits); |
| 1835 | // See if there is any encryption to do |
| 1836 | if(iv.t.size > 0) |
| 1837 | { |
| 1838 | // Generate key and iv |
| 1839 | CryptKDFa(hash, key, "CFB", nonceTpm, nonceCaller, |
| 1840 | keySizeInBits + (iv.t.size * 8), symParmString, NULL); |
| 1841 | MemoryCopy(iv.t.buffer, &symParmString[keySize], iv.t.size, |
| 1842 | sizeof(iv.t.buffer)); |
| 1843 | CryptSymmetricEncrypt(data, symAlg, keySizeInBits, TPM_ALG_CFB, |
| 1844 | symParmString, &iv, dataSize, data); |
| 1845 | } |
| 1846 | return; |
| 1847 | } |
| 1848 | // |
| 1849 | // |
| 1850 | // |
| 1851 | // 10.2.7.3 CryptGenerateNewSymmetric() |
| 1852 | // |
| 1853 | // This function creates the sensitive symmetric values for an HMAC or symmetric key. If the sensitive area |
| 1854 | // is zero, then the sensitive creation key data is copied. If it is not zero, then the TPM will generate a |
| 1855 | // random value of the selected size. |
| 1856 | // |
| 1857 | void |
| 1858 | CryptGenerateNewSymmetric( |
| 1859 | TPMS_SENSITIVE_CREATE *sensitiveCreate, // IN: sensitive creation data |
| 1860 | TPMT_SENSITIVE *sensitive, // OUT: sensitive area |
| 1861 | TPM_ALG_ID hashAlg, // IN: hash algorithm for the KDF |
| 1862 | TPM2B_SEED *seed, // IN: seed used in creation |
| 1863 | TPM2B_NAME *name // IN: name of the object |
| 1864 | ) |
| 1865 | { |
| 1866 | // This function is called to create a key and obfuscation value for a |
| 1867 | // symmetric key that can either be a block cipher or an XOR key. The buffer |
| 1868 | // in sensitive->sensitive will hold either. When we call the function |
| 1869 | // to copy the input value or generated value to the sensitive->sensitive |
| 1870 | // buffer we will need to have a size for the output buffer. This define |
| 1871 | // computes the maximum that it might need to be and uses that. It will always |
| 1872 | // be smaller than the largest value that will fit. |
| 1873 | #define MAX_SENSITIVE_SIZE \ |
| 1874 | (MAX(sizeof(sensitive->sensitive.bits.t.buffer), \ |
| 1875 | sizeof(sensitive->sensitive.sym.t.buffer))) |
| 1876 | // set the size of the obfuscation value |
| 1877 | sensitive->seedValue.t.size = CryptGetHashDigestSize(hashAlg); |
| 1878 | // If the input sensitive size is zero, then create both the sensitive data |
| 1879 | // and the obfuscation value |
| 1880 | if(sensitiveCreate->data.t.size == 0) |
| 1881 | { |
| 1882 | BYTE symValues[MAX(MAX_DIGEST_SIZE, MAX_SYM_KEY_BYTES) |
| 1883 | + MAX_DIGEST_SIZE]; |
| 1884 | UINT16 requestSize; |
| 1885 | // Set the size of the request to be the size of the key and the |
| 1886 | // obfuscation value |
| 1887 | requestSize = sensitive->sensitive.sym.t.size |
| 1888 | + sensitive->seedValue.t.size; |
| 1889 | pAssert(requestSize <= sizeof(symValues)); |
| 1890 | requestSize = _cpri__GenerateSeededRandom(requestSize, symValues, hashAlg, |
| 1891 | &seed->b, |
| 1892 | "symmetric sensitive", &name->b, |
| 1893 | NULL); |
| 1894 | pAssert(requestSize != 0); |
| 1895 | // Copy the new key |
| 1896 | MemoryCopy(sensitive->sensitive.sym.t.buffer, |
| 1897 | symValues, sensitive->sensitive.sym.t.size, |
| 1898 | MAX_SENSITIVE_SIZE); |
| 1899 | // copy the obfuscation value |
| 1900 | MemoryCopy(sensitive->seedValue.t.buffer, |
| 1901 | &symValues[sensitive->sensitive.sym.t.size], |
| 1902 | sensitive->seedValue.t.size, |
| 1903 | sizeof(sensitive->seedValue.t.buffer)); |
| 1904 | } |
| 1905 | else |
| 1906 | { |
| 1907 | // Copy input symmetric key to sensitive area as long as it will fit |
| 1908 | MemoryCopy2B(&sensitive->sensitive.sym.b, &sensitiveCreate->data.b, |
| 1909 | MAX_SENSITIVE_SIZE); |
| 1910 | // Create the obfuscation value |
| 1911 | _cpri__GenerateSeededRandom(sensitive->seedValue.t.size, |
| 1912 | sensitive->seedValue.t.buffer, |
| 1913 | hashAlg, &seed->b, |
| 1914 | "symmetric obfuscation", &name->b, NULL); |
| 1915 | } |
| 1916 | return; |
| 1917 | } |
| 1918 | // |
| 1919 | // |
| 1920 | // 10.2.7.4 CryptGenerateKeySymmetric() |
| 1921 | // |
| 1922 | // This function derives a symmetric cipher key from the provided seed. |
| 1923 | // |
| 1924 | // Error Returns Meaning |
| 1925 | // |
| 1926 | // TPM_RC_KEY_SIZE key size in the public area does not match the size in the sensitive |
| 1927 | // creation area |
| 1928 | // |
| 1929 | static TPM_RC |
| 1930 | CryptGenerateKeySymmetric( |
| 1931 | TPMT_PUBLIC *publicArea, // IN/OUT: The public area template |
| 1932 | // for the new key. |
| 1933 | TPMS_SENSITIVE_CREATE *sensitiveCreate, // IN: sensitive creation data |
| 1934 | TPMT_SENSITIVE *sensitive, // OUT: sensitive area |
| 1935 | TPM_ALG_ID hashAlg, // IN: hash algorithm for the KDF |
| 1936 | TPM2B_SEED *seed, // IN: seed used in creation |
| 1937 | TPM2B_NAME *name // IN: name of the object |
| 1938 | ) |
| 1939 | { |
| 1940 | // If this is not a new key, then the provided key data must be the right size |
| 1941 | if(publicArea->objectAttributes.sensitiveDataOrigin == CLEAR) |
| 1942 | { |
| 1943 | if( (sensitiveCreate->data.t.size * 8) |
Vadim Bendebury | c00055c | 2015-05-29 22:50:18 -0700 | [diff] [blame] | 1944 | != publicArea->parameters.symDetail.keyBits.sym) |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1945 | return TPM_RC_KEY_SIZE; |
| 1946 | // Make sure that the key size is OK. |
| 1947 | // This implementation only supports symmetric key sizes that are |
| 1948 | // multiples of 8 |
Vadim Bendebury | c00055c | 2015-05-29 22:50:18 -0700 | [diff] [blame] | 1949 | if(publicArea->parameters.symDetail.keyBits.sym % 8 != 0) |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1950 | return TPM_RC_KEY_SIZE; |
| 1951 | } |
| 1952 | else |
| 1953 | { |
| 1954 | // TPM is going to generate the key so set the size |
| 1955 | sensitive->sensitive.sym.t.size |
Vadim Bendebury | c00055c | 2015-05-29 22:50:18 -0700 | [diff] [blame] | 1956 | = publicArea->parameters.symDetail.keyBits.sym / 8; |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1957 | sensitiveCreate->data.t.size = 0; |
| 1958 | } |
| 1959 | // Fill in the sensitive area |
| 1960 | CryptGenerateNewSymmetric(sensitiveCreate, sensitive, hashAlg, |
| 1961 | seed, name); |
| 1962 | // Create unique area in public |
| 1963 | CryptComputeSymmetricUnique(publicArea->nameAlg, |
| 1964 | sensitive, &publicArea->unique.sym); |
| 1965 | return TPM_RC_SUCCESS; |
| 1966 | } |
| 1967 | // |
| 1968 | // |
| 1969 | // |
| 1970 | // 10.2.7.5 CryptXORObfuscation() |
| 1971 | // |
| 1972 | // This function implements XOR obfuscation. It should not be called if the hash algorithm is not |
| 1973 | // implemented. The only return value from this function is TPM_RC_SUCCESS. |
| 1974 | // |
| 1975 | #ifdef TPM_ALG_KEYEDHASH //% 5 |
| 1976 | void |
| 1977 | CryptXORObfuscation( |
| 1978 | TPM_ALG_ID hash, // IN: hash algorithm for KDF |
| 1979 | TPM2B *key, // IN: KDF key |
| 1980 | TPM2B *contextU, // IN: contextU |
| 1981 | TPM2B *contextV, // IN: contextV |
| 1982 | UINT32 dataSize, // IN: size of data buffer |
| 1983 | BYTE *data // IN/OUT: data to be XORed in place |
| 1984 | ) |
| 1985 | { |
| 1986 | BYTE mask[MAX_DIGEST_SIZE]; // Allocate a digest sized buffer |
| 1987 | BYTE *pm; |
| 1988 | UINT32 i; |
| 1989 | UINT32 counter = 0; |
| 1990 | UINT16 hLen = CryptGetHashDigestSize(hash); |
| 1991 | UINT32 requestSize = dataSize * 8; |
| 1992 | INT32 remainBytes = (INT32) dataSize; |
| 1993 | pAssert((key != NULL) && (data != NULL) && (hLen != 0)); |
| 1994 | // Call KDFa to generate XOR mask |
| 1995 | for(; remainBytes > 0; remainBytes -= hLen) |
| 1996 | { |
| 1997 | // Make a call to KDFa to get next iteration |
| 1998 | CryptKDFaOnce(hash, key, "XOR", contextU, contextV, |
| 1999 | requestSize, mask, &counter); |
| 2000 | // XOR next piece of the data |
| 2001 | pm = mask; |
| 2002 | for(i = hLen < remainBytes ? hLen : remainBytes; i > 0; i--) |
| 2003 | *data++ ^= *pm++; |
| 2004 | } |
| 2005 | return; |
| 2006 | } |
| 2007 | #endif //TPM_ALG_KEYED_HASH //%5 |
| 2008 | // |
| 2009 | // |
| 2010 | // 10.2.8 Initialization and shut down |
| 2011 | // |
| 2012 | // 10.2.8.1 CryptInitUnits() |
| 2013 | // |
| 2014 | // This function is called when the TPM receives a _TPM_Init() indication. After function returns, the hash |
| 2015 | // algorithms should be available. |
| 2016 | // |
| 2017 | // NOTE: The hash algorithms do not have to be tested, they just need to be available. They have to be tested before the |
| 2018 | // TPM can accept HMAC authorization or return any result that relies on a hash algorithm. |
| 2019 | // |
| 2020 | void |
| 2021 | CryptInitUnits( |
| 2022 | void |
| 2023 | ) |
| 2024 | { |
| 2025 | // Initialize the vector of implemented algorithms |
| 2026 | AlgorithmGetImplementedVector(&g_implementedAlgorithms); |
| 2027 | // Indicate that all test are necessary |
| 2028 | CryptInitializeToTest(); |
| 2029 | // |
| 2030 | // Call crypto engine unit initialization |
| 2031 | // It is assumed that crypt engine initialization should always succeed. |
| 2032 | // Otherwise, TPM should go to failure mode. |
| 2033 | if(_cpri__InitCryptoUnits(&TpmFail) != CRYPT_SUCCESS) |
| 2034 | FAIL(FATAL_ERROR_INTERNAL); |
| 2035 | return; |
| 2036 | } |
| 2037 | // |
| 2038 | // |
| 2039 | // 10.2.8.2 CryptStopUnits() |
| 2040 | // |
| 2041 | // This function is only used in a simulated environment. There should be no reason to shut down the |
| 2042 | // cryptography on an actual TPM other than loss of power. After receiving TPM2_Startup(), the TPM should |
| 2043 | // be able to accept commands until it loses power and, unless the TPM is in Failure Mode, the |
| 2044 | // cryptographic algorithms should be available. |
| 2045 | // |
| 2046 | void |
| 2047 | CryptStopUnits( |
| 2048 | void |
| 2049 | ) |
| 2050 | { |
| 2051 | // Call crypto engine unit stopping |
| 2052 | _cpri__StopCryptoUnits(); |
| 2053 | return; |
| 2054 | } |
| 2055 | // |
| 2056 | // |
| 2057 | // 10.2.8.3 CryptUtilStartup() |
| 2058 | // |
| 2059 | // This function is called by TPM2_Startup() to initialize the functions in this crypto library and in the |
| 2060 | // provided CryptoEngine(). In this implementation, the only initialization required in this library is |
| 2061 | // initialization of the Commit nonce on TPM Reset. |
| 2062 | // This function returns false if some problem prevents the functions from starting correctly. The TPM should |
| 2063 | // go into failure mode. |
| 2064 | // |
| 2065 | BOOL |
| 2066 | CryptUtilStartup( |
| 2067 | STARTUP_TYPE type // IN: the startup type |
| 2068 | ) |
| 2069 | { |
| 2070 | // Make sure that the crypto library functions are ready. |
| 2071 | // NOTE: need to initialize the crypto before loading |
| 2072 | // the RND state may trigger a self-test which |
| 2073 | // uses the |
| 2074 | if( !_cpri__Startup()) |
| 2075 | return FALSE; |
| 2076 | // Initialize the state of the RNG. |
| 2077 | CryptDrbgGetPutState(PUT_STATE); |
| 2078 | if(type == SU_RESET) |
| 2079 | { |
| 2080 | #ifdef TPM_ALG_ECC |
| 2081 | // Get a new random commit nonce |
| 2082 | gr.commitNonce.t.size = sizeof(gr.commitNonce.t.buffer); |
| 2083 | _cpri__GenerateRandom(gr.commitNonce.t.size, gr.commitNonce.t.buffer); |
| 2084 | // Reset the counter and commit array |
| 2085 | gr.commitCounter = 0; |
| 2086 | MemorySet(gr.commitArray, 0, sizeof(gr.commitArray)); |
| 2087 | #endif // TPM_ALG_ECC |
| 2088 | } |
| 2089 | // If the shutdown was orderly, then the values recovered from NV will |
| 2090 | // be OK to use. If the shutdown was not orderly, then a TPM Reset was required |
| 2091 | // and we would have initialized in the code above. |
| 2092 | return TRUE; |
| 2093 | } |
| 2094 | // |
| 2095 | // |
| 2096 | // 10.2.9 Algorithm-Independent Functions |
| 2097 | // |
| 2098 | // 10.2.9.1 Introduction |
| 2099 | // |
| 2100 | // These functions are used generically when a function of a general type (e.g., symmetric encryption) is |
| 2101 | // required. The functions will modify the parameters as required to interface to the indicated algorithms. |
| 2102 | // |
| 2103 | // 10.2.9.2 CryptIsAsymAlgorithm() |
| 2104 | // |
| 2105 | // This function indicates if an algorithm is an asymmetric algorithm. |
| 2106 | // |
| 2107 | // Return Value Meaning |
| 2108 | // |
| 2109 | // TRUE if it is an asymmetric algorithm |
| 2110 | // FALSE if it is not an asymmetric algorithm |
| 2111 | // |
| 2112 | BOOL |
| 2113 | CryptIsAsymAlgorithm( |
| 2114 | TPM_ALG_ID algID // IN: algorithm ID |
| 2115 | ) |
| 2116 | { |
| 2117 | return ( |
| 2118 | #ifdef TPM_ALG_RSA |
| 2119 | algID == TPM_ALG_RSA |
| 2120 | #endif |
| 2121 | #if defined TPM_ALG_RSA && defined TPM_ALG_ECC |
| 2122 | || |
| 2123 | #endif |
| 2124 | #ifdef TPM_ALG_ECC |
| 2125 | algID == TPM_ALG_ECC |
| 2126 | #endif |
| 2127 | ); |
| 2128 | } |
| 2129 | // |
| 2130 | // |
| 2131 | // 10.2.9.3 CryptGetSymmetricBlockSize() |
| 2132 | // |
| 2133 | // This function returns the size in octets of the symmetric encryption block used by an algorithm and key |
| 2134 | // size combination. |
| 2135 | // |
| 2136 | INT16 |
| 2137 | CryptGetSymmetricBlockSize( |
| 2138 | TPMI_ALG_SYM algorithm, // IN: symmetric algorithm |
| 2139 | UINT16 keySize // IN: key size in bit |
| 2140 | ) |
| 2141 | { |
| 2142 | return _cpri__GetSymmetricBlockSize(algorithm, keySize); |
| 2143 | } |
| 2144 | // |
| 2145 | // |
| 2146 | // |
| 2147 | // 10.2.9.4 CryptSymmetricEncrypt() |
| 2148 | // |
| 2149 | // This function does in-place encryption of a buffer using the indicated symmetric algorithm, key, IV, and |
| 2150 | // mode. If the symmetric algorithm and mode are not defined, the TPM will fail. |
| 2151 | // |
| 2152 | void |
| 2153 | CryptSymmetricEncrypt( |
| 2154 | BYTE *encrypted, // OUT: the encrypted data |
| 2155 | TPM_ALG_ID algorithm, // IN: algorithm for encryption |
| 2156 | UINT16 keySizeInBits, // IN: key size in bit |
| 2157 | TPMI_ALG_SYM_MODE mode, // IN: symmetric encryption mode |
| 2158 | BYTE *key, // IN: encryption key |
| 2159 | TPM2B_IV *ivIn, // IN/OUT: Input IV and output chaining |
| 2160 | // value for the next block |
| 2161 | UINT32 dataSize, // IN: data size in byte |
| 2162 | BYTE *data // IN/OUT: data buffer |
| 2163 | ) |
| 2164 | { |
Vadim Bendebury | c00055c | 2015-05-29 22:50:18 -0700 | [diff] [blame] | 2165 | TPM2B_IV defaultIv = {}; |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 2166 | TPM2B_IV *iv = (ivIn != NULL) ? ivIn : &defaultIv; |
| 2167 | TEST(algorithm); |
| 2168 | pAssert(encrypted != NULL && key != NULL); |
| 2169 | // this check can pass but the case below can fail. ALG_xx_VALUE values are |
| 2170 | // defined for all algorithms but the TPM_ALG_xx might not be. |
| 2171 | if(algorithm == ALG_AES_VALUE || algorithm == ALG_SM4_VALUE) |
| 2172 | { |
| 2173 | if(mode != TPM_ALG_ECB) |
| 2174 | defaultIv.t.size = 16; |
| 2175 | // A provided IV has to be the right size |
| 2176 | pAssert(mode == TPM_ALG_ECB || iv->t.size == 16); |
| 2177 | } |
| 2178 | switch(algorithm) |
| 2179 | { |
| 2180 | #ifdef TPM_ALG_AES |
| 2181 | case TPM_ALG_AES: |
| 2182 | { |
| 2183 | switch (mode) |
| 2184 | { |
| 2185 | case TPM_ALG_CTR: |
| 2186 | _cpri__AESEncryptCTR(encrypted, keySizeInBits, key, |
| 2187 | iv->t.buffer, dataSize, data); |
| 2188 | break; |
| 2189 | case TPM_ALG_OFB: |
| 2190 | _cpri__AESEncryptOFB(encrypted, keySizeInBits, key, |
| 2191 | iv->t.buffer, dataSize, data); |
| 2192 | break; |
| 2193 | case TPM_ALG_CBC: |
| 2194 | _cpri__AESEncryptCBC(encrypted, keySizeInBits, key, |
| 2195 | iv->t.buffer, dataSize, data); |
| 2196 | break; |
| 2197 | case TPM_ALG_CFB: |
| 2198 | _cpri__AESEncryptCFB(encrypted, keySizeInBits, key, |
| 2199 | iv->t.buffer, dataSize, data); |
| 2200 | break; |
| 2201 | case TPM_ALG_ECB: |
| 2202 | _cpri__AESEncryptECB(encrypted, keySizeInBits, key, |
| 2203 | dataSize, data); |
| 2204 | break; |
| 2205 | default: |
| 2206 | pAssert(0); |
| 2207 | } |
| 2208 | } |
| 2209 | break; |
| 2210 | #endif |
| 2211 | #ifdef TPM_ALG_SM4 |
| 2212 | case TPM_ALG_SM4: |
| 2213 | { |
| 2214 | switch (mode) |
| 2215 | { |
| 2216 | case TPM_ALG_CTR: |
| 2217 | _cpri__SM4EncryptCTR(encrypted, keySizeInBits, key, |
| 2218 | iv->t.buffer, dataSize, data); |
| 2219 | break; |
| 2220 | case TPM_ALG_OFB: |
| 2221 | _cpri__SM4EncryptOFB(encrypted, keySizeInBits, key, |
| 2222 | iv->t.buffer, dataSize, data); |
| 2223 | break; |
| 2224 | case TPM_ALG_CBC: |
| 2225 | _cpri__SM4EncryptCBC(encrypted, keySizeInBits, key, |
| 2226 | iv->t.buffer, dataSize, data); |
| 2227 | break; |
| 2228 | case TPM_ALG_CFB: |
| 2229 | _cpri__SM4EncryptCFB(encrypted, keySizeInBits, key, |
| 2230 | iv->t.buffer, dataSize, data); |
| 2231 | break; |
| 2232 | case TPM_ALG_ECB: |
| 2233 | _cpri__SM4EncryptECB(encrypted, keySizeInBits, key, |
| 2234 | dataSize, data); |
| 2235 | break; |
| 2236 | default: |
| 2237 | pAssert(0); |
| 2238 | } |
| 2239 | } |
| 2240 | break; |
| 2241 | #endif |
| 2242 | default: |
| 2243 | pAssert(FALSE); |
| 2244 | break; |
| 2245 | } |
| 2246 | return; |
| 2247 | } |
| 2248 | // |
| 2249 | // |
| 2250 | // 10.2.9.5 CryptSymmetricDecrypt() |
| 2251 | // |
| 2252 | // This function does in-place decryption of a buffer using the indicated symmetric algorithm, key, IV, and |
| 2253 | // mode. If the symmetric algorithm and mode are not defined, the TPM will fail. |
| 2254 | // |
| 2255 | void |
| 2256 | CryptSymmetricDecrypt( |
| 2257 | BYTE *decrypted, |
| 2258 | TPM_ALG_ID algorithm, // IN: algorithm for encryption |
| 2259 | UINT16 keySizeInBits, // IN: key size in bit |
| 2260 | TPMI_ALG_SYM_MODE mode, // IN: symmetric encryption mode |
| 2261 | BYTE *key, // IN: encryption key |
| 2262 | TPM2B_IV *ivIn, // IN/OUT: IV for next block |
| 2263 | UINT32 dataSize, // IN: data size in byte |
| 2264 | BYTE *data // IN/OUT: data buffer |
| 2265 | ) |
| 2266 | { |
| 2267 | BYTE *iv = NULL; |
| 2268 | BYTE defaultIV[sizeof(TPMT_HA)]; |
| 2269 | TEST(algorithm); |
| 2270 | if( |
| 2271 | #ifdef TPM_ALG_AES |
| 2272 | algorithm == TPM_ALG_AES |
| 2273 | #endif |
| 2274 | #if defined TPM_ALG_AES && defined TPM_ALG_SM4 |
| 2275 | || |
| 2276 | #endif |
| 2277 | #ifdef TPM_ALG_SM4 |
| 2278 | algorithm == TPM_ALG_SM4 |
| 2279 | #endif |
| 2280 | ) |
| 2281 | { |
| 2282 | // Both SM4 and AES have block size of 128 bits |
| 2283 | // If the iv is not provided, create a default of 0 |
| 2284 | if(ivIn == NULL) |
| 2285 | { |
| 2286 | // Initialize the default IV |
| 2287 | iv = defaultIV; |
| 2288 | MemorySet(defaultIV, 0, 16); |
| 2289 | } |
| 2290 | else |
| 2291 | { |
| 2292 | // A provided IV has to be the right size |
| 2293 | pAssert(mode == TPM_ALG_ECB || ivIn->t.size == 16); |
| 2294 | iv = &(ivIn->t.buffer[0]); |
| 2295 | } |
| 2296 | } |
| 2297 | switch(algorithm) |
| 2298 | { |
| 2299 | #ifdef TPM_ALG_AES |
| 2300 | case TPM_ALG_AES: |
| 2301 | { |
| 2302 | switch (mode) |
| 2303 | { |
| 2304 | case TPM_ALG_CTR: |
| 2305 | _cpri__AESDecryptCTR(decrypted, keySizeInBits, key, iv, |
| 2306 | dataSize, data); |
| 2307 | break; |
| 2308 | case TPM_ALG_OFB: |
| 2309 | _cpri__AESDecryptOFB(decrypted, keySizeInBits, key, iv, |
| 2310 | dataSize, data); |
| 2311 | break; |
| 2312 | case TPM_ALG_CBC: |
| 2313 | _cpri__AESDecryptCBC(decrypted, keySizeInBits, key, iv, |
| 2314 | dataSize, data); |
| 2315 | break; |
| 2316 | case TPM_ALG_CFB: |
| 2317 | _cpri__AESDecryptCFB(decrypted, keySizeInBits, key, iv, |
| 2318 | dataSize, data); |
| 2319 | break; |
| 2320 | case TPM_ALG_ECB: |
| 2321 | _cpri__AESDecryptECB(decrypted, keySizeInBits, key, |
| 2322 | dataSize, data); |
| 2323 | break; |
| 2324 | default: |
| 2325 | pAssert(0); |
| 2326 | } |
| 2327 | break; |
| 2328 | } |
| 2329 | #endif //TPM_ALG_AES |
| 2330 | #ifdef TPM_ALG_SM4 |
| 2331 | case TPM_ALG_SM4 : |
| 2332 | switch (mode) |
| 2333 | { |
| 2334 | case TPM_ALG_CTR: |
| 2335 | _cpri__SM4DecryptCTR(decrypted, keySizeInBits, key, iv, |
| 2336 | dataSize, data); |
| 2337 | break; |
| 2338 | case TPM_ALG_OFB: |
| 2339 | _cpri__SM4DecryptOFB(decrypted, keySizeInBits, key, iv, |
| 2340 | dataSize, data); |
| 2341 | break; |
| 2342 | case TPM_ALG_CBC: |
| 2343 | _cpri__SM4DecryptCBC(decrypted, keySizeInBits, key, iv, |
| 2344 | dataSize, data); |
| 2345 | break; |
| 2346 | case TPM_ALG_CFB: |
| 2347 | _cpri__SM4DecryptCFB(decrypted, keySizeInBits, key, iv, |
| 2348 | dataSize, data); |
| 2349 | break; |
| 2350 | case TPM_ALG_ECB: |
| 2351 | _cpri__SM4DecryptECB(decrypted, keySizeInBits, key, |
| 2352 | dataSize, data); |
| 2353 | break; |
| 2354 | default: |
| 2355 | pAssert(0); |
| 2356 | } |
| 2357 | break; |
| 2358 | #endif //TPM_ALG_SM4 |
| 2359 | default: |
| 2360 | pAssert(FALSE); |
| 2361 | break; |
| 2362 | } |
| 2363 | return; |
| 2364 | } |
| 2365 | // |
| 2366 | // |
| 2367 | // 10.2.9.6 CryptSecretEncrypt() |
| 2368 | // |
| 2369 | // This function creates a secret value and its associated secret structure using an asymmetric algorithm. |
| 2370 | // This function is used by TPM2_Rewrap() TPM2_MakeCredential(), and TPM2_Duplicate(). |
| 2371 | // |
| 2372 | // Error Returns Meaning |
| 2373 | // |
| 2374 | // TPM_RC_ATTRIBUTES keyHandle does not reference a valid decryption key |
| 2375 | // TPM_RC_KEY invalid ECC key (public point is not on the curve) |
| 2376 | // TPM_RC_SCHEME RSA key with an unsupported padding scheme |
| 2377 | // TPM_RC_VALUE numeric value of the data to be decrypted is greater than the RSA |
| 2378 | // key modulus |
| 2379 | // |
| 2380 | TPM_RC |
| 2381 | CryptSecretEncrypt( |
| 2382 | TPMI_DH_OBJECT keyHandle, // IN: encryption key handle |
| 2383 | const char *label, // IN: a null-terminated string as L |
| 2384 | TPM2B_DATA *data, // OUT: secret value |
| 2385 | TPM2B_ENCRYPTED_SECRET *secret // OUT: secret structure |
| 2386 | ) |
| 2387 | { |
| 2388 | TPM_RC result = TPM_RC_SUCCESS; |
| 2389 | OBJECT *encryptKey = ObjectGet(keyHandle); // TPM key used for encrypt |
| 2390 | pAssert(data != NULL && secret != NULL); |
| 2391 | // The output secret value has the size of the digest produced by the nameAlg. |
| 2392 | data->t.size = CryptGetHashDigestSize(encryptKey->publicArea.nameAlg); |
| 2393 | pAssert(encryptKey->publicArea.objectAttributes.decrypt == SET); |
| 2394 | switch(encryptKey->publicArea.type) |
| 2395 | { |
| 2396 | #ifdef TPM_ALG_RSA |
| 2397 | case TPM_ALG_RSA: |
| 2398 | { |
| 2399 | TPMT_RSA_DECRYPT scheme; |
| 2400 | // Use OAEP scheme |
| 2401 | scheme.scheme = TPM_ALG_OAEP; |
| 2402 | scheme.details.oaep.hashAlg = encryptKey->publicArea.nameAlg; |
| 2403 | // Create secret data from RNG |
| 2404 | CryptGenerateRandom(data->t.size, data->t.buffer); |
| 2405 | // Encrypt the data by RSA OAEP into encrypted secret |
Vadim Bendebury | c00055c | 2015-05-29 22:50:18 -0700 | [diff] [blame] | 2406 | result = CryptEncryptRSA(&secret->t.size, secret->t.buffer, |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 2407 | encryptKey, &scheme, |
| 2408 | data->t.size, data->t.buffer, label); |
| 2409 | } |
| 2410 | break; |
| 2411 | #endif //TPM_ALG_RSA |
| 2412 | #ifdef TPM_ALG_ECC |
| 2413 | case TPM_ALG_ECC: |
| 2414 | { |
| 2415 | TPMS_ECC_POINT eccPublic; |
| 2416 | TPM2B_ECC_PARAMETER eccPrivate; |
| 2417 | TPMS_ECC_POINT eccSecret; |
Vadim Bendebury | c00055c | 2015-05-29 22:50:18 -0700 | [diff] [blame] | 2418 | BYTE *buffer = secret->t.buffer; |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 2419 | // Need to make sure that the public point of the key is on the |
| 2420 | // curve defined by the key. |
| 2421 | if(!_cpri__EccIsPointOnCurve( |
| 2422 | encryptKey->publicArea.parameters.eccDetail.curveID, |
| 2423 | &encryptKey->publicArea.unique.ecc)) |
| 2424 | result = TPM_RC_KEY; |
| 2425 | else |
| 2426 | { |
| 2427 | // Call crypto engine to create an auxiliary ECC key |
| 2428 | // We assume crypt engine initialization should always success. |
| 2429 | // Otherwise, TPM should go to failure mode. |
| 2430 | CryptNewEccKey(encryptKey->publicArea.parameters.eccDetail.curveID, |
| 2431 | &eccPublic, &eccPrivate); |
| 2432 | // Marshal ECC public to secret structure. This will be used by the |
| 2433 | // recipient to decrypt the secret with their private key. |
| 2434 | secret->t.size = TPMS_ECC_POINT_Marshal(&eccPublic, &buffer, NULL); |
| 2435 | // Compute ECDH shared secret which is R = [d]Q where d is the |
| 2436 | // private part of the ephemeral key and Q is the public part of a |
| 2437 | // TPM key. TPM_RC_KEY error return from CryptComputeECDHSecret |
| 2438 | // because the auxiliary ECC key is just created according to the |
| 2439 | // parameters of input ECC encrypt key. |
| 2440 | if( CryptEccPointMultiply(&eccSecret, |
| 2441 | encryptKey->publicArea.parameters.eccDetail.curveID, |
| 2442 | &eccPrivate, |
| 2443 | &encryptKey->publicArea.unique.ecc) |
| 2444 | != CRYPT_SUCCESS) |
| 2445 | result = TPM_RC_KEY; |
| 2446 | else |
| 2447 | // The secret value is computed from Z using KDFe as: |
| 2448 | // secret := KDFe(HashID, Z, Use, PartyUInfo, PartyVInfo, bits) |
| 2449 | // Where: |
| 2450 | // HashID the nameAlg of the decrypt key |
| 2451 | // Z the x coordinate (Px) of the product (P) of the point |
| 2452 | // (Q) of the secret and the private x coordinate (de,V) |
| 2453 | // of the decryption key |
| 2454 | // Use a null-terminated string containing "SECRET" |
| 2455 | // PartyUInfo the x coordinate of the point in the secret |
| 2456 | // (Qe,U ) |
| 2457 | // PartyVInfo the x coordinate of the public key (Qs,V ) |
| 2458 | // bits the number of bits in the digest of HashID |
| 2459 | // Retrieve seed from KDFe |
| 2460 | CryptKDFe(encryptKey->publicArea.nameAlg, &eccSecret.x.b, |
| 2461 | label, &eccPublic.x.b, |
| 2462 | &encryptKey->publicArea.unique.ecc.x.b, |
| 2463 | data->t.size * 8, data->t.buffer); |
| 2464 | } |
| 2465 | } |
| 2466 | break; |
| 2467 | #endif //TPM_ALG_ECC |
| 2468 | default: |
| 2469 | FAIL(FATAL_ERROR_INTERNAL); |
| 2470 | break; |
| 2471 | } |
| 2472 | return result; |
| 2473 | } |
| 2474 | // |
| 2475 | // |
| 2476 | // 10.2.9.7 CryptSecretDecrypt() |
| 2477 | // |
| 2478 | // Decrypt a secret value by asymmetric (or symmetric) algorithm This function is used for |
| 2479 | // ActivateCredential() and Import for asymmetric decryption, and StartAuthSession() for both asymmetric |
| 2480 | // and symmetric decryption process |
| 2481 | // |
| 2482 | // Error Returns Meaning |
| 2483 | // |
| 2484 | // TPM_RC_ATTRIBUTES RSA key is not a decryption key |
| 2485 | // TPM_RC_BINDING Invalid RSA key (public and private parts are not cryptographically |
| 2486 | // bound. |
| 2487 | // TPM_RC_ECC_POINT ECC point in the secret is not on the curve |
| 2488 | // TPM_RC_INSUFFICIENT failed to retrieve ECC point from the secret |
| 2489 | // TPM_RC_NO_RESULT multiplication resulted in ECC point at infinity |
| 2490 | // TPM_RC_SIZE data to decrypt is not of the same size as RSA key |
| 2491 | // TPM_RC_VALUE For RSA key, numeric value of the encrypted data is greater than the |
| 2492 | // modulus, or the recovered data is larger than the output buffer. For |
| 2493 | // keyedHash or symmetric key, the secret is larger than the size of the |
| 2494 | // digest produced by the name algorithm. |
| 2495 | // TPM_RC_FAILURE internal error |
| 2496 | // |
| 2497 | TPM_RC |
| 2498 | CryptSecretDecrypt( |
| 2499 | TPM_HANDLE tpmKey, // IN: decrypt key |
| 2500 | TPM2B_NONCE *nonceCaller, // IN: nonceCaller. It is needed for |
| 2501 | // symmetric decryption. For |
| 2502 | // asymmetric decryption, this |
| 2503 | // parameter is NULL |
| 2504 | const char *label, // IN: a null-terminated string as L |
| 2505 | TPM2B_ENCRYPTED_SECRET *secret, // IN: input secret |
| 2506 | TPM2B_DATA *data // OUT: decrypted secret value |
| 2507 | ) |
| 2508 | { |
| 2509 | TPM_RC result = TPM_RC_SUCCESS; |
| 2510 | OBJECT *decryptKey = ObjectGet(tpmKey); //TPM key used for decrypting |
| 2511 | // Decryption for secret |
| 2512 | switch(decryptKey->publicArea.type) |
| 2513 | { |
| 2514 | #ifdef TPM_ALG_RSA |
| 2515 | case TPM_ALG_RSA: |
| 2516 | { |
| 2517 | TPMT_RSA_DECRYPT scheme; |
| 2518 | // Use OAEP scheme |
| 2519 | scheme.scheme = TPM_ALG_OAEP; |
| 2520 | scheme.details.oaep.hashAlg = decryptKey->publicArea.nameAlg; |
| 2521 | // Set the output buffer capacity |
| 2522 | data->t.size = sizeof(data->t.buffer); |
| 2523 | // Decrypt seed by RSA OAEP |
| 2524 | result = CryptDecryptRSA(&data->t.size, data->t.buffer, decryptKey, |
| 2525 | &scheme, |
Vadim Bendebury | c00055c | 2015-05-29 22:50:18 -0700 | [diff] [blame] | 2526 | secret->t.size, secret->t.buffer,label); |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 2527 | if( (result == TPM_RC_SUCCESS) |
| 2528 | && (data->t.size |
| 2529 | > CryptGetHashDigestSize(decryptKey->publicArea.nameAlg))) |
| 2530 | result = TPM_RC_VALUE; |
| 2531 | } |
| 2532 | break; |
| 2533 | #endif //TPM_ALG_RSA |
| 2534 | #ifdef TPM_ALG_ECC |
| 2535 | case TPM_ALG_ECC: |
| 2536 | { |
| 2537 | TPMS_ECC_POINT eccPublic; |
| 2538 | TPMS_ECC_POINT eccSecret; |
Vadim Bendebury | c00055c | 2015-05-29 22:50:18 -0700 | [diff] [blame] | 2539 | BYTE *buffer = secret->t.buffer; |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 2540 | INT32 size = secret->t.size; |
| 2541 | // Retrieve ECC point from secret buffer |
| 2542 | result = TPMS_ECC_POINT_Unmarshal(&eccPublic, &buffer, &size); |
| 2543 | if(result == TPM_RC_SUCCESS) |
| 2544 | { |
| 2545 | result = CryptEccPointMultiply(&eccSecret, |
| 2546 | decryptKey->publicArea.parameters.eccDetail.curveID, |
| 2547 | &decryptKey->sensitive.sensitive.ecc, |
| 2548 | &eccPublic); |
| 2549 | if(result == TPM_RC_SUCCESS) |
| 2550 | { |
| 2551 | // Set the size of the "recovered" secret value to be the size |
| 2552 | // of the digest produced by the nameAlg. |
| 2553 | data->t.size = |
| 2554 | CryptGetHashDigestSize(decryptKey->publicArea.nameAlg); |
| 2555 | // The secret value is computed from Z using KDFe as: |
| 2556 | // secret := KDFe(HashID, Z, Use, PartyUInfo, PartyVInfo, bits) |
| 2557 | // Where: |
| 2558 | // HashID -- the nameAlg of the decrypt key |
| 2559 | // Z -- the x coordinate (Px) of the product (P) of the point |
| 2560 | // (Q) of the secret and the private x coordinate (de,V) |
| 2561 | // of the decryption key |
| 2562 | // Use -- a null-terminated string containing "SECRET" |
| 2563 | // PartyUInfo -- the x coordinate of the point in the secret |
| 2564 | // (Qe,U ) |
| 2565 | // PartyVInfo -- the x coordinate of the public key (Qs,V ) |
| 2566 | // bits -- the number of bits in the digest of HashID |
| 2567 | // Retrieve seed from KDFe |
| 2568 | CryptKDFe(decryptKey->publicArea.nameAlg, &eccSecret.x.b, label, |
| 2569 | &eccPublic.x.b, |
| 2570 | &decryptKey->publicArea.unique.ecc.x.b, |
| 2571 | data->t.size * 8, data->t.buffer); |
| 2572 | } |
| 2573 | } |
| 2574 | } |
| 2575 | break; |
| 2576 | #endif //TPM_ALG_ECC |
| 2577 | case TPM_ALG_KEYEDHASH: |
| 2578 | // The seed size can not be bigger than the digest size of nameAlg |
| 2579 | if(secret->t.size > |
| 2580 | CryptGetHashDigestSize(decryptKey->publicArea.nameAlg)) |
| 2581 | result = TPM_RC_VALUE; |
| 2582 | else |
| 2583 | { |
| 2584 | // Retrieve seed by XOR Obfuscation: |
| 2585 | // seed = XOR(secret, hash, key, nonceCaller, nullNonce) |
| 2586 | // where: |
| 2587 | // secret the secret parameter from the TPM2_StartAuthHMAC |
| 2588 | // command |
| 2589 | // which contains the seed value |
| 2590 | // hash nameAlg of tpmKey |
| 2591 | // key the key or data value in the object referenced by |
| 2592 | // entityHandle in the TPM2_StartAuthHMAC command |
| 2593 | // nonceCaller the parameter from the TPM2_StartAuthHMAC command |
| 2594 | // nullNonce a zero-length nonce |
| 2595 | // XOR Obfuscation in place |
| 2596 | CryptXORObfuscation(decryptKey->publicArea.nameAlg, |
| 2597 | &decryptKey->sensitive.sensitive.bits.b, |
| 2598 | &nonceCaller->b, NULL, |
Vadim Bendebury | c00055c | 2015-05-29 22:50:18 -0700 | [diff] [blame] | 2599 | secret->t.size, secret->t.buffer); |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 2600 | // Copy decrypted seed |
| 2601 | MemoryCopy2B(&data->b, &secret->b, sizeof(data->t.buffer)); |
| 2602 | } |
| 2603 | break; |
| 2604 | case TPM_ALG_SYMCIPHER: |
| 2605 | { |
Vadim Bendebury | c00055c | 2015-05-29 22:50:18 -0700 | [diff] [blame] | 2606 | TPM2B_IV iv = {}; |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 2607 | TPMT_SYM_DEF_OBJECT *symDef; |
| 2608 | // The seed size can not be bigger than the digest size of nameAlg |
| 2609 | if(secret->t.size > |
| 2610 | CryptGetHashDigestSize(decryptKey->publicArea.nameAlg)) |
| 2611 | result = TPM_RC_VALUE; |
| 2612 | else |
| 2613 | { |
Vadim Bendebury | c00055c | 2015-05-29 22:50:18 -0700 | [diff] [blame] | 2614 | symDef = &decryptKey->publicArea.parameters.symDetail; |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 2615 | iv.t.size = CryptGetSymmetricBlockSize(symDef->algorithm, |
| 2616 | symDef->keyBits.sym); |
| 2617 | pAssert(iv.t.size != 0); |
| 2618 | if(nonceCaller->t.size >= iv.t.size) |
| 2619 | MemoryCopy(iv.t.buffer, nonceCaller->t.buffer, iv.t.size, |
| 2620 | sizeof(iv.t.buffer)); |
| 2621 | else |
| 2622 | MemoryCopy(iv.b.buffer, nonceCaller->t.buffer, |
| 2623 | nonceCaller->t.size, sizeof(iv.t.buffer)); |
| 2624 | // CFB decrypt in place, using nonceCaller as iv |
Vadim Bendebury | c00055c | 2015-05-29 22:50:18 -0700 | [diff] [blame] | 2625 | CryptSymmetricDecrypt(secret->t.buffer, symDef->algorithm, |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 2626 | symDef->keyBits.sym, TPM_ALG_CFB, |
| 2627 | decryptKey->sensitive.sensitive.sym.t.buffer, |
Vadim Bendebury | c00055c | 2015-05-29 22:50:18 -0700 | [diff] [blame] | 2628 | &iv, secret->t.size, secret->t.buffer); |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 2629 | // Copy decrypted seed |
| 2630 | MemoryCopy2B(&data->b, &secret->b, sizeof(data->t.buffer)); |
| 2631 | } |
| 2632 | } |
| 2633 | break; |
| 2634 | default: |
| 2635 | pAssert(0); |
| 2636 | break; |
| 2637 | } |
| 2638 | return result; |
| 2639 | } |
| 2640 | // |
| 2641 | // |
| 2642 | // 10.2.9.8 CryptParameterEncryption() |
| 2643 | // |
| 2644 | // This function does in-place encryption of a response parameter. |
| 2645 | // |
| 2646 | void |
| 2647 | CryptParameterEncryption( |
| 2648 | TPM_HANDLE handle, // IN: encrypt session handle |
| 2649 | TPM2B *nonceCaller, // IN: nonce caller |
| 2650 | UINT16 leadingSizeInByte, // IN: the size of the leading size field in |
| 2651 | // byte |
| 2652 | TPM2B_AUTH *extraKey, // IN: additional key material other than |
| 2653 | // session auth |
| 2654 | BYTE *buffer // IN/OUT: parameter buffer to be encrypted |
| 2655 | ) |
| 2656 | { |
| 2657 | SESSION *session = SessionGet(handle); // encrypt session |
| 2658 | TPM2B_TYPE(SYM_KEY, ( sizeof(extraKey->t.buffer) |
| 2659 | + sizeof(session->sessionKey.t.buffer))); |
| 2660 | TPM2B_SYM_KEY key; // encryption key |
| 2661 | UINT32 cipherSize = 0; // size of cipher text |
| 2662 | pAssert(session->sessionKey.t.size + extraKey->t.size <= sizeof(key.t.buffer)); |
| 2663 | // Retrieve encrypted data size. |
| 2664 | if(leadingSizeInByte == 2) |
| 2665 | { |
| 2666 | // Extract the first two bytes as the size field as the data size |
| 2667 | // encrypt |
| 2668 | cipherSize = (UINT32)BYTE_ARRAY_TO_UINT16(buffer); |
| 2669 | // advance the buffer |
| 2670 | buffer = &buffer[2]; |
| 2671 | } |
| 2672 | #ifdef TPM4B |
| 2673 | else if(leadingSizeInByte == 4) |
| 2674 | { |
| 2675 | // use the first four bytes to indicate the number of bytes to encrypt |
| 2676 | cipherSize = BYTE_ARRAY_TO_UINT32(buffer); |
| 2677 | //advance pointer |
| 2678 | buffer = &buffer[4]; |
| 2679 | } |
| 2680 | #endif |
| 2681 | else |
| 2682 | { |
| 2683 | pAssert(FALSE); |
| 2684 | } |
| 2685 | // |
| 2686 | // Compute encryption key by concatenating sessionAuth with extra key |
| 2687 | MemoryCopy2B(&key.b, &session->sessionKey.b, sizeof(key.t.buffer)); |
| 2688 | MemoryConcat2B(&key.b, &extraKey->b, sizeof(key.t.buffer)); |
| 2689 | if (session->symmetric.algorithm == TPM_ALG_XOR) |
| 2690 | // XOR parameter encryption formulation: |
| 2691 | // XOR(parameter, hash, sessionAuth, nonceNewer, nonceOlder) |
| 2692 | CryptXORObfuscation(session->authHashAlg, &(key.b), |
| 2693 | &(session->nonceTPM.b), |
| 2694 | nonceCaller, cipherSize, buffer); |
| 2695 | else |
| 2696 | ParmEncryptSym(session->symmetric.algorithm, session->authHashAlg, |
| 2697 | session->symmetric.keyBits.aes, &(key.b), |
| 2698 | nonceCaller, &(session->nonceTPM.b), |
| 2699 | cipherSize, buffer); |
| 2700 | return; |
| 2701 | } |
| 2702 | // |
| 2703 | // |
| 2704 | // 10.2.9.9 CryptParameterDecryption() |
| 2705 | // |
| 2706 | // This function does in-place decryption of a command parameter. |
| 2707 | // |
| 2708 | // Error Returns Meaning |
| 2709 | // |
| 2710 | // TPM_RC_SIZE The number of bytes in the input buffer is less than the number of |
| 2711 | // bytes to be decrypted. |
| 2712 | // |
| 2713 | TPM_RC |
| 2714 | CryptParameterDecryption( |
| 2715 | TPM_HANDLE handle, // IN: encrypted session handle |
| 2716 | TPM2B *nonceCaller, // IN: nonce caller |
| 2717 | UINT32 bufferSize, // IN: size of parameter buffer |
| 2718 | UINT16 leadingSizeInByte, // IN: the size of the leading size field in |
| 2719 | // byte |
| 2720 | TPM2B_AUTH *extraKey, // IN: the authValue |
| 2721 | BYTE *buffer // IN/OUT: parameter buffer to be decrypted |
| 2722 | ) |
| 2723 | { |
| 2724 | SESSION *session = SessionGet(handle); // encrypt session |
| 2725 | // The HMAC key is going to be the concatenation of the session key and any |
| 2726 | // additional key material (like the authValue). The size of both of these |
| 2727 | // is the size of the buffer which can contain a TPMT_HA. |
| 2728 | TPM2B_TYPE(HMAC_KEY, ( sizeof(extraKey->t.buffer) |
| 2729 | + sizeof(session->sessionKey.t.buffer))); |
| 2730 | TPM2B_HMAC_KEY key; // decryption key |
| 2731 | UINT32 cipherSize = 0; // size of cipher text |
| 2732 | pAssert(session->sessionKey.t.size + extraKey->t.size <= sizeof(key.t.buffer)); |
| 2733 | // Retrieve encrypted data size. |
| 2734 | if(leadingSizeInByte == 2) |
| 2735 | { |
| 2736 | // The first two bytes of the buffer are the size of the |
| 2737 | // data to be decrypted |
| 2738 | cipherSize = (UINT32)BYTE_ARRAY_TO_UINT16(buffer); |
| 2739 | buffer = &buffer[2]; // advance the buffer |
| 2740 | } |
| 2741 | #ifdef TPM4B |
| 2742 | else if(leadingSizeInByte == 4) |
| 2743 | { |
| 2744 | // the leading size is four bytes so get the four byte size field |
| 2745 | cipherSize = BYTE_ARRAY_TO_UINT32(buffer); |
| 2746 | buffer = &buffer[4]; //advance pointer |
| 2747 | } |
| 2748 | #endif |
| 2749 | else |
| 2750 | { |
| 2751 | pAssert(FALSE); |
| 2752 | } |
| 2753 | if(cipherSize > bufferSize) |
| 2754 | return TPM_RC_SIZE; |
| 2755 | // Compute decryption key by concatenating sessionAuth with extra input key |
| 2756 | MemoryCopy2B(&key.b, &session->sessionKey.b, sizeof(key.t.buffer)); |
| 2757 | MemoryConcat2B(&key.b, &extraKey->b, sizeof(key.t.buffer)); |
| 2758 | if(session->symmetric.algorithm == TPM_ALG_XOR) |
| 2759 | // XOR parameter decryption formulation: |
| 2760 | // XOR(parameter, hash, sessionAuth, nonceNewer, nonceOlder) |
| 2761 | // Call XOR obfuscation function |
| 2762 | CryptXORObfuscation(session->authHashAlg, &key.b, nonceCaller, |
| 2763 | &(session->nonceTPM.b), cipherSize, buffer); |
| 2764 | else |
| 2765 | // Assume that it is one of the symmetric block ciphers. |
| 2766 | ParmDecryptSym(session->symmetric.algorithm, session->authHashAlg, |
| 2767 | session->symmetric.keyBits.sym, |
| 2768 | &key.b, nonceCaller, &session->nonceTPM.b, |
| 2769 | cipherSize, buffer); |
| 2770 | return TPM_RC_SUCCESS; |
| 2771 | } |
| 2772 | // |
| 2773 | // |
| 2774 | // 10.2.9.10 CryptComputeSymmetricUnique() |
| 2775 | // |
| 2776 | // This function computes the unique field in public area for symmetric objects. |
| 2777 | // |
| 2778 | void |
| 2779 | CryptComputeSymmetricUnique( |
| 2780 | TPMI_ALG_HASH nameAlg, // IN: object name algorithm |
| 2781 | TPMT_SENSITIVE *sensitive, // IN: sensitive area |
| 2782 | TPM2B_DIGEST *unique // OUT: unique buffer |
| 2783 | ) |
| 2784 | { |
| 2785 | HASH_STATE hashState; |
| 2786 | pAssert(sensitive != NULL && unique != NULL); |
| 2787 | // Compute the public value as the hash of sensitive.symkey || unique.buffer |
| 2788 | unique->t.size = CryptGetHashDigestSize(nameAlg); |
| 2789 | CryptStartHash(nameAlg, &hashState); |
| 2790 | // Add obfuscation value |
| 2791 | CryptUpdateDigest2B(&hashState, &sensitive->seedValue.b); |
| 2792 | // Add sensitive value |
| 2793 | CryptUpdateDigest2B(&hashState, &sensitive->sensitive.any.b); |
| 2794 | CryptCompleteHash2B(&hashState, &unique->b); |
| 2795 | return; |
| 2796 | } |
| 2797 | #if 0 //% |
| 2798 | // |
| 2799 | // |
| 2800 | // |
| 2801 | // 10.2.9.11 CryptComputeSymValue() |
| 2802 | // |
| 2803 | // This function computes the seedValue field in asymmetric sensitive areas. |
| 2804 | // |
| 2805 | void |
| 2806 | CryptComputeSymValue( |
| 2807 | TPM_HANDLE parentHandle, // IN: parent handle of the object to be created |
| 2808 | TPMT_PUBLIC *publicArea, // IN/OUT: the public area template |
| 2809 | TPMT_SENSITIVE *sensitive, // IN: sensitive area |
| 2810 | TPM2B_SEED *seed, // IN: the seed |
| 2811 | TPMI_ALG_HASH hashAlg, // IN: hash algorithm for KDFa |
| 2812 | TPM2B_NAME *name // IN: object name |
| 2813 | ) |
| 2814 | { |
| 2815 | TPM2B_AUTH *proof = NULL; |
| 2816 | if(CryptIsAsymAlgorithm(publicArea->type)) |
| 2817 | { |
| 2818 | // Generate seedValue only when an asymmetric key is a storage key |
| 2819 | if(publicArea->objectAttributes.decrypt == SET |
| 2820 | && publicArea->objectAttributes.restricted == SET) |
| 2821 | { |
| 2822 | // If this is a primary object in the endorsement hierarchy, use |
| 2823 | // ehProof in the creation of the symmetric seed so that child |
| 2824 | // objects in the endorsement hierarchy are voided on TPM2_Clear() |
| 2825 | // or TPM2_ChangeEPS() |
| 2826 | if( parentHandle == TPM_RH_ENDORSEMENT |
| 2827 | && publicArea->objectAttributes.fixedTPM == SET) |
| 2828 | proof = &gp.ehProof; |
| 2829 | } |
| 2830 | else |
| 2831 | { |
| 2832 | sensitive->seedValue.t.size = 0; |
| 2833 | return; |
| 2834 | } |
| 2835 | } |
| 2836 | // For all object types, the size of seedValue is the digest size of nameAlg |
| 2837 | sensitive->seedValue.t.size = CryptGetHashDigestSize(publicArea->nameAlg); |
| 2838 | // Compute seedValue using implementation-dependent method |
| 2839 | _cpri__GenerateSeededRandom(sensitive->seedValue.t.size, |
| 2840 | sensitive->seedValue.t.buffer, |
| 2841 | hashAlg, |
| 2842 | &seed->b, |
| 2843 | "seedValue", |
| 2844 | &name->b, |
| 2845 | (TPM2B *)proof); |
| 2846 | return; |
| 2847 | } |
| 2848 | #endif //% |
| 2849 | // |
| 2850 | // |
| 2851 | // 10.2.9.12 CryptCreateObject() |
| 2852 | // |
| 2853 | // This function creates an object. It: |
| 2854 | // a) fills in the created key in public and sensitive area; |
| 2855 | // b) creates a random number in sensitive area for symmetric keys; and |
| 2856 | // c) compute the unique id in public area for symmetric keys. |
| 2857 | // |
| 2858 | // |
| 2859 | // |
| 2860 | // |
| 2861 | // Error Returns Meaning |
| 2862 | // |
| 2863 | // TPM_RC_KEY_SIZE key size in the public area does not match the size in the sensitive |
| 2864 | // creation area for a symmetric key |
| 2865 | // TPM_RC_RANGE for an RSA key, the exponent is not supported |
| 2866 | // TPM_RC_SIZE sensitive data size is larger than allowed for the scheme for a keyed |
| 2867 | // hash object |
| 2868 | // TPM_RC_VALUE exponent is not prime or could not find a prime using the provided |
| 2869 | // parameters for an RSA key; unsupported name algorithm for an ECC |
| 2870 | // key |
| 2871 | // |
| 2872 | TPM_RC |
| 2873 | CryptCreateObject( |
| 2874 | TPM_HANDLE parentHandle, // IN/OUT: indication of the seed |
| 2875 | // source |
| 2876 | TPMT_PUBLIC *publicArea, // IN/OUT: public area |
| 2877 | TPMS_SENSITIVE_CREATE *sensitiveCreate, // IN: sensitive creation |
| 2878 | TPMT_SENSITIVE *sensitive // OUT: sensitive area |
| 2879 | ) |
| 2880 | { |
| 2881 | // Next value is a placeholder for a random seed that is used in |
| 2882 | // key creation when the parent is not a primary seed. It has the same |
| 2883 | // size as the primary seed. |
| 2884 | TPM2B_SEED localSeed; // data to seed key creation if this |
| 2885 | // is not a primary seed |
| 2886 | TPM2B_SEED *seed = NULL; |
| 2887 | TPM_RC result = TPM_RC_SUCCESS; |
| 2888 | TPM2B_NAME name; |
| 2889 | TPM_ALG_ID hashAlg = CONTEXT_INTEGRITY_HASH_ALG; |
| 2890 | OBJECT *parent; |
| 2891 | UINT32 counter; |
| 2892 | // Set the sensitive type for the object |
| 2893 | sensitive->sensitiveType = publicArea->type; |
| 2894 | ObjectComputeName(publicArea, &name); |
| 2895 | // For all objects, copy the initial auth data |
| 2896 | sensitive->authValue = sensitiveCreate->userAuth; |
| 2897 | // If this is a permanent handle assume that it is a hierarchy |
| 2898 | if(HandleGetType(parentHandle) == TPM_HT_PERMANENT) |
| 2899 | { |
| 2900 | seed = HierarchyGetPrimarySeed(parentHandle); |
| 2901 | } |
| 2902 | else |
| 2903 | { |
| 2904 | // If not hierarchy handle, get parent |
| 2905 | parent = ObjectGet(parentHandle); |
| 2906 | hashAlg = parent->publicArea.nameAlg; |
| 2907 | // Use random value as seed for non-primary objects |
| 2908 | localSeed.t.size = PRIMARY_SEED_SIZE; |
| 2909 | CryptGenerateRandom(PRIMARY_SEED_SIZE, localSeed.t.buffer); |
| 2910 | seed = &localSeed; |
| 2911 | } |
| 2912 | switch(publicArea->type) |
| 2913 | { |
| 2914 | #ifdef TPM_ALG_RSA |
| 2915 | // Create RSA key |
| 2916 | case TPM_ALG_RSA: |
| 2917 | result = CryptGenerateKeyRSA(publicArea, sensitive, |
| 2918 | hashAlg, seed, &name, &counter); |
| 2919 | break; |
| 2920 | #endif // TPM_ALG_RSA |
| 2921 | #ifdef TPM_ALG_ECC |
| 2922 | // Create ECC key |
| 2923 | case TPM_ALG_ECC: |
| 2924 | result = CryptGenerateKeyECC(publicArea, sensitive, |
| 2925 | hashAlg, seed, &name, &counter); |
| 2926 | break; |
| 2927 | #endif // TPM_ALG_ECC |
| 2928 | // Collect symmetric key information |
| 2929 | case TPM_ALG_SYMCIPHER: |
| 2930 | return CryptGenerateKeySymmetric(publicArea, sensitiveCreate, |
| 2931 | sensitive, hashAlg, seed, &name); |
| 2932 | break; |
| 2933 | case TPM_ALG_KEYEDHASH: |
| 2934 | return CryptGenerateKeyedHash(publicArea, sensitiveCreate, |
| 2935 | sensitive, hashAlg, seed, &name); |
| 2936 | break; |
| 2937 | default: |
| 2938 | pAssert(0); |
| 2939 | break; |
| 2940 | } |
| 2941 | if(result == TPM_RC_SUCCESS) |
| 2942 | { |
| 2943 | TPM2B_AUTH *proof = NULL; |
| 2944 | if(publicArea->objectAttributes.decrypt == SET |
| 2945 | && publicArea->objectAttributes.restricted == SET) |
| 2946 | { |
| 2947 | // If this is a primary object in the endorsement hierarchy, use |
| 2948 | // ehProof in the creation of the symmetric seed so that child |
| 2949 | // objects in the endorsement hierarchy are voided on TPM2_Clear() |
| 2950 | // or TPM2_ChangeEPS() |
| 2951 | if( parentHandle == TPM_RH_ENDORSEMENT |
| 2952 | && publicArea->objectAttributes.fixedTPM == SET) |
| 2953 | proof = &gp.ehProof; |
| 2954 | // For all object types, the size of seedValue is the digest size |
| 2955 | // of its nameAlg |
| 2956 | sensitive->seedValue.t.size |
| 2957 | = CryptGetHashDigestSize(publicArea->nameAlg); |
| 2958 | // Compute seedValue using implementation-dependent method |
| 2959 | _cpri__GenerateSeededRandom(sensitive->seedValue.t.size, |
| 2960 | sensitive->seedValue.t.buffer, |
| 2961 | hashAlg, |
| 2962 | &seed->b, |
| 2963 | "seedValuea", |
| 2964 | &name.b, |
| 2965 | (TPM2B *)proof); |
| 2966 | } |
| 2967 | else |
| 2968 | { |
| 2969 | sensitive->seedValue.t.size = 0; |
| 2970 | } |
| 2971 | } |
| 2972 | return result; |
| 2973 | } |
| 2974 | // |
| 2975 | // 10.2.9.13 CryptObjectIsPublicConsistent() |
| 2976 | // |
| 2977 | // This function checks that the key sizes in the public area are consistent. For an asymmetric key, the size |
| 2978 | // of the public key must match the size indicated by the public->parameters. |
| 2979 | // Checks for the algorithm types matching the key type are handled by the unmarshaling operation. |
| 2980 | // |
| 2981 | // Return Value Meaning |
| 2982 | // |
| 2983 | // TRUE sizes are consistent |
| 2984 | // FALSE sizes are not consistent |
| 2985 | // |
| 2986 | BOOL |
| 2987 | CryptObjectIsPublicConsistent( |
| 2988 | TPMT_PUBLIC *publicArea // IN: public area |
| 2989 | ) |
| 2990 | { |
| 2991 | BOOL OK = TRUE; |
| 2992 | switch (publicArea->type) |
| 2993 | { |
| 2994 | #ifdef TPM_ALG_RSA |
| 2995 | case TPM_ALG_RSA: |
| 2996 | OK = CryptAreKeySizesConsistent(publicArea); |
| 2997 | break; |
| 2998 | #endif //TPM_ALG_RSA |
| 2999 | #ifdef TPM_ALG_ECC |
| 3000 | case TPM_ALG_ECC: |
| 3001 | { |
| 3002 | const ECC_CURVE *curveValue; |
| 3003 | // Check that the public point is on the indicated curve. |
| 3004 | OK = CryptEccIsPointOnCurve( |
| 3005 | publicArea->parameters.eccDetail.curveID, |
| 3006 | &publicArea->unique.ecc); |
| 3007 | if(OK) |
| 3008 | { |
| 3009 | curveValue = CryptEccGetCurveDataPointer( |
| 3010 | publicArea->parameters.eccDetail.curveID); |
| 3011 | pAssert(curveValue != NULL); |
| 3012 | // The input ECC curve must be a supported curve |
| 3013 | // IF a scheme is defined for the curve, then that scheme must |
| 3014 | // be used. |
| 3015 | OK = (curveValue->sign.scheme == TPM_ALG_NULL |
| 3016 | || ( publicArea->parameters.eccDetail.scheme.scheme |
| 3017 | == curveValue->sign.scheme)); |
| 3018 | OK = OK && CryptAreKeySizesConsistent(publicArea); |
| 3019 | } |
| 3020 | } |
| 3021 | break; |
| 3022 | #endif //TPM_ALG_ECC |
| 3023 | default: |
| 3024 | // Symmetric object common checks |
| 3025 | // There is noting to check with a symmetric key that is public only. |
| 3026 | // Also not sure that there is anything useful to be done with it |
| 3027 | // either. |
| 3028 | break; |
| 3029 | } |
| 3030 | return OK; |
| 3031 | } |
| 3032 | // |
| 3033 | // |
| 3034 | // |
| 3035 | // 10.2.9.14 CryptObjectPublicPrivateMatch() |
| 3036 | // |
| 3037 | // This function checks the cryptographic binding between the public and sensitive areas. |
| 3038 | // |
| 3039 | // Error Returns Meaning |
| 3040 | // |
| 3041 | // TPM_RC_TYPE the type of the public and private areas are not the same |
| 3042 | // TPM_RC_FAILURE crypto error |
| 3043 | // TPM_RC_BINDING the public and private areas are not cryptographically matched. |
| 3044 | // |
| 3045 | TPM_RC |
| 3046 | CryptObjectPublicPrivateMatch( |
| 3047 | OBJECT *object // IN: the object to check |
| 3048 | ) |
| 3049 | { |
| 3050 | TPMT_PUBLIC *publicArea; |
| 3051 | TPMT_SENSITIVE *sensitive; |
| 3052 | TPM_RC result = TPM_RC_SUCCESS; |
| 3053 | BOOL isAsymmetric = FALSE; |
| 3054 | pAssert(object != NULL); |
| 3055 | publicArea = &object->publicArea; |
| 3056 | sensitive = &object->sensitive; |
| 3057 | if(publicArea->type != sensitive->sensitiveType) |
| 3058 | return TPM_RC_TYPE; |
| 3059 | switch(publicArea->type) |
| 3060 | { |
| 3061 | #ifdef TPM_ALG_RSA |
| 3062 | case TPM_ALG_RSA: |
| 3063 | isAsymmetric = TRUE; |
| 3064 | // The public and private key sizes need to be consistent |
| 3065 | if(sensitive->sensitive.rsa.t.size != publicArea->unique.rsa.t.size/2) |
| 3066 | result = TPM_RC_BINDING; |
| 3067 | else |
| 3068 | // Load key by computing the private exponent |
| 3069 | result = CryptLoadPrivateRSA(object); |
| 3070 | break; |
| 3071 | #endif |
| 3072 | #ifdef TPM_ALG_ECC |
| 3073 | // This function is called from ObjectLoad() which has already checked to |
| 3074 | // see that the public point is on the curve so no need to repeat that |
| 3075 | // check. |
| 3076 | case TPM_ALG_ECC: |
| 3077 | isAsymmetric = TRUE; |
| 3078 | if( publicArea->unique.ecc.x.t.size |
| 3079 | != sensitive->sensitive.ecc.t.size) |
| 3080 | result = TPM_RC_BINDING; |
| 3081 | else if(publicArea->nameAlg != TPM_ALG_NULL) |
| 3082 | { |
| 3083 | TPMS_ECC_POINT publicToCompare; |
| 3084 | // Compute ECC public key |
| 3085 | CryptEccPointMultiply(&publicToCompare, |
| 3086 | publicArea->parameters.eccDetail.curveID, |
| 3087 | &sensitive->sensitive.ecc, NULL); |
| 3088 | // Compare ECC public key |
| 3089 | if( (!Memory2BEqual(&publicArea->unique.ecc.x.b, |
| 3090 | &publicToCompare.x.b)) |
| 3091 | || (!Memory2BEqual(&publicArea->unique.ecc.y.b, |
| 3092 | &publicToCompare.y.b))) |
| 3093 | result = TPM_RC_BINDING; |
| 3094 | } |
| 3095 | break; |
| 3096 | // |
| 3097 | #endif |
| 3098 | case TPM_ALG_KEYEDHASH: |
| 3099 | break; |
| 3100 | case TPM_ALG_SYMCIPHER: |
Vadim Bendebury | c00055c | 2015-05-29 22:50:18 -0700 | [diff] [blame] | 3101 | if( (publicArea->parameters.symDetail.keyBits.sym + 7)/8 |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 3102 | != sensitive->sensitive.sym.t.size) |
| 3103 | result = TPM_RC_BINDING; |
| 3104 | break; |
| 3105 | default: |
| 3106 | // The choice here is an assert or a return of a bad type for the object |
| 3107 | pAssert(0); |
| 3108 | break; |
| 3109 | } |
| 3110 | // For asymmetric keys, the algorithm for validating the linkage between |
| 3111 | // the public and private areas is algorithm dependent. For symmetric keys |
| 3112 | // the linkage is based on hashing the symKey and obfuscation values. |
| 3113 | if( result == TPM_RC_SUCCESS && !isAsymmetric |
| 3114 | && publicArea->nameAlg != TPM_ALG_NULL) |
| 3115 | { |
| 3116 | TPM2B_DIGEST uniqueToCompare; |
| 3117 | // Compute unique for symmetric key |
| 3118 | CryptComputeSymmetricUnique(publicArea->nameAlg, sensitive, |
| 3119 | &uniqueToCompare); |
| 3120 | // Compare unique |
| 3121 | if(!Memory2BEqual(&publicArea->unique.sym.b, |
| 3122 | &uniqueToCompare.b)) |
| 3123 | result = TPM_RC_BINDING; |
| 3124 | } |
| 3125 | return result; |
| 3126 | } |
| 3127 | // |
| 3128 | // |
| 3129 | // 10.2.9.15 CryptGetSignHashAlg() |
| 3130 | // |
| 3131 | // Get the hash algorithm of signature from a TPMT_SIGNATURE structure. It assumes the signature is not |
| 3132 | // NULL This is a function for easy access |
| 3133 | // |
| 3134 | TPMI_ALG_HASH |
| 3135 | CryptGetSignHashAlg( |
| 3136 | TPMT_SIGNATURE *auth // IN: signature |
| 3137 | ) |
| 3138 | { |
| 3139 | pAssert(auth->sigAlg != TPM_ALG_NULL); |
| 3140 | // Get authHash algorithm based on signing scheme |
| 3141 | switch(auth->sigAlg) |
| 3142 | { |
| 3143 | #ifdef TPM_ALG_RSA |
| 3144 | case TPM_ALG_RSASSA: |
| 3145 | return auth->signature.rsassa.hash; |
| 3146 | case TPM_ALG_RSAPSS: |
| 3147 | return auth->signature.rsapss.hash; |
| 3148 | #endif //TPM_ALG_RSA |
| 3149 | #ifdef TPM_ALG_ECC |
| 3150 | case TPM_ALG_ECDSA: |
| 3151 | return auth->signature.ecdsa.hash; |
| 3152 | #endif //TPM_ALG_ECC |
| 3153 | case TPM_ALG_HMAC: |
| 3154 | return auth->signature.hmac.hashAlg; |
| 3155 | default: |
| 3156 | return TPM_ALG_NULL; |
| 3157 | } |
| 3158 | } |
| 3159 | // |
| 3160 | // |
| 3161 | // 10.2.9.16 CryptIsSplitSign() |
| 3162 | // |
| 3163 | // This function us used to determine if the signing operation is a split signing operation that required a |
| 3164 | // TPM2_Commit(). |
| 3165 | // |
| 3166 | BOOL |
| 3167 | CryptIsSplitSign( |
| 3168 | TPM_ALG_ID scheme // IN: the algorithm selector |
| 3169 | ) |
| 3170 | { |
| 3171 | if( scheme != scheme |
| 3172 | # ifdef TPM_ALG_ECDAA |
| 3173 | || scheme == TPM_ALG_ECDAA |
| 3174 | # endif // TPM_ALG_ECDAA |
| 3175 | ) |
| 3176 | return TRUE; |
| 3177 | return FALSE; |
| 3178 | } |
| 3179 | // |
| 3180 | // |
| 3181 | // 10.2.9.17 CryptIsSignScheme() |
| 3182 | // |
| 3183 | // This function indicates if a scheme algorithm is a sign algorithm. |
| 3184 | // |
| 3185 | BOOL |
| 3186 | CryptIsSignScheme( |
| 3187 | TPMI_ALG_ASYM_SCHEME scheme |
| 3188 | ) |
| 3189 | { |
| 3190 | BOOL isSignScheme = FALSE; |
| 3191 | switch(scheme) |
| 3192 | { |
| 3193 | #ifdef TPM_ALG_RSA |
| 3194 | // If RSA is implemented, then both signing schemes are required |
| 3195 | case TPM_ALG_RSASSA: |
| 3196 | case TPM_ALG_RSAPSS: |
| 3197 | isSignScheme = TRUE; |
| 3198 | break; |
| 3199 | #endif //TPM_ALG_RSA |
| 3200 | #ifdef TPM_ALG_ECC |
| 3201 | // If ECC is implemented ECDSA is required |
| 3202 | case TPM_ALG_ECDSA: |
| 3203 | #ifdef TPM_ALG_ECDAA |
| 3204 | // ECDAA is optional |
| 3205 | case TPM_ALG_ECDAA: |
| 3206 | #endif |
| 3207 | #ifdef TPM_ALG_ECSCHNORR |
| 3208 | // Schnorr is also optional |
| 3209 | case TPM_ALG_ECSCHNORR: |
| 3210 | #endif |
| 3211 | #ifdef TPM_ALG_SM2 |
| 3212 | case TPM_ALG_SM2: |
| 3213 | #endif |
| 3214 | isSignScheme = TRUE; |
| 3215 | break; |
| 3216 | #endif //TPM_ALG_ECC |
| 3217 | default: |
| 3218 | break; |
| 3219 | } |
| 3220 | return isSignScheme; |
| 3221 | } |
| 3222 | // |
| 3223 | // |
| 3224 | // 10.2.9.18 CryptIsDecryptScheme() |
| 3225 | // |
| 3226 | // This function indicate if a scheme algorithm is a decrypt algorithm. |
| 3227 | // |
| 3228 | BOOL |
| 3229 | CryptIsDecryptScheme( |
| 3230 | TPMI_ALG_ASYM_SCHEME scheme |
| 3231 | ) |
| 3232 | { |
| 3233 | BOOL isDecryptScheme = FALSE; |
| 3234 | switch(scheme) |
| 3235 | { |
| 3236 | #ifdef TPM_ALG_RSA |
| 3237 | // If RSA is implemented, then both decrypt schemes are required |
| 3238 | case TPM_ALG_RSAES: |
| 3239 | case TPM_ALG_OAEP: |
| 3240 | isDecryptScheme = TRUE; |
| 3241 | break; |
| 3242 | #endif //TPM_ALG_RSA |
| 3243 | #ifdef TPM_ALG_ECC |
| 3244 | // If ECC is implemented ECDH is required |
| 3245 | case TPM_ALG_ECDH: |
| 3246 | #ifdef TPM_ALG_SM2 |
| 3247 | case TPM_ALG_SM2: |
| 3248 | #endif |
| 3249 | #ifdef TPM_ALG_ECMQV |
| 3250 | case TPM_ALG_ECMQV: |
| 3251 | #endif |
| 3252 | isDecryptScheme = TRUE; |
| 3253 | break; |
| 3254 | #endif //TPM_ALG_ECC |
| 3255 | default: |
| 3256 | break; |
| 3257 | } |
| 3258 | return isDecryptScheme; |
| 3259 | } |
| 3260 | // |
| 3261 | // |
| 3262 | // 10.2.9.19 CryptSelectSignScheme() |
| 3263 | // |
| 3264 | // This function is used by the attestation and signing commands. It implements the rules for selecting the |
| 3265 | // signature scheme to use in signing. This function requires that the signing key either be TPM_RH_NULL |
| 3266 | // or be loaded. |
| 3267 | // If a default scheme is defined in object, the default scheme should be chosen, otherwise, the input |
| 3268 | // scheme should be chosen. In the case that both object and input scheme has a non-NULL scheme |
| 3269 | // algorithm, if the schemes are compatible, the input scheme will be chosen. |
| 3270 | // |
| 3271 | // |
| 3272 | // |
| 3273 | // |
| 3274 | // Error Returns Meaning |
| 3275 | // |
| 3276 | // TPM_RC_KEY key referenced by signHandle is not a signing key |
| 3277 | // TPM_RC_SCHEME both scheme and key's default scheme are empty; or scheme is |
| 3278 | // empty while key's default scheme requires explicit input scheme (split |
| 3279 | // signing); or non-empty default key scheme differs from scheme |
| 3280 | // |
| 3281 | TPM_RC |
| 3282 | CryptSelectSignScheme( |
| 3283 | TPMI_DH_OBJECT signHandle, // IN: handle of signing key |
| 3284 | TPMT_SIG_SCHEME *scheme // IN/OUT: signing scheme |
| 3285 | ) |
| 3286 | { |
| 3287 | OBJECT *signObject; |
| 3288 | TPMT_SIG_SCHEME *objectScheme; |
| 3289 | TPMT_PUBLIC *publicArea; |
| 3290 | TPM_RC result = TPM_RC_SUCCESS; |
| 3291 | // If the signHandle is TPM_RH_NULL, then the NULL scheme is used, regardless |
| 3292 | // of the setting of scheme |
| 3293 | if(signHandle == TPM_RH_NULL) |
| 3294 | { |
| 3295 | scheme->scheme = TPM_ALG_NULL; |
| 3296 | scheme->details.any.hashAlg = TPM_ALG_NULL; |
| 3297 | } |
| 3298 | else |
| 3299 | { |
| 3300 | // sign handle is not NULL so... |
| 3301 | // Get sign object pointer |
| 3302 | signObject = ObjectGet(signHandle); |
| 3303 | publicArea = &signObject->publicArea; |
| 3304 | // is this a signing key? |
| 3305 | if(!publicArea->objectAttributes.sign) |
| 3306 | result = TPM_RC_KEY; |
| 3307 | else |
| 3308 | { |
| 3309 | // "parms" defined to avoid long code lines. |
| 3310 | TPMU_PUBLIC_PARMS *parms = &publicArea->parameters; |
| 3311 | if(CryptIsAsymAlgorithm(publicArea->type)) |
| 3312 | objectScheme = (TPMT_SIG_SCHEME *)&parms->asymDetail.scheme; |
| 3313 | else |
| 3314 | objectScheme = (TPMT_SIG_SCHEME *)&parms->keyedHashDetail.scheme; |
| 3315 | // If the object doesn't have a default scheme, then use the |
| 3316 | // input scheme. |
| 3317 | if(objectScheme->scheme == TPM_ALG_NULL) |
| 3318 | { |
| 3319 | // Input and default can't both be NULL |
| 3320 | if(scheme->scheme == TPM_ALG_NULL) |
| 3321 | result = TPM_RC_SCHEME; |
| 3322 | // Assume that the scheme is compatible with the key. If not, |
| 3323 | // we will generate an error in the signing operation. |
| 3324 | } |
| 3325 | else if(scheme->scheme == TPM_ALG_NULL) |
| 3326 | { |
| 3327 | // input scheme is NULL so use default |
| 3328 | // First, check to see if the default requires that the caller |
| 3329 | // provided scheme data |
| 3330 | if(CryptIsSplitSign(objectScheme->scheme)) |
| 3331 | result = TPM_RC_SCHEME; |
| 3332 | else |
| 3333 | { |
| 3334 | scheme->scheme = objectScheme->scheme; |
| 3335 | scheme->details.any.hashAlg |
| 3336 | = objectScheme->details.any.hashAlg; |
| 3337 | } |
| 3338 | } |
| 3339 | else |
| 3340 | { |
| 3341 | // Both input and object have scheme selectors |
| 3342 | // If the scheme and the hash are not the same then... |
| 3343 | if( objectScheme->scheme != scheme->scheme |
| 3344 | || ( objectScheme->details.any.hashAlg |
| 3345 | != scheme->details.any.hashAlg)) |
| 3346 | result = TPM_RC_SCHEME; |
| 3347 | } |
| 3348 | } |
| 3349 | } |
| 3350 | return result; |
| 3351 | } |
| 3352 | // |
| 3353 | // |
| 3354 | // 10.2.9.20 CryptSign() |
| 3355 | // |
| 3356 | // Sign a digest with asymmetric key or HMAC. This function is called by attestation commands and the |
| 3357 | // generic TPM2_Sign() command. This function checks the key scheme and digest size. It does not check |
| 3358 | // if the sign operation is allowed for restricted key. It should be checked before the function is called. The |
| 3359 | // function will assert if the key is not a signing key. |
| 3360 | // |
| 3361 | // Error Returns Meaning |
| 3362 | // |
| 3363 | // TPM_RC_SCHEME signScheme is not compatible with the signing key type |
| 3364 | // TPM_RC_VALUE digest value is greater than the modulus of signHandle or size of |
| 3365 | // hashData does not match hash algorithm insignScheme (for an RSA |
| 3366 | // key); invalid commit status or failed to generate r value (for an ECC |
| 3367 | // key) |
| 3368 | // |
| 3369 | TPM_RC |
| 3370 | CryptSign( |
| 3371 | TPMI_DH_OBJECT signHandle, // IN: The handle of sign key |
| 3372 | TPMT_SIG_SCHEME *signScheme, // IN: sign scheme. |
| 3373 | TPM2B_DIGEST *digest, // IN: The digest being signed |
| 3374 | TPMT_SIGNATURE *signature // OUT: signature |
| 3375 | ) |
| 3376 | { |
| 3377 | OBJECT *signKey = ObjectGet(signHandle); |
| 3378 | TPM_RC result = TPM_RC_SCHEME; |
| 3379 | // check if input handle is a sign key |
| 3380 | pAssert(signKey->publicArea.objectAttributes.sign == SET); |
| 3381 | // Must have the private portion loaded. This check is made during |
| 3382 | // authorization. |
| 3383 | pAssert(signKey->attributes.publicOnly == CLEAR); |
| 3384 | // Initialize signature scheme |
| 3385 | signature->sigAlg = signScheme->scheme; |
| 3386 | // If the signature algorithm is TPM_ALG_NULL, then we are done |
| 3387 | if(signature->sigAlg == TPM_ALG_NULL) |
| 3388 | return TPM_RC_SUCCESS; |
| 3389 | // All the schemes other than TPM_ALG_NULL have a hash algorithm |
| 3390 | TEST_HASH(signScheme->details.any.hashAlg); |
| 3391 | // Initialize signature hash |
| 3392 | // Note: need to do the check for alg null first because the null scheme |
| 3393 | // doesn't have a hashAlg member. |
| 3394 | signature->signature.any.hashAlg = signScheme->details.any.hashAlg; |
| 3395 | // perform sign operation based on different key type |
| 3396 | switch (signKey->publicArea.type) |
| 3397 | { |
| 3398 | #ifdef TPM_ALG_RSA |
| 3399 | case TPM_ALG_RSA: |
| 3400 | result = CryptSignRSA(signKey, signScheme, digest, signature); |
| 3401 | break; |
| 3402 | #endif //TPM_ALG_RSA |
| 3403 | #ifdef TPM_ALG_ECC |
| 3404 | case TPM_ALG_ECC: |
| 3405 | result = CryptSignECC(signKey, signScheme, digest, signature); |
| 3406 | break; |
| 3407 | #endif //TPM_ALG_ECC |
| 3408 | case TPM_ALG_KEYEDHASH: |
| 3409 | result = CryptSignHMAC(signKey, signScheme, digest, signature); |
| 3410 | break; |
| 3411 | default: |
| 3412 | break; |
| 3413 | } |
| 3414 | return result; |
| 3415 | } |
| 3416 | // |
| 3417 | // |
| 3418 | // 10.2.9.21 CryptVerifySignature() |
| 3419 | // |
| 3420 | // This function is used to verify a signature. It is called by TPM2_VerifySignature() and |
| 3421 | // TPM2_PolicySigned(). |
| 3422 | // Since this operation only requires use of a public key, no consistency checks are necessary for the key to |
| 3423 | // signature type because a caller can load any public key that they like with any scheme that they like. This |
| 3424 | // routine simply makes sure that the signature is correct, whatever the type. |
| 3425 | // This function requires that auth is not a NULL pointer. |
| 3426 | // |
| 3427 | // Error Returns Meaning |
| 3428 | // |
| 3429 | // TPM_RC_SIGNATURE the signature is not genuine |
| 3430 | // TPM_RC_SCHEME the scheme is not supported |
| 3431 | // TPM_RC_HANDLE an HMAC key was selected but the private part of the key is not |
| 3432 | // loaded |
| 3433 | // |
| 3434 | TPM_RC |
| 3435 | CryptVerifySignature( |
| 3436 | TPMI_DH_OBJECT keyHandle, // IN: The handle of sign key |
| 3437 | TPM2B_DIGEST *digest, // IN: The digest being validated |
| 3438 | TPMT_SIGNATURE *signature // IN: signature |
| 3439 | ) |
| 3440 | { |
| 3441 | // NOTE: ObjectGet will either return a pointer to a loaded object or |
| 3442 | // will assert. It will never return a non-valid value. This makes it save |
| 3443 | // to initialize 'publicArea' with the return value from ObjectGet() without |
| 3444 | // checking it first. |
| 3445 | OBJECT *authObject = ObjectGet(keyHandle); |
| 3446 | TPMT_PUBLIC *publicArea = &authObject->publicArea; |
| 3447 | TPM_RC result = TPM_RC_SCHEME; |
| 3448 | // The input unmarshaling should prevent any input signature from being |
| 3449 | // a NULL signature, but just in case |
| 3450 | if(signature->sigAlg == TPM_ALG_NULL) |
| 3451 | return TPM_RC_SIGNATURE; |
| 3452 | switch (publicArea->type) |
| 3453 | { |
| 3454 | #ifdef TPM_ALG_RSA |
| 3455 | case TPM_ALG_RSA: |
| 3456 | result = CryptRSAVerifySignature(authObject, digest, signature); |
| 3457 | break; |
| 3458 | #endif //TPM_ALG_RSA |
| 3459 | #ifdef TPM_ALG_ECC |
| 3460 | case TPM_ALG_ECC: |
| 3461 | result = CryptECCVerifySignature(authObject, digest, signature); |
| 3462 | break; |
| 3463 | #endif // TPM_ALG_ECC |
| 3464 | case TPM_ALG_KEYEDHASH: |
| 3465 | if(authObject->attributes.publicOnly) |
| 3466 | result = TPM_RCS_HANDLE; |
| 3467 | else |
| 3468 | result = CryptHMACVerifySignature(authObject, digest, signature); |
| 3469 | break; |
| 3470 | default: |
| 3471 | break; |
| 3472 | } |
| 3473 | return result; |
| 3474 | } |
| 3475 | // |
| 3476 | // |
| 3477 | // 10.2.10 Math functions |
| 3478 | // |
| 3479 | // 10.2.10.1 CryptDivide() |
| 3480 | // |
| 3481 | // This function interfaces to the math library for large number divide. |
| 3482 | // |
| 3483 | // Error Returns Meaning |
| 3484 | // |
| 3485 | // TPM_RC_SIZE quotient or remainder is too small to receive the result |
| 3486 | // |
| 3487 | TPM_RC |
| 3488 | CryptDivide( |
| 3489 | TPM2B *numerator, // IN: numerator |
| 3490 | TPM2B *denominator, // IN: denominator |
| 3491 | TPM2B *quotient, // OUT: quotient = numerator / denominator. |
| 3492 | TPM2B *remainder // OUT: numerator mod denominator. |
| 3493 | ) |
| 3494 | { |
| 3495 | pAssert( numerator != NULL && denominator!= NULL |
| 3496 | && (quotient != NULL || remainder != NULL) |
| 3497 | ); |
| 3498 | // assume denominator is not 0 |
| 3499 | pAssert(denominator->size != 0); |
| 3500 | return TranslateCryptErrors(_math__Div(numerator, |
| 3501 | denominator, |
| 3502 | quotient, |
| 3503 | remainder) |
| 3504 | ); |
| 3505 | } |
| 3506 | // |
| 3507 | // |
| 3508 | // 10.2.10.2 CryptCompare() |
| 3509 | // |
| 3510 | // This function interfaces to the math library for large number, unsigned compare. |
| 3511 | // |
| 3512 | // Return Value Meaning |
| 3513 | // |
| 3514 | // 1 if a > b |
| 3515 | // 0 if a = b |
| 3516 | // -1 if a < b |
| 3517 | // |
| 3518 | LIB_EXPORT int |
| 3519 | CryptCompare( |
| 3520 | const UINT32 aSize, // IN: size of a |
| 3521 | const BYTE *a, // IN: a buffer |
| 3522 | const UINT32 bSize, // IN: size of b |
| 3523 | const BYTE *b // IN: b buffer |
| 3524 | ) |
| 3525 | { |
| 3526 | return _math__uComp(aSize, a, bSize, b); |
| 3527 | } |
| 3528 | // |
| 3529 | // |
| 3530 | // 10.2.10.3 CryptCompareSigned() |
| 3531 | // |
| 3532 | // This function interfaces to the math library for large number, signed compare. |
| 3533 | // |
| 3534 | // Return Value Meaning |
| 3535 | // |
| 3536 | // 1 if a > b |
| 3537 | // 0 if a = b |
| 3538 | // -1 if a < b |
| 3539 | // |
| 3540 | int |
| 3541 | CryptCompareSigned( |
| 3542 | UINT32 aSize, // IN: size of a |
| 3543 | BYTE *a, // IN: a buffer |
| 3544 | UINT32 bSize, // IN: size of b |
| 3545 | BYTE *b // IN: b buffer |
| 3546 | ) |
| 3547 | { |
| 3548 | return _math__Comp(aSize, a, bSize, b); |
| 3549 | } |
| 3550 | // |
| 3551 | // |
| 3552 | // 10.2.10.4 CryptGetTestResult |
| 3553 | // |
| 3554 | // This function returns the results of a self-test function. |
| 3555 | // |
| 3556 | // NOTE: the behavior in this function is NOT the correct behavior for a real TPM implementation. An artificial behavior is |
| 3557 | // placed here due to the limitation of a software simulation environment. For the correct behavior, consult the |
| 3558 | // part 3 specification for TPM2_GetTestResult(). |
| 3559 | // |
| 3560 | TPM_RC |
| 3561 | CryptGetTestResult( |
| 3562 | TPM2B_MAX_BUFFER *outData // OUT: test result data |
| 3563 | ) |
| 3564 | { |
| 3565 | outData->t.size = 0; |
| 3566 | return TPM_RC_SUCCESS; |
| 3567 | } |
| 3568 | // |
| 3569 | // |
| 3570 | // 10.2.11 Capability Support |
| 3571 | // |
| 3572 | // 10.2.11.1 CryptCapGetECCCurve() |
| 3573 | // |
| 3574 | // This function returns the list of implemented ECC curves. |
| 3575 | // |
| 3576 | // Return Value Meaning |
| 3577 | // |
| 3578 | // YES if no more ECC curve is available |
| 3579 | // NO if there are more ECC curves not reported |
| 3580 | // |
| 3581 | #ifdef TPM_ALG_ECC //% 5 |
| 3582 | TPMI_YES_NO |
| 3583 | CryptCapGetECCCurve( |
| 3584 | TPM_ECC_CURVE curveID, // IN: the starting ECC curve |
| 3585 | UINT32 maxCount, // IN: count of returned curve |
| 3586 | TPML_ECC_CURVE *curveList // OUT: ECC curve list |
| 3587 | ) |
| 3588 | { |
| 3589 | TPMI_YES_NO more = NO; |
| 3590 | UINT16 i; |
| 3591 | UINT32 count = _cpri__EccGetCurveCount(); |
| 3592 | TPM_ECC_CURVE curve; |
| 3593 | // Initialize output property list |
| 3594 | curveList->count = 0; |
| 3595 | // The maximum count of curves we may return is MAX_ECC_CURVES |
| 3596 | if(maxCount > MAX_ECC_CURVES) maxCount = MAX_ECC_CURVES; |
| 3597 | // Scan the eccCurveValues array |
| 3598 | for(i = 0; i < count; i++) |
| 3599 | { |
| 3600 | curve = _cpri__GetCurveIdByIndex(i); |
| 3601 | // If curveID is less than the starting curveID, skip it |
| 3602 | if(curve < curveID) |
| 3603 | continue; |
| 3604 | if(curveList->count < maxCount) |
| 3605 | { |
| 3606 | // If we have not filled up the return list, add more curves to |
| 3607 | // it |
| 3608 | curveList->eccCurves[curveList->count] = curve; |
| 3609 | curveList->count++; |
| 3610 | } |
| 3611 | else |
| 3612 | { |
| 3613 | // If the return list is full but we still have curves |
| 3614 | // available, report this and stop iterating |
| 3615 | more = YES; |
| 3616 | break; |
| 3617 | } |
| 3618 | } |
| 3619 | return more; |
| 3620 | } |
| 3621 | // |
| 3622 | // |
| 3623 | // 10.2.11.2 CryptCapGetEccCurveNumber() |
| 3624 | // |
| 3625 | // This function returns the number of ECC curves supported by the TPM. |
| 3626 | // |
| 3627 | UINT32 |
| 3628 | CryptCapGetEccCurveNumber( |
| 3629 | void |
| 3630 | ) |
| 3631 | { |
| 3632 | // There is an array that holds the curve data. Its size divided by the |
| 3633 | // size of an entry is the number of values in the table. |
| 3634 | return _cpri__EccGetCurveCount(); |
| 3635 | } |
| 3636 | #endif //TPM_ALG_ECC //% 5 |
| 3637 | // |
| 3638 | // |
| 3639 | // 10.2.11.3 CryptAreKeySizesConsistent() |
| 3640 | // |
| 3641 | // This function validates that the public key size values are consistent for an asymmetric key. |
| 3642 | // |
| 3643 | // NOTE: This is not a comprehensive test of the public key. |
| 3644 | // |
| 3645 | // |
| 3646 | // Return Value Meaning |
| 3647 | // |
| 3648 | // TRUE sizes are consistent |
| 3649 | // FALSE sizes are not consistent |
| 3650 | // |
| 3651 | BOOL |
| 3652 | CryptAreKeySizesConsistent( |
| 3653 | TPMT_PUBLIC *publicArea // IN: the public area to check |
| 3654 | ) |
| 3655 | { |
| 3656 | BOOL consistent = FALSE; |
| 3657 | switch (publicArea->type) |
| 3658 | { |
| 3659 | #ifdef TPM_ALG_RSA |
| 3660 | case TPM_ALG_RSA: |
| 3661 | // The key size in bits is filtered by the unmarshaling |
| 3662 | consistent = ( ((publicArea->parameters.rsaDetail.keyBits+7)/8) |
| 3663 | == publicArea->unique.rsa.t.size); |
| 3664 | break; |
| 3665 | #endif //TPM_ALG_RSA |
| 3666 | #ifdef TPM_ALG_ECC |
| 3667 | case TPM_ALG_ECC: |
| 3668 | { |
| 3669 | UINT16 keySizeInBytes; |
| 3670 | TPM_ECC_CURVE curveId = publicArea->parameters.eccDetail.curveID; |
| 3671 | keySizeInBytes = CryptEccGetKeySizeInBytes(curveId); |
| 3672 | consistent = keySizeInBytes > 0 |
| 3673 | && publicArea->unique.ecc.x.t.size <= keySizeInBytes |
| 3674 | && publicArea->unique.ecc.y.t.size <= keySizeInBytes; |
| 3675 | } |
| 3676 | break; |
| 3677 | #endif //TPM_ALG_ECC |
| 3678 | default: |
| 3679 | break; |
| 3680 | } |
| 3681 | return consistent; |
| 3682 | } |
| 3683 | // |
| 3684 | // |
| 3685 | // 10.2.11.4 CryptAlgSetImplemented() |
| 3686 | // |
| 3687 | // This function initializes the bit vector with one bit for each implemented algorithm. This function is called |
| 3688 | // from _TPM_Init(). The vector of implemented algorithms should be generated by the part 2 parser so that |
| 3689 | // the g_implementedAlgorithms vector can be a const. That's not how it is now |
| 3690 | // |
| 3691 | void |
| 3692 | CryptAlgsSetImplemented( |
| 3693 | void |
| 3694 | ) |
| 3695 | { |
| 3696 | AlgorithmGetImplementedVector(&g_implementedAlgorithms); |
| 3697 | } |