Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1 | // This file was extracted from the TCG Published |
| 2 | // Trusted Platform Module Library |
| 3 | // Part 4: Supporting Routines |
| 4 | // Family "2.0" |
| 5 | // Level 00 Revision 01.16 |
| 6 | // October 30, 2014 |
| 7 | |
Vadim Bendebury | 7c2f61d | 2015-05-31 15:58:25 -0700 | [diff] [blame] | 8 | #include <string.h> |
| 9 | |
nagendra modadugu | 24f8b19 | 2016-03-07 20:59:23 -0800 | [diff] [blame] | 10 | #include "CryptoEngine.h" |
| 11 | |
| 12 | #ifndef EMBEDDED_MODE |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 13 | #include "OsslCryptoEngine.h" |
| 14 | // |
| 15 | // |
| 16 | // Externally Accessible Functions |
| 17 | // |
| 18 | // _math__Normalize2B() |
| 19 | // |
| 20 | // This function will normalize the value in a TPM2B. If there are leading bytes of zero, the first non-zero |
| 21 | // byte is shifted up. |
| 22 | // |
| 23 | // Return Value Meaning |
| 24 | // |
| 25 | // 0 no significant bytes, value is zero |
| 26 | // >0 number of significant bytes |
| 27 | // |
| 28 | LIB_EXPORT UINT16 |
| 29 | _math__Normalize2B( |
| 30 | TPM2B *b // IN/OUT: number to normalize |
| 31 | ) |
| 32 | { |
| 33 | UINT16 from; |
| 34 | UINT16 to; |
| 35 | UINT16 size = b->size; |
| 36 | for(from = 0; b->buffer[from] == 0 && from < size; from++); |
| 37 | b->size -= from; |
| 38 | for(to = 0; from < size; to++, from++ ) |
| 39 | b->buffer[to] = b->buffer[from]; |
| 40 | return b->size; |
| 41 | } |
| 42 | // |
| 43 | // |
| 44 | // |
| 45 | // _math__Denormalize2B() |
| 46 | // |
| 47 | // This function is used to adjust a TPM2B so that the number has the desired number of bytes. This is |
| 48 | // accomplished by adding bytes of zero at the start of the number. |
| 49 | // |
| 50 | // Return Value Meaning |
| 51 | // |
| 52 | // TRUE number de-normalized |
| 53 | // FALSE number already larger than the desired size |
| 54 | // |
| 55 | LIB_EXPORT BOOL |
| 56 | _math__Denormalize2B( |
| 57 | TPM2B *in, // IN:OUT TPM2B number to de-normalize |
| 58 | UINT32 size // IN: the desired size |
| 59 | ) |
| 60 | { |
| 61 | UINT32 to; |
| 62 | UINT32 from; |
| 63 | // If the current size is greater than the requested size, see if this can be |
| 64 | // normalized to a value smaller than the requested size and then de-normalize |
| 65 | if(in->size > size) |
| 66 | { |
| 67 | _math__Normalize2B(in); |
| 68 | if(in->size > size) |
| 69 | return FALSE; |
| 70 | } |
| 71 | // If the size is already what is requested, leave |
| 72 | if(in->size == size) |
| 73 | return TRUE; |
| 74 | // move the bytes to the 'right' |
| 75 | for(from = in->size, to = size; from > 0;) |
| 76 | in->buffer[--to] = in->buffer[--from]; |
| 77 | // 'to' will always be greater than 0 because we checked for equal above. |
| 78 | for(; to > 0;) |
| 79 | in->buffer[--to] = 0; |
| 80 | in->size = (UINT16)size; |
| 81 | return TRUE; |
| 82 | } |
| 83 | // |
| 84 | // |
| 85 | // _math__sub() |
| 86 | // |
| 87 | // This function to subtract one unsigned value from another c = a - b. c may be the same as a or b. |
| 88 | // |
| 89 | // Return Value Meaning |
| 90 | // |
| 91 | // 1 if (a > b) so no borrow |
| 92 | // 0 if (a = b) so no borrow and b == a |
| 93 | // -1 if (a < b) so there was a borrow |
| 94 | // |
| 95 | LIB_EXPORT int |
| 96 | _math__sub( |
| 97 | const UINT32 aSize, // IN: size of a |
| 98 | const BYTE *a, // IN: a |
| 99 | const UINT32 bSize, // IN: size of b |
| 100 | const BYTE *b, // IN: b |
| 101 | UINT16 *cSize, // OUT: set to MAX(aSize, bSize) |
| 102 | BYTE *c // OUT: the difference |
| 103 | ) |
| 104 | { |
| 105 | int borrow = 0; |
| 106 | int notZero = 0; |
| 107 | int i; |
| 108 | int i2; |
| 109 | // set c to the longer of a or b |
| 110 | *cSize = (UINT16)((aSize > bSize) ? aSize : bSize); |
| 111 | // pick the shorter of a and b |
| 112 | i = (aSize > bSize) ? bSize : aSize; |
| 113 | i2 = *cSize - i; |
| 114 | a = &a[aSize - 1]; |
| 115 | b = &b[bSize - 1]; |
| 116 | c = &c[*cSize - 1]; |
| 117 | for(; i > 0; i--) |
| 118 | { |
| 119 | borrow = *a-- - *b-- + borrow; |
| 120 | *c-- = (BYTE)borrow; |
| 121 | notZero = notZero || borrow; |
| 122 | borrow >>= 8; |
| 123 | } |
| 124 | if(aSize > bSize) |
| 125 | { |
| 126 | for(;i2 > 0; i2--) |
| 127 | { |
| 128 | borrow = *a-- + borrow; |
| 129 | *c-- = (BYTE)borrow; |
| 130 | notZero = notZero || borrow; |
| 131 | borrow >>= 8; |
| 132 | } |
| 133 | } |
| 134 | else if(aSize < bSize) |
| 135 | { |
| 136 | for(;i2 > 0; i2--) |
| 137 | { |
| 138 | borrow = 0 - *b-- + borrow; |
| 139 | *c-- = (BYTE)borrow; |
| 140 | notZero = notZero || borrow; |
| 141 | borrow >>= 8; |
| 142 | } |
| 143 | } |
| 144 | // if there is a borrow, then b > a |
| 145 | if(borrow) |
| 146 | return -1; |
| 147 | // either a > b or they are the same |
| 148 | return notZero; |
| 149 | } |
| 150 | // |
| 151 | // |
| 152 | // _math__Inc() |
| 153 | // |
| 154 | // This function increments a large, big-endian number value by one. |
| 155 | // |
| 156 | // Return Value Meaning |
| 157 | // |
| 158 | // 0 result is zero |
| 159 | // !0 result is not zero |
| 160 | // |
| 161 | LIB_EXPORT int |
| 162 | _math__Inc( |
| 163 | UINT32 aSize, // IN: size of a |
| 164 | BYTE *a // IN: a |
| 165 | ) |
| 166 | { |
| 167 | // |
| 168 | for(a = &a[aSize-1];aSize > 0; aSize--) |
| 169 | { |
| 170 | if((*a-- += 1) != 0) |
| 171 | return 1; |
| 172 | } |
| 173 | return 0; |
| 174 | } |
| 175 | // |
| 176 | // |
| 177 | // _math__Dec() |
| 178 | // |
| 179 | // This function decrements a large, ENDIAN value by one. |
| 180 | // |
| 181 | LIB_EXPORT void |
| 182 | _math__Dec( |
| 183 | UINT32 aSize, // IN: size of a |
| 184 | BYTE *a // IN: a |
| 185 | ) |
| 186 | { |
| 187 | for(a = &a[aSize-1]; aSize > 0; aSize--) |
| 188 | { |
| 189 | if((*a-- -= 1) != 0xff) |
| 190 | return; |
| 191 | } |
| 192 | return; |
| 193 | } |
| 194 | // |
| 195 | // |
| 196 | // _math__Mul() |
| 197 | // |
| 198 | // This function is used to multiply two large integers: p = a* b. If the size of p is not specified (pSize == |
| 199 | // NULL), the size of the results p is assumed to be aSize + bSize and the results are de-normalized so that |
| 200 | // the resulting size is exactly aSize + bSize. If pSize is provided, then the actual size of the result is |
| 201 | // returned. The initial value for pSize must be at least aSize + pSize. |
| 202 | // |
| 203 | // Return Value Meaning |
| 204 | // |
| 205 | // <0 indicates an error |
| 206 | // >= 0 the size of the product |
| 207 | // |
| 208 | LIB_EXPORT int |
| 209 | _math__Mul( |
| 210 | const UINT32 aSize, // IN: size of a |
| 211 | const BYTE *a, // IN: a |
| 212 | const UINT32 bSize, // IN: size of b |
| 213 | const BYTE *b, // IN: b |
| 214 | UINT32 *pSize, // IN/OUT: size of the product |
| 215 | BYTE *p // OUT: product. length of product = aSize + |
| 216 | // bSize |
| 217 | ) |
| 218 | { |
| 219 | BIGNUM *bnA; |
| 220 | BIGNUM *bnB; |
| 221 | BIGNUM *bnP; |
| 222 | BN_CTX *context; |
| 223 | int retVal = 0; |
| 224 | // First check that pSize is large enough if present |
| 225 | if((pSize != NULL) && (*pSize < (aSize + bSize))) |
| 226 | return CRYPT_PARAMETER; |
| 227 | pAssert(pSize == NULL || *pSize <= MAX_2B_BYTES); |
| 228 | // |
| 229 | // |
| 230 | // Allocate space for BIGNUM context |
| 231 | // |
| 232 | context = BN_CTX_new(); |
| 233 | if(context == NULL) |
| 234 | FAIL(FATAL_ERROR_ALLOCATION); |
| 235 | bnA = BN_CTX_get(context); |
| 236 | bnB = BN_CTX_get(context); |
| 237 | bnP = BN_CTX_get(context); |
| 238 | if (bnP == NULL) |
| 239 | FAIL(FATAL_ERROR_ALLOCATION); |
| 240 | // Convert the inputs to BIGNUMs |
| 241 | // |
| 242 | if (BN_bin2bn(a, aSize, bnA) == NULL || BN_bin2bn(b, bSize, bnB) == NULL) |
| 243 | FAIL(FATAL_ERROR_INTERNAL); |
| 244 | // Perform the multiplication |
| 245 | // |
| 246 | if (BN_mul(bnP, bnA, bnB, context) != 1) |
| 247 | FAIL(FATAL_ERROR_INTERNAL); |
| 248 | // If the size of the results is allowed to float, then set the return |
| 249 | // size. Otherwise, it might be necessary to de-normalize the results |
| 250 | retVal = BN_num_bytes(bnP); |
| 251 | if(pSize == NULL) |
| 252 | { |
| 253 | BN_bn2bin(bnP, &p[aSize + bSize - retVal]); |
| 254 | memset(p, 0, aSize + bSize - retVal); |
| 255 | retVal = aSize + bSize; |
| 256 | } |
| 257 | else |
| 258 | { |
| 259 | BN_bn2bin(bnP, p); |
| 260 | *pSize = retVal; |
| 261 | } |
| 262 | BN_CTX_end(context); |
| 263 | BN_CTX_free(context); |
| 264 | return retVal; |
| 265 | } |
| 266 | // |
| 267 | // |
| 268 | // _math__Div() |
| 269 | // |
| 270 | // Divide an integer (n) by an integer (d) producing a quotient (q) and a remainder (r). If q or r is not needed, |
| 271 | // then the pointer to them may be set to NULL. |
| 272 | // |
| 273 | // Return Value Meaning |
| 274 | // |
| 275 | // CRYPT_SUCCESS operation complete |
| 276 | // CRYPT_UNDERFLOW q or r is too small to receive the result |
| 277 | // |
| 278 | LIB_EXPORT CRYPT_RESULT |
| 279 | _math__Div( |
| 280 | const TPM2B *n, // IN: numerator |
| 281 | const TPM2B *d, // IN: denominator |
| 282 | TPM2B *q, // OUT: quotient |
| 283 | TPM2B *r // OUT: remainder |
| 284 | ) |
| 285 | { |
| 286 | BIGNUM *bnN; |
| 287 | BIGNUM *bnD; |
| 288 | BIGNUM *bnQ; |
| 289 | BIGNUM *bnR; |
| 290 | BN_CTX *context; |
| 291 | CRYPT_RESULT retVal = CRYPT_SUCCESS; |
| 292 | // Get structures for the big number representations |
| 293 | context = BN_CTX_new(); |
| 294 | if(context == NULL) |
| 295 | FAIL(FATAL_ERROR_ALLOCATION); |
| 296 | BN_CTX_start(context); |
| 297 | bnN = BN_CTX_get(context); |
| 298 | bnD = BN_CTX_get(context); |
| 299 | bnQ = BN_CTX_get(context); |
| 300 | bnR = BN_CTX_get(context); |
| 301 | // Errors in BN_CTX_get() are sticky so only need to check the last allocation |
| 302 | if ( bnR == NULL |
| 303 | || BN_bin2bn(n->buffer, n->size, bnN) == NULL |
| 304 | || BN_bin2bn(d->buffer, d->size, bnD) == NULL) |
| 305 | FAIL(FATAL_ERROR_INTERNAL); |
| 306 | // Check for divide by zero. |
| 307 | if(BN_num_bits(bnD) == 0) |
| 308 | FAIL(FATAL_ERROR_DIVIDE_ZERO); |
| 309 | // Perform the division |
| 310 | if (BN_div(bnQ, bnR, bnN, bnD, context) != 1) |
| 311 | FAIL(FATAL_ERROR_INTERNAL); |
| 312 | // Convert the BIGNUM result back to our format |
| 313 | if(q != NULL) // If the quotient is being returned |
| 314 | { |
| 315 | if(!BnTo2B(q, bnQ, q->size)) |
| 316 | { |
| 317 | retVal = CRYPT_UNDERFLOW; |
| 318 | goto Done; |
| 319 | } |
| 320 | } |
| 321 | if(r != NULL) // If the remainder is being returned |
| 322 | { |
| 323 | if(!BnTo2B(r, bnR, r->size)) |
| 324 | retVal = CRYPT_UNDERFLOW; |
| 325 | } |
| 326 | Done: |
| 327 | BN_CTX_end(context); |
| 328 | BN_CTX_free(context); |
| 329 | return retVal; |
| 330 | } |
nagendra modadugu | 24f8b19 | 2016-03-07 20:59:23 -0800 | [diff] [blame] | 331 | #endif // ! EMBEDDED_MODE |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 332 | // |
| 333 | // |
| 334 | // _math__uComp() |
| 335 | // |
| 336 | // This function compare two unsigned values. |
| 337 | // |
| 338 | // Return Value Meaning |
| 339 | // |
| 340 | // 1 if (a > b) |
| 341 | // 0 if (a = b) |
| 342 | // -1 if (a < b) |
| 343 | // |
| 344 | LIB_EXPORT int |
| 345 | _math__uComp( |
| 346 | const UINT32 aSize, // IN: size of a |
| 347 | const BYTE *a, // IN: a |
| 348 | const UINT32 bSize, // IN: size of b |
| 349 | const BYTE *b // IN: b |
| 350 | ) |
| 351 | { |
| 352 | int borrow = 0; |
| 353 | int notZero = 0; |
| 354 | int i; |
| 355 | // If a has more digits than b, then a is greater than b if |
| 356 | // any of the more significant bytes is non zero |
| 357 | if((i = (int)aSize - (int)bSize) > 0) |
| 358 | for(; i > 0; i--) |
| 359 | if(*a++) // means a > b |
| 360 | return 1; |
| 361 | // If b has more digits than a, then b is greater if any of the |
| 362 | // more significant bytes is non zero |
| 363 | if(i < 0) // Means that b is longer than a |
| 364 | for(; i < 0; i++) |
| 365 | if(*b++) // means that b > a |
| 366 | return -1; |
| 367 | // Either the vales are the same size or the upper bytes of a or b are |
| 368 | // all zero, so compare the rest |
| 369 | i = (aSize > bSize) ? bSize : aSize; |
| 370 | a = &a[i-1]; |
| 371 | b = &b[i-1]; |
| 372 | for(; i > 0; i--) |
| 373 | { |
| 374 | borrow = *a-- - *b-- + borrow; |
| 375 | notZero = notZero || borrow; |
| 376 | borrow >>= 8; |
| 377 | } |
| 378 | // if there is a borrow, then b > a |
| 379 | if(borrow) |
| 380 | return -1; |
| 381 | // either a > b or they are the same |
| 382 | return notZero; |
| 383 | } |
| 384 | // |
| 385 | // |
| 386 | // _math__Comp() |
| 387 | // |
| 388 | // Compare two signed integers: |
| 389 | // |
| 390 | // Return Value Meaning |
| 391 | // |
| 392 | // 1 if a > b |
| 393 | // 0 if a = b |
| 394 | // -1 if a < b |
| 395 | // |
| 396 | LIB_EXPORT int |
| 397 | _math__Comp( |
| 398 | const UINT32 aSize, // IN: size of a |
| 399 | const BYTE *a, // IN: a buffer |
| 400 | const UINT32 bSize, // IN: size of b |
| 401 | const BYTE *b // IN: b buffer |
| 402 | ) |
| 403 | { |
| 404 | int signA, signB; // sign of a and b |
| 405 | // For positive or 0, sign_a is 1 |
| 406 | // for negative, sign_a is 0 |
| 407 | signA = ((a[0] & 0x80) == 0) ? 1 : 0; |
| 408 | // For positive or 0, sign_b is 1 |
| 409 | // for negative, sign_b is 0 |
| 410 | signB = ((b[0] & 0x80) == 0) ? 1 : 0; |
| 411 | if(signA != signB) |
| 412 | { |
| 413 | return signA - signB; |
| 414 | } |
| 415 | if(signA == 1) |
| 416 | // do unsigned compare function |
| 417 | return _math__uComp(aSize, a, bSize, b); |
| 418 | else |
| 419 | // do unsigned compare the other way |
| 420 | return 0 - _math__uComp(aSize, a, bSize, b); |
| 421 | } |
| 422 | // |
| 423 | // |
| 424 | // _math__ModExp |
| 425 | // |
| 426 | // This function is used to do modular exponentiation in support of RSA. The most typical uses are: c = m^e |
| 427 | // mod n (RSA encrypt) and m = c^d mod n (RSA decrypt). When doing decryption, the e parameter of the |
| 428 | // function will contain the private exponent d instead of the public exponent e. |
| 429 | // If the results will not fit in the provided buffer, an error is returned (CRYPT_ERROR_UNDERFLOW). If |
| 430 | // the results is smaller than the buffer, the results is de-normalized. |
| 431 | // This version is intended for use with RSA and requires that m be less than n. |
| 432 | // |
| 433 | // Return Value Meaning |
| 434 | // |
| 435 | // CRYPT_SUCCESS exponentiation succeeded |
| 436 | // CRYPT_PARAMETER number to exponentiate is larger than the modulus |
| 437 | // CRYPT_UNDERFLOW result will not fit into the provided buffer |
| 438 | // |
nagendra modadugu | 24f8b19 | 2016-03-07 20:59:23 -0800 | [diff] [blame] | 439 | #ifndef EMBEDDED_MODE |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 440 | LIB_EXPORT CRYPT_RESULT |
| 441 | _math__ModExp( |
| 442 | UINT32 cSize, // IN: size of the result |
| 443 | BYTE *c, // OUT: results buffer |
| 444 | const UINT32 mSize, // IN: size of number to be exponentiated |
| 445 | const BYTE *m, // IN: number to be exponentiated |
| 446 | const UINT32 eSize, // IN: size of power |
| 447 | const BYTE *e, // IN: power |
| 448 | const UINT32 nSize, // IN: modulus size |
| 449 | const BYTE *n // IN: modulu |
| 450 | ) |
| 451 | { |
| 452 | CRYPT_RESULT retVal = CRYPT_SUCCESS; |
| 453 | BN_CTX *context; |
| 454 | BIGNUM *bnC; |
| 455 | BIGNUM *bnM; |
| 456 | BIGNUM *bnE; |
| 457 | BIGNUM *bnN; |
| 458 | INT32 i; |
| 459 | context = BN_CTX_new(); |
| 460 | if(context == NULL) |
| 461 | FAIL(FATAL_ERROR_ALLOCATION); |
| 462 | BN_CTX_start(context); |
| 463 | bnC = BN_CTX_get(context); |
| 464 | bnM = BN_CTX_get(context); |
| 465 | bnE = BN_CTX_get(context); |
| 466 | bnN = BN_CTX_get(context); |
| 467 | // Errors for BN_CTX_get are sticky so only need to check last allocation |
| 468 | if(bnN == NULL) |
| 469 | FAIL(FATAL_ERROR_ALLOCATION); |
| 470 | //convert arguments |
| 471 | if ( BN_bin2bn(m, mSize, bnM) == NULL |
| 472 | || BN_bin2bn(e, eSize, bnE) == NULL |
| 473 | || BN_bin2bn(n, nSize, bnN) == NULL) |
| 474 | FAIL(FATAL_ERROR_INTERNAL); |
| 475 | // Don't do exponentiation if the number being exponentiated is |
| 476 | // larger than the modulus. |
| 477 | if(BN_ucmp(bnM, bnN) >= 0) |
| 478 | { |
| 479 | retVal = CRYPT_PARAMETER; |
| 480 | goto Cleanup; |
| 481 | } |
| 482 | // Perform the exponentiation |
| 483 | if(!(BN_mod_exp(bnC, bnM, bnE, bnN, context))) |
| 484 | FAIL(FATAL_ERROR_INTERNAL); |
| 485 | // Convert the results |
| 486 | // Make sure that the results will fit in the provided buffer. |
| 487 | if((unsigned)BN_num_bytes(bnC) > cSize) |
| 488 | { |
| 489 | retVal = CRYPT_UNDERFLOW; |
| 490 | goto Cleanup; |
| 491 | } |
| 492 | i = cSize - BN_num_bytes(bnC); |
| 493 | BN_bn2bin(bnC, &c[i]); |
| 494 | memset(c, 0, i); |
| 495 | Cleanup: |
| 496 | // Free up allocated BN values |
| 497 | BN_CTX_end(context); |
| 498 | BN_CTX_free(context); |
| 499 | return retVal; |
| 500 | } |
| 501 | // |
| 502 | // |
| 503 | // _math__IsPrime() |
| 504 | // |
| 505 | // Check if an 32-bit integer is a prime. |
| 506 | // |
| 507 | // Return Value Meaning |
| 508 | // |
| 509 | // TRUE if the integer is probably a prime |
| 510 | // FALSE if the integer is definitely not a prime |
| 511 | // |
| 512 | LIB_EXPORT BOOL |
| 513 | _math__IsPrime( |
| 514 | const UINT32 prime |
| 515 | ) |
| 516 | { |
| 517 | int isPrime; |
| 518 | BIGNUM *p; |
| 519 | // Assume the size variables are not overflow, which should not happen in |
| 520 | // the contexts that this function will be called. |
| 521 | if((p = BN_new()) == NULL) |
| 522 | FAIL(FATAL_ERROR_ALLOCATION); |
| 523 | if(!BN_set_word(p, prime)) |
| 524 | FAIL(FATAL_ERROR_INTERNAL); |
| 525 | // |
| 526 | // BN_is_prime returning -1 means that it ran into an error. |
| 527 | // |
| 528 | // It should only return 0 or 1 |
| 529 | // |
| 530 | if((isPrime = BN_is_prime_ex(p, BN_prime_checks, NULL, NULL)) < 0) |
| 531 | FAIL(FATAL_ERROR_INTERNAL); |
| 532 | if(p != NULL) |
| 533 | BN_clear_free(p); |
| 534 | return (isPrime == 1); |
| 535 | } |
nagendra modadugu | 24f8b19 | 2016-03-07 20:59:23 -0800 | [diff] [blame] | 536 | #endif // ! EMBEDDED_MODE |