Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1 | // This file was extracted from the TCG Published |
| 2 | // Trusted Platform Module Library |
| 3 | // Part 4: Supporting Routines |
| 4 | // Family "2.0" |
| 5 | // Level 00 Revision 01.16 |
| 6 | // October 30, 2014 |
| 7 | |
Vadim Bendebury | 0a05071 | 2015-05-29 11:35:04 -0700 | [diff] [blame] | 8 | #include <string.h> |
| 9 | |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 10 | #include "OsslCryptoEngine.h" |
Vadim Bendebury | 0a05071 | 2015-05-29 11:35:04 -0700 | [diff] [blame] | 11 | |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 12 | #ifdef TPM_ALG_ECC |
| 13 | #include "CpriDataEcc.h" |
| 14 | #include "CpriDataEcc.c" |
| 15 | // |
| 16 | // |
| 17 | // Functions |
| 18 | // |
| 19 | // _cpri__EccStartup() |
| 20 | // |
| 21 | // This function is called at TPM Startup to initialize the crypto units. |
| 22 | // In this implementation, no initialization is performed at startup but a future version may initialize the self- |
| 23 | // test functions here. |
| 24 | // |
| 25 | LIB_EXPORT BOOL |
| 26 | _cpri__EccStartup( |
| 27 | void |
| 28 | ) |
| 29 | { |
| 30 | return TRUE; |
| 31 | } |
| 32 | // |
| 33 | // |
| 34 | // _cpri__GetCurveIdByIndex() |
| 35 | // |
| 36 | // This function returns the number of the i-th implemented curve. The normal use would be to call this |
| 37 | // function with i starting at 0. When the i is greater than or equal to the number of implemented curves, |
| 38 | // TPM_ECC_NONE is returned. |
| 39 | // |
| 40 | LIB_EXPORT TPM_ECC_CURVE |
| 41 | _cpri__GetCurveIdByIndex( |
| 42 | UINT16 i |
| 43 | ) |
| 44 | { |
| 45 | if(i >= ECC_CURVE_COUNT) |
| 46 | return TPM_ECC_NONE; |
| 47 | return eccCurves[i].curveId; |
| 48 | } |
| 49 | LIB_EXPORT UINT32 |
| 50 | _cpri__EccGetCurveCount( |
| 51 | void |
| 52 | ) |
| 53 | { |
| 54 | return ECC_CURVE_COUNT; |
| 55 | } |
| 56 | // |
| 57 | // |
| 58 | // _cpri__EccGetParametersByCurveId() |
| 59 | // |
| 60 | // This function returns a pointer to the curve data that is associated with the indicated curveId. If there is no |
| 61 | // curve with the indicated ID, the function returns NULL. |
| 62 | // |
| 63 | // |
| 64 | // |
| 65 | // |
| 66 | // Return Value Meaning |
| 67 | // |
| 68 | // NULL curve with the indicated TPM_ECC_CURVE value is not |
| 69 | // implemented |
| 70 | // non-NULL pointer to the curve data |
| 71 | // |
| 72 | LIB_EXPORT const ECC_CURVE * |
| 73 | _cpri__EccGetParametersByCurveId( |
| 74 | TPM_ECC_CURVE curveId // IN: the curveID |
| 75 | ) |
| 76 | { |
| 77 | int i; |
| 78 | for(i = 0; i < ECC_CURVE_COUNT; i++) |
| 79 | { |
| 80 | if(eccCurves[i].curveId == curveId) |
| 81 | return &eccCurves[i]; |
| 82 | } |
| 83 | FAIL(FATAL_ERROR_INTERNAL); |
Vadim Bendebury | 0a05071 | 2015-05-29 11:35:04 -0700 | [diff] [blame] | 84 | |
| 85 | return NULL; // Never reached. |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 86 | } |
| 87 | static const ECC_CURVE_DATA * |
| 88 | GetCurveData( |
| 89 | TPM_ECC_CURVE curveId // IN: the curveID |
| 90 | ) |
| 91 | { |
| 92 | const ECC_CURVE *curve = _cpri__EccGetParametersByCurveId(curveId); |
| 93 | return curve->curveData; |
| 94 | } |
| 95 | // |
| 96 | // |
| 97 | // Point2B() |
| 98 | // |
| 99 | // This function makes a TPMS_ECC_POINT from a BIGNUM EC_POINT. |
| 100 | // |
| 101 | static BOOL |
| 102 | Point2B( |
| 103 | EC_GROUP *group, // IN: group for the point |
| 104 | TPMS_ECC_POINT *p, // OUT: receives the converted point |
| 105 | EC_POINT *ecP, // IN: the point to convert |
| 106 | INT16 size, // IN: size of the coordinates |
| 107 | BN_CTX *context // IN: working context |
| 108 | ) |
| 109 | { |
| 110 | BIGNUM *bnX; |
| 111 | BIGNUM *bnY; |
| 112 | BN_CTX_start(context); |
| 113 | bnX = BN_CTX_get(context); |
| 114 | bnY = BN_CTX_get(context); |
| 115 | if( bnY == NULL |
| 116 | // Get the coordinate values |
| 117 | || EC_POINT_get_affine_coordinates_GFp(group, ecP, bnX, bnY, context) != 1 |
| 118 | // Convert x |
| 119 | || (!BnTo2B(&p->x.b, bnX, size)) |
| 120 | // Convert y |
| 121 | || (!BnTo2B(&p->y.b, bnY, size)) |
| 122 | ) |
| 123 | FAIL(FATAL_ERROR_INTERNAL); |
| 124 | BN_CTX_end(context); |
| 125 | return TRUE; |
| 126 | } |
| 127 | // |
| 128 | // |
| 129 | // EccCurveInit() |
| 130 | // |
| 131 | // This function initializes the OpenSSL() group definition structure |
| 132 | // This function is only used within this file. |
| 133 | // It is a fatal error if groupContext is not provided. |
| 134 | // |
| 135 | // Return Value Meaning |
| 136 | // |
| 137 | // NULL the TPM_ECC_CURVE is not valid |
| 138 | // non-NULL points to a structure in groupContext static EC_GROUP * |
| 139 | // |
| 140 | static EC_GROUP * |
| 141 | EccCurveInit( |
| 142 | TPM_ECC_CURVE curveId, // IN: the ID of the curve |
| 143 | BN_CTX *groupContext // IN: the context in which the group is to be |
| 144 | // created |
| 145 | ) |
| 146 | { |
| 147 | const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| 148 | EC_GROUP *group = NULL; |
| 149 | EC_POINT *P = NULL; |
| 150 | BN_CTX *context; |
| 151 | BIGNUM *bnP; |
| 152 | BIGNUM *bnA; |
| 153 | BIGNUM *bnB; |
| 154 | BIGNUM *bnX; |
| 155 | BIGNUM *bnY; |
| 156 | BIGNUM *bnN; |
| 157 | BIGNUM *bnH; |
| 158 | int ok = FALSE; |
| 159 | // Context must be provided and curve selector must be valid |
| 160 | pAssert(groupContext != NULL && curveData != NULL); |
| 161 | context = BN_CTX_new(); |
| 162 | if(context == NULL) |
| 163 | FAIL(FATAL_ERROR_ALLOCATION); |
| 164 | BN_CTX_start(context); |
| 165 | bnP = BN_CTX_get(context); |
| 166 | bnA = BN_CTX_get(context); |
| 167 | bnB = BN_CTX_get(context); |
| 168 | bnX = BN_CTX_get(context); |
| 169 | bnY = BN_CTX_get(context); |
| 170 | bnN = BN_CTX_get(context); |
| 171 | bnH = BN_CTX_get(context); |
| 172 | if (bnH == NULL) |
| 173 | goto Cleanup; |
| 174 | // Convert the number formats |
| 175 | BnFrom2B(bnP, curveData->p); |
| 176 | BnFrom2B(bnA, curveData->a); |
| 177 | BnFrom2B(bnB, curveData->b); |
| 178 | BnFrom2B(bnX, curveData->x); |
| 179 | BnFrom2B(bnY, curveData->y); |
| 180 | BnFrom2B(bnN, curveData->n); |
| 181 | BnFrom2B(bnH, curveData->h); |
| 182 | // initialize EC group, associate a generator point and initialize the point |
| 183 | // from the parameter data |
| 184 | ok = ( (group = EC_GROUP_new_curve_GFp(bnP, bnA, bnB, groupContext)) != NULL |
| 185 | && (P = EC_POINT_new(group)) != NULL |
| 186 | && EC_POINT_set_affine_coordinates_GFp(group, P, bnX, bnY, groupContext) |
| 187 | && EC_GROUP_set_generator(group, P, bnN, bnH) |
| 188 | ); |
| 189 | Cleanup: |
| 190 | if (!ok && group != NULL) |
| 191 | { |
| 192 | EC_GROUP_free(group); |
| 193 | group = NULL; |
| 194 | } |
| 195 | if(P != NULL) |
| 196 | EC_POINT_free(P); |
| 197 | BN_CTX_end(context); |
| 198 | BN_CTX_free(context); |
| 199 | return group; |
| 200 | } |
| 201 | // |
| 202 | // |
| 203 | // PointFrom2B() |
| 204 | // |
| 205 | // This function sets the coordinates of an existing BN Point from a TPMS_ECC_POINT. |
| 206 | // |
| 207 | static EC_POINT * |
| 208 | PointFrom2B( |
| 209 | EC_GROUP *group, // IN: the group for the point |
| 210 | EC_POINT *ecP, // IN: an existing BN point in the group |
| 211 | TPMS_ECC_POINT *p, // IN: the 2B coordinates of the point |
| 212 | BN_CTX *context // IN: the BIGNUM context |
| 213 | ) |
| 214 | { |
| 215 | BIGNUM *bnX; |
| 216 | BIGNUM *bnY; |
| 217 | // If the point is not allocated then just return a NULL |
| 218 | if(ecP == NULL) |
| 219 | return NULL; |
| 220 | BN_CTX_start(context); |
| 221 | bnX = BN_CTX_get(context); |
| 222 | bnY = BN_CTX_get(context); |
| 223 | if( // Set the coordinates of the point |
| 224 | bnY == NULL |
| 225 | || BN_bin2bn(p->x.t.buffer, p->x.t.size, bnX) == NULL |
| 226 | || BN_bin2bn(p->y.t.buffer, p->y.t.size, bnY) == NULL |
| 227 | || !EC_POINT_set_affine_coordinates_GFp(group, ecP, bnX, bnY, context) |
| 228 | ) |
| 229 | FAIL(FATAL_ERROR_INTERNAL); |
| 230 | BN_CTX_end(context); |
| 231 | return ecP; |
| 232 | } |
| 233 | // |
| 234 | // |
| 235 | // EccInitPoint2B() |
| 236 | // |
| 237 | // This function allocates a point in the provided group and initializes it with the values in a |
| 238 | // TPMS_ECC_POINT. |
| 239 | // |
| 240 | static EC_POINT * |
| 241 | EccInitPoint2B( |
| 242 | EC_GROUP *group, // IN: group for the point |
| 243 | TPMS_ECC_POINT *p, // IN: the coordinates for the point |
| 244 | BN_CTX *context // IN: the BIGNUM context |
| 245 | ) |
| 246 | { |
| 247 | EC_POINT *ecP; |
| 248 | BN_CTX_start(context); |
| 249 | ecP = EC_POINT_new(group); |
| 250 | if(PointFrom2B(group, ecP, p, context) == NULL) |
| 251 | FAIL(FATAL_ERROR_INTERNAL); |
| 252 | BN_CTX_end(context); |
| 253 | return ecP; |
| 254 | } |
| 255 | // |
| 256 | // |
| 257 | // PointMul() |
| 258 | // |
| 259 | // This function does a point multiply and checks for the result being the point at infinity. Q = ([A]G + [B]P) |
| 260 | // |
| 261 | // Return Value Meaning |
| 262 | // |
| 263 | // CRYPT_NO_RESULT point is at infinity |
| 264 | // CRYPT_SUCCESS point not at infinity |
| 265 | // |
| 266 | static CRYPT_RESULT |
| 267 | PointMul( |
| 268 | EC_GROUP *group, // IN: group curve |
| 269 | EC_POINT *ecpQ, // OUT: result |
| 270 | BIGNUM *bnA, // IN: scalar for [A]G |
| 271 | EC_POINT *ecpP, // IN: point for [B]P |
| 272 | BIGNUM *bnB, // IN: scalar for [B]P |
| 273 | BN_CTX *context // IN: working context |
| 274 | ) |
| 275 | { |
| 276 | if(EC_POINT_mul(group, ecpQ, bnA, ecpP, bnB, context) != 1) |
| 277 | FAIL(FATAL_ERROR_INTERNAL); |
| 278 | if(EC_POINT_is_at_infinity(group, ecpQ)) |
| 279 | return CRYPT_NO_RESULT; |
| 280 | return CRYPT_SUCCESS; |
| 281 | } |
| 282 | // |
| 283 | // |
| 284 | // GetRandomPrivate() |
| 285 | // |
| 286 | // This function gets a random value (d) to use as a private ECC key and then qualifies the key so that it is |
| 287 | // between 0 < d < n. |
| 288 | // It is a fatal error if dOut or pIn is not provided or if the size of pIn is larger than MAX_ECC_KEY_BYTES |
| 289 | // (the largest buffer size of a TPM2B_ECC_PARAMETER) |
| 290 | // |
| 291 | static void |
| 292 | GetRandomPrivate( |
| 293 | TPM2B_ECC_PARAMETER *dOut, // OUT: the qualified random value |
| 294 | const TPM2B *pIn // IN: the maximum value for the key |
| 295 | ) |
| 296 | { |
| 297 | int i; |
| 298 | BYTE *pb; |
| 299 | pAssert(pIn != NULL && dOut != NULL && pIn->size <= MAX_ECC_KEY_BYTES); |
| 300 | // Set the size of the output |
| 301 | dOut->t.size = pIn->size; |
| 302 | // Get some random bits |
| 303 | while(TRUE) |
| 304 | { |
| 305 | _cpri__GenerateRandom(dOut->t.size, dOut->t.buffer); |
| 306 | // See if the d < n |
| 307 | if(memcmp(dOut->t.buffer, pIn->buffer, pIn->size) < 0) |
| 308 | { |
| 309 | // dOut < n so make sure that 0 < dOut |
| 310 | for(pb = dOut->t.buffer, i = dOut->t.size; i > 0; i--) |
| 311 | { |
| 312 | if(*pb++ != 0) |
| 313 | return; |
| 314 | } |
| 315 | } |
| 316 | } |
| 317 | } |
| 318 | // |
| 319 | // |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 320 | // _cpri__EccPointMultiply |
| 321 | // |
| 322 | // This function computes 'R := [dIn]G + [uIn]QIn. Where dIn and uIn are scalars, G and QIn are points on |
| 323 | // the specified curve and G is the default generator of the curve. |
| 324 | // The xOut and yOut parameters are optional and may be set to NULL if not used. |
| 325 | // It is not necessary to provide uIn if QIn is specified but one of uIn and dIn must be provided. If dIn and |
| 326 | // QIn are specified but uIn is not provided, then R = [dIn]QIn. |
| 327 | // If the multiply produces the point at infinity, the CRYPT_NO_RESULT is returned. |
| 328 | // The sizes of xOut and yOut' will be set to be the size of the degree of the curve |
| 329 | // It is a fatal error if dIn and uIn are both unspecified (NULL) or if Qin or Rout is unspecified. |
| 330 | // |
| 331 | // |
| 332 | // |
| 333 | // |
| 334 | // Return Value Meaning |
| 335 | // |
| 336 | // CRYPT_SUCCESS point multiplication succeeded |
| 337 | // CRYPT_POINT the point Qin is not on the curve |
| 338 | // CRYPT_NO_RESULT the product point is at infinity |
| 339 | // |
| 340 | LIB_EXPORT CRYPT_RESULT |
| 341 | _cpri__EccPointMultiply( |
| 342 | TPMS_ECC_POINT *Rout, // OUT: the product point R |
| 343 | TPM_ECC_CURVE curveId, // IN: the curve to use |
| 344 | TPM2B_ECC_PARAMETER *dIn, // IN: value to multiply against the |
| 345 | // curve generator |
| 346 | TPMS_ECC_POINT *Qin, // IN: point Q |
| 347 | TPM2B_ECC_PARAMETER *uIn // IN: scalar value for the multiplier |
| 348 | // of Q |
| 349 | ) |
| 350 | { |
| 351 | BN_CTX *context; |
| 352 | BIGNUM *bnD; |
| 353 | BIGNUM *bnU; |
| 354 | EC_GROUP *group; |
| 355 | EC_POINT *R = NULL; |
| 356 | EC_POINT *Q = NULL; |
| 357 | CRYPT_RESULT retVal = CRYPT_SUCCESS; |
| 358 | // Validate that the required parameters are provided. |
| 359 | pAssert((dIn != NULL || uIn != NULL) && (Qin != NULL || dIn != NULL)); |
| 360 | // If a point is provided for the multiply, make sure that it is on the curve |
| 361 | if(Qin != NULL && !_cpri__EccIsPointOnCurve(curveId, Qin)) |
| 362 | return CRYPT_POINT; |
| 363 | context = BN_CTX_new(); |
| 364 | if(context == NULL) |
| 365 | FAIL(FATAL_ERROR_ALLOCATION); |
| 366 | BN_CTX_start(context); |
| 367 | bnU = BN_CTX_get(context); |
| 368 | bnD = BN_CTX_get(context); |
| 369 | group = EccCurveInit(curveId, context); |
| 370 | // There should be no path for getting a bad curve ID into this function. |
| 371 | pAssert(group != NULL); |
| 372 | // check allocations should have worked and allocate R |
| 373 | if( bnD == NULL |
| 374 | || (R = EC_POINT_new(group)) == NULL) |
| 375 | FAIL(FATAL_ERROR_ALLOCATION); |
| 376 | // If Qin is present, create the point |
| 377 | if(Qin != NULL) |
| 378 | { |
| 379 | // Assume the size variables do not overflow. This should not happen in |
| 380 | // the contexts in which this function will be called. |
| 381 | assert2Bsize(Qin->x.t); |
| 382 | assert2Bsize(Qin->x.t); |
| 383 | Q = EccInitPoint2B(group, Qin, context); |
| 384 | } |
| 385 | if(dIn != NULL) |
| 386 | { |
| 387 | // Assume the size variables do not overflow, which should not happen in |
| 388 | // the contexts that this function will be called. |
| 389 | assert2Bsize(dIn->t); |
| 390 | BnFrom2B(bnD, &dIn->b); |
| 391 | } |
| 392 | else |
| 393 | bnD = NULL; |
| 394 | // If uIn is specified, initialize its BIGNUM |
| 395 | if(uIn != NULL) |
| 396 | { |
| 397 | // Assume the size variables do not overflow, which should not happen in |
| 398 | // the contexts that this function will be called. |
| 399 | assert2Bsize(uIn->t); |
| 400 | BnFrom2B(bnU, &uIn->b); |
| 401 | } |
| 402 | // If uIn is not specified but Q is, then we are going to |
| 403 | // do R = [d]Q |
| 404 | else if(Qin != NULL) |
| 405 | { |
| 406 | bnU = bnD; |
| 407 | bnD = NULL; |
| 408 | } |
| 409 | // If neither Q nor u is specified, then null this pointer |
| 410 | else |
| 411 | bnU = NULL; |
| 412 | // Use the generator of the curve |
| 413 | if((retVal = PointMul(group, R, bnD, Q, bnU, context)) == CRYPT_SUCCESS) |
Jocelyn Bohr | ddcb1ce | 2015-08-14 15:32:09 -0700 | [diff] [blame] | 414 | Point2B(group, Rout, R, (INT16) ((EC_GROUP_get_degree(group)+7)/8), context); |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 415 | if (Q) |
| 416 | EC_POINT_free(Q); |
| 417 | if(R) |
| 418 | EC_POINT_free(R); |
| 419 | if(group) |
| 420 | EC_GROUP_free(group); |
| 421 | BN_CTX_end(context); |
| 422 | BN_CTX_free(context); |
| 423 | return retVal; |
| 424 | } |
nagendra modadugu | 16e65be | 2016-03-08 11:05:25 -0800 | [diff] [blame] | 425 | #if defined TPM_ALG_ECDAA || defined TPM_ALG_SM2 //% |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 426 | // |
| 427 | // |
| 428 | // ClearPoint2B() |
| 429 | // |
| 430 | // Initialize the size values of a point |
| 431 | // |
| 432 | static void |
| 433 | ClearPoint2B( |
| 434 | TPMS_ECC_POINT *p // IN: the point |
| 435 | ) |
| 436 | { |
| 437 | if(p != NULL) { |
| 438 | p->x.t.size = 0; |
| 439 | p->y.t.size = 0; |
| 440 | } |
| 441 | } |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 442 | // |
| 443 | // |
| 444 | // _cpri__EccCommitCompute() |
| 445 | // |
| 446 | // This function performs the point multiply operations required by TPM2_Commit(). |
| 447 | // If B or M is provided, they must be on the curve defined by curveId. This routine does not check that they |
| 448 | // are on the curve and results are unpredictable if they are not. |
| 449 | // |
| 450 | // |
| 451 | // |
| 452 | // It is a fatal error if r or d is NULL. If B is not NULL, then it is a fatal error if K and L are both NULL. If M is |
| 453 | // not NULL, then it is a fatal error if E is NULL. |
| 454 | // |
| 455 | // Return Value Meaning |
| 456 | // |
| 457 | // CRYPT_SUCCESS computations completed normally |
| 458 | // CRYPT_NO_RESULT if K, L or E was computed to be the point at infinity |
| 459 | // CRYPT_CANCEL a cancel indication was asserted during this function |
| 460 | // |
| 461 | LIB_EXPORT CRYPT_RESULT |
| 462 | _cpri__EccCommitCompute( |
| 463 | TPMS_ECC_POINT *K, // OUT: [d]B or [r]Q |
| 464 | TPMS_ECC_POINT *L, // OUT: [r]B |
| 465 | TPMS_ECC_POINT *E, // OUT: [r]M |
| 466 | TPM_ECC_CURVE curveId, // IN: the curve for the computations |
| 467 | TPMS_ECC_POINT *M, // IN: M (optional) |
| 468 | TPMS_ECC_POINT *B, // IN: B (optional) |
| 469 | TPM2B_ECC_PARAMETER *d, // IN: d (required) |
| 470 | TPM2B_ECC_PARAMETER *r // IN: the computed r value (required) |
| 471 | ) |
| 472 | { |
| 473 | BN_CTX *context; |
Vadim Bendebury | 0a05071 | 2015-05-29 11:35:04 -0700 | [diff] [blame] | 474 | BIGNUM *bnY, *bnR, *bnD; |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 475 | EC_GROUP *group; |
| 476 | EC_POINT *pK = NULL, *pL = NULL, *pE = NULL, *pM = NULL, *pB = NULL; |
| 477 | UINT16 keySizeInBytes; |
| 478 | CRYPT_RESULT retVal = CRYPT_SUCCESS; |
| 479 | // Validate that the required parameters are provided. |
| 480 | // Note: E has to be provided if computing E := [r]Q or E := [r]M. Will do |
| 481 | // E := [r]Q if both M and B are NULL. |
Vadim Bendebury | 0a05071 | 2015-05-29 11:35:04 -0700 | [diff] [blame] | 482 | |
| 483 | pAssert((r && (K || !B) && (L || !B)) || (E || (!M && B))); |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 484 | context = BN_CTX_new(); |
| 485 | if(context == NULL) |
| 486 | FAIL(FATAL_ERROR_ALLOCATION); |
| 487 | BN_CTX_start(context); |
| 488 | bnR = BN_CTX_get(context); |
| 489 | bnD = BN_CTX_get(context); |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 490 | bnY = BN_CTX_get(context); |
| 491 | if(bnY == NULL) |
| 492 | FAIL(FATAL_ERROR_ALLOCATION); |
| 493 | // Initialize the output points in case they are not computed |
| 494 | ClearPoint2B(K); |
| 495 | ClearPoint2B(L); |
| 496 | ClearPoint2B(E); |
| 497 | if((group = EccCurveInit(curveId, context)) == NULL) |
| 498 | { |
| 499 | retVal = CRYPT_PARAMETER; |
| 500 | goto Cleanup2; |
| 501 | } |
Jocelyn Bohr | ddcb1ce | 2015-08-14 15:32:09 -0700 | [diff] [blame] | 502 | keySizeInBytes = (UINT16) ((EC_GROUP_get_degree(group)+7)/8); |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 503 | // Sizes of the r and d parameters may not be zero |
| 504 | pAssert(((int) r->t.size > 0) && ((int) d->t.size > 0)); |
| 505 | // Convert scalars to BIGNUM |
| 506 | BnFrom2B(bnR, &r->b); |
| 507 | BnFrom2B(bnD, &d->b); |
| 508 | // If B is provided, compute K=[d]B and L=[r]B |
| 509 | if(B != NULL) |
| 510 | { |
| 511 | // Allocate the points to receive the value |
| 512 | if( (pK = EC_POINT_new(group)) == NULL |
| 513 | || (pL = EC_POINT_new(group)) == NULL) |
| 514 | FAIL(FATAL_ERROR_ALLOCATION); |
| 515 | // need to compute K = [d]B |
| 516 | // Allocate and initialize BIGNUM version of B |
| 517 | pB = EccInitPoint2B(group, B, context); |
| 518 | // do the math for K = [d]B |
| 519 | if((retVal = PointMul(group, pK, NULL, pB, bnD, context)) != CRYPT_SUCCESS) |
| 520 | goto Cleanup; |
| 521 | // Convert BN K to TPM2B K |
| 522 | Point2B(group, K, pK, (INT16)keySizeInBytes, context); |
| 523 | // compute L= [r]B after checking for cancel |
| 524 | if(_plat__IsCanceled()) |
| 525 | { |
| 526 | retVal = CRYPT_CANCEL; |
| 527 | goto Cleanup; |
| 528 | } |
| 529 | // compute L = [r]B |
| 530 | if((retVal = PointMul(group, pL, NULL, pB, bnR, context)) != CRYPT_SUCCESS) |
| 531 | goto Cleanup; |
| 532 | // Convert BN L to TPM2B L |
| 533 | Point2B(group, L, pL, (INT16)keySizeInBytes, context); |
| 534 | } |
| 535 | if(M != NULL || B == NULL) |
| 536 | { |
| 537 | // if this is the third point multiply, check for cancel first |
| 538 | if(B != NULL && _plat__IsCanceled()) |
| 539 | { |
| 540 | retVal = CRYPT_CANCEL; |
| 541 | goto Cleanup; |
| 542 | } |
| 543 | // Allocate E |
| 544 | if((pE = EC_POINT_new(group)) == NULL) |
| 545 | FAIL(FATAL_ERROR_ALLOCATION); |
| 546 | // Create BIGNUM version of M unless M is NULL |
| 547 | if(M != NULL) |
| 548 | { |
| 549 | // M provided so initialize a BIGNUM M and compute E = [r]M |
| 550 | pM = EccInitPoint2B(group, M, context); |
| 551 | retVal = PointMul(group, pE, NULL, pM, bnR, context); |
| 552 | } |
| 553 | else |
| 554 | // compute E = [r]G (this is only done if M and B are both NULL |
| 555 | retVal = PointMul(group, pE, bnR, NULL, NULL, context); |
| 556 | if(retVal == CRYPT_SUCCESS) |
| 557 | // Convert E to 2B format |
| 558 | Point2B(group, E, pE, (INT16)keySizeInBytes, context); |
| 559 | } |
| 560 | Cleanup: |
| 561 | EC_GROUP_free(group); |
| 562 | if(pK != NULL) EC_POINT_free(pK); |
| 563 | if(pL != NULL) EC_POINT_free(pL); |
| 564 | if(pE != NULL) EC_POINT_free(pE); |
| 565 | if(pM != NULL) EC_POINT_free(pM); |
| 566 | if(pB != NULL) EC_POINT_free(pB); |
| 567 | Cleanup2: |
| 568 | BN_CTX_end(context); |
| 569 | BN_CTX_free(context); |
| 570 | return retVal; |
| 571 | } |
| 572 | #endif //% |
| 573 | // |
| 574 | // |
| 575 | // _cpri__EccIsPointOnCurve() |
| 576 | // |
| 577 | // This function is used to test if a point is on a defined curve. It does this by checking that y^2 mod p = x^3 |
| 578 | // + a*x + b mod p |
| 579 | // It is a fatal error if Q is not specified (is NULL). |
| 580 | // |
| 581 | // Return Value Meaning |
| 582 | // |
| 583 | // TRUE point is on curve |
| 584 | // FALSE point is not on curve or curve is not supported |
| 585 | // |
| 586 | LIB_EXPORT BOOL |
| 587 | _cpri__EccIsPointOnCurve( |
| 588 | TPM_ECC_CURVE curveId, // IN: the curve selector |
| 589 | TPMS_ECC_POINT *Q // IN: the point. |
| 590 | ) |
| 591 | { |
| 592 | BN_CTX *context; |
| 593 | BIGNUM *bnX; |
| 594 | BIGNUM *bnY; |
| 595 | BIGNUM *bnA; |
| 596 | BIGNUM *bnB; |
| 597 | BIGNUM *bnP; |
| 598 | BIGNUM *bn3; |
| 599 | const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| 600 | BOOL retVal; |
| 601 | pAssert(Q != NULL && curveData != NULL); |
| 602 | if((context = BN_CTX_new()) == NULL) |
| 603 | FAIL(FATAL_ERROR_ALLOCATION); |
| 604 | BN_CTX_start(context); |
| 605 | bnX = BN_CTX_get(context); |
| 606 | bnY = BN_CTX_get(context); |
| 607 | bnA = BN_CTX_get(context); |
| 608 | bnB = BN_CTX_get(context); |
| 609 | bn3 = BN_CTX_get(context); |
| 610 | bnP = BN_CTX_get(context); |
| 611 | if(bnP == NULL) |
| 612 | FAIL(FATAL_ERROR_ALLOCATION); |
| 613 | // Convert values |
| 614 | if ( !BN_bin2bn(Q->x.t.buffer, Q->x.t.size, bnX) |
| 615 | || !BN_bin2bn(Q->y.t.buffer, Q->y.t.size, bnY) |
| 616 | || !BN_bin2bn(curveData->p->buffer, curveData->p->size, bnP) |
| 617 | || !BN_bin2bn(curveData->a->buffer, curveData->a->size, bnA) |
| 618 | || !BN_set_word(bn3, 3) |
| 619 | || !BN_bin2bn(curveData->b->buffer, curveData->b->size, bnB) |
| 620 | ) |
| 621 | FAIL(FATAL_ERROR_INTERNAL); |
| 622 | // The following sequence is probably not optimal but it seems to be correct. |
| 623 | // compute x^3 + a*x + b mod p |
| 624 | // first, compute a*x mod p |
| 625 | if( !BN_mod_mul(bnA, bnA, bnX, bnP, context) |
| 626 | // |
| 627 | // next, compute a*x + b mod p |
| 628 | || !BN_mod_add(bnA, bnA, bnB, bnP, context) |
| 629 | // next, compute X^3 mod p |
| 630 | || !BN_mod_exp(bnX, bnX, bn3, bnP, context) |
| 631 | // finally, compute x^3 + a*x + b mod p |
| 632 | || !BN_mod_add(bnX, bnX, bnA, bnP, context) |
| 633 | // then compute y^2 |
| 634 | || !BN_mod_mul(bnY, bnY, bnY, bnP, context) |
| 635 | ) |
| 636 | FAIL(FATAL_ERROR_INTERNAL); |
| 637 | retVal = BN_cmp(bnX, bnY) == 0; |
| 638 | BN_CTX_end(context); |
| 639 | BN_CTX_free(context); |
| 640 | return retVal; |
| 641 | } |
| 642 | // |
| 643 | // |
| 644 | // _cpri__GenerateKeyEcc() |
| 645 | // |
| 646 | // This function generates an ECC key pair based on the input parameters. This routine uses KDFa() to |
| 647 | // produce candidate numbers. The method is according to FIPS 186-3, section B.4.1 "GKey() Pair |
| 648 | // Generation Using Extra Random Bits." According to the method in FIPS 186-3, the resulting private value |
| 649 | // d should be 1 <= d < n where n is the order of the base point. In this implementation, the range of the |
| 650 | // private value is further restricted to be 2^(nLen/2) <= d < n where nLen is the order of n. |
| 651 | // |
| 652 | // EXAMPLE: If the curve is NIST-P256, then nLen is 256 bits and d will need to be between 2^128 <= d < n |
| 653 | // |
| 654 | // It is a fatal error if Qout, dOut, or seed is not provided (is NULL). |
| 655 | // |
| 656 | // Return Value Meaning |
| 657 | // |
| 658 | // CRYPT_PARAMETER the hash algorithm is not supported |
| 659 | // |
| 660 | LIB_EXPORT CRYPT_RESULT |
| 661 | _cpri__GenerateKeyEcc( |
| 662 | TPMS_ECC_POINT *Qout, // OUT: the public point |
| 663 | TPM2B_ECC_PARAMETER *dOut, // OUT: the private scalar |
| 664 | TPM_ECC_CURVE curveId, // IN: the curve identifier |
| 665 | TPM_ALG_ID hashAlg, // IN: hash algorithm to use in the key |
| 666 | // generation process |
| 667 | TPM2B *seed, // IN: the seed to use |
| 668 | const char *label, // IN: A label for the generation |
| 669 | // process. |
| 670 | TPM2B *extra, // IN: Party 1 data for the KDF |
| 671 | UINT32 *counter // IN/OUT: Counter value to allow KDF |
| 672 | // iteration to be propagated across |
| 673 | // multiple functions |
| 674 | ) |
| 675 | { |
| 676 | const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| 677 | INT16 keySizeInBytes; |
| 678 | UINT32 count = 0; |
| 679 | CRYPT_RESULT retVal; |
| 680 | UINT16 hLen = _cpri__GetDigestSize(hashAlg); |
| 681 | BIGNUM *bnNm1; // Order of the curve minus one |
| 682 | BIGNUM *bnD; // the private scalar |
| 683 | BN_CTX *context; // the context for the BIGNUM values |
| 684 | BYTE withExtra[MAX_ECC_KEY_BYTES + 8]; // trial key with |
| 685 | //extra bits |
Vadim Bendebury | 0a05071 | 2015-05-29 11:35:04 -0700 | [diff] [blame] | 686 | TPM2B_4_BYTE_VALUE marshaledCounter = {.t = {4}}; |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 687 | UINT32 totalBits; |
| 688 | // Validate parameters (these are fatal) |
| 689 | pAssert( seed != NULL && dOut != NULL && Qout != NULL && curveData != NULL); |
| 690 | // Non-fatal parameter checks. |
| 691 | if(hLen <= 0) |
| 692 | return CRYPT_PARAMETER; |
| 693 | // allocate the local BN values |
| 694 | context = BN_CTX_new(); |
| 695 | if(context == NULL) |
| 696 | FAIL(FATAL_ERROR_ALLOCATION); |
| 697 | BN_CTX_start(context); |
| 698 | bnNm1 = BN_CTX_get(context); |
| 699 | bnD = BN_CTX_get(context); |
| 700 | // The size of the input scalars is limited by the size of the size of a |
| 701 | // TPM2B_ECC_PARAMETER. Make sure that it is not irrational. |
| 702 | pAssert((int) curveData->n->size <= MAX_ECC_KEY_BYTES); |
| 703 | if( bnD == NULL |
| 704 | || BN_bin2bn(curveData->n->buffer, curveData->n->size, bnNm1) == NULL |
| 705 | || (keySizeInBytes = (INT16) BN_num_bytes(bnNm1)) > MAX_ECC_KEY_BYTES) |
| 706 | FAIL(FATAL_ERROR_INTERNAL); |
| 707 | // get the total number of bits |
| 708 | totalBits = BN_num_bits(bnNm1) + 64; |
| 709 | // Reduce bnNm1 from 'n' to 'n' - 1 |
| 710 | BN_sub_word(bnNm1, 1); |
| 711 | // Initialize the count value |
| 712 | if(counter != NULL) |
| 713 | count = *counter; |
| 714 | if(count == 0) |
| 715 | count = 1; |
| 716 | // Start search for key (should be quick) |
| 717 | for(; count != 0; count++) |
| 718 | { |
| 719 | UINT32_TO_BYTE_ARRAY(count, marshaledCounter.t.buffer); |
| 720 | _cpri__KDFa(hashAlg, seed, label, extra, &marshaledCounter.b, |
| 721 | totalBits, withExtra, NULL, FALSE); |
| 722 | // Convert the result and modular reduce |
| 723 | // Assume the size variables do not overflow, which should not happen in |
| 724 | // the contexts that this function will be called. |
| 725 | pAssert(keySizeInBytes <= MAX_ECC_KEY_BYTES); |
| 726 | if ( BN_bin2bn(withExtra, keySizeInBytes+8, bnD) == NULL |
| 727 | || BN_mod(bnD, bnD, bnNm1, context) != 1) |
| 728 | FAIL(FATAL_ERROR_INTERNAL); |
| 729 | // Add one to get 0 < d < n |
| 730 | BN_add_word(bnD, 1); |
| 731 | if(BnTo2B(&dOut->b, bnD, keySizeInBytes) != 1) |
| 732 | FAIL(FATAL_ERROR_INTERNAL); |
| 733 | // Do the point multiply to create the public portion of the key. If |
| 734 | // the multiply generates the point at infinity (unlikely), do another |
| 735 | // iteration. |
| 736 | if( (retVal = _cpri__EccPointMultiply(Qout, curveId, dOut, NULL, NULL)) |
| 737 | != CRYPT_NO_RESULT) |
| 738 | break; |
| 739 | } |
| 740 | if(count == 0) // if counter wrapped, then the TPM should go into failure mode |
| 741 | FAIL(FATAL_ERROR_INTERNAL); |
| 742 | // Free up allocated BN values |
| 743 | BN_CTX_end(context); |
| 744 | BN_CTX_free(context); |
| 745 | if(counter != NULL) |
| 746 | *counter = count; |
| 747 | return retVal; |
| 748 | } |
| 749 | // |
| 750 | // |
| 751 | // _cpri__GetEphemeralEcc() |
| 752 | // |
| 753 | // This function creates an ephemeral ECC. It is ephemeral in that is expected that the private part of the |
| 754 | // key will be discarded |
| 755 | // |
| 756 | LIB_EXPORT CRYPT_RESULT |
| 757 | _cpri__GetEphemeralEcc( |
| 758 | TPMS_ECC_POINT *Qout, // OUT: the public point |
| 759 | TPM2B_ECC_PARAMETER *dOut, // OUT: the private scalar |
| 760 | TPM_ECC_CURVE curveId // IN: the curve for the key |
| 761 | ) |
| 762 | { |
| 763 | CRYPT_RESULT retVal; |
| 764 | const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| 765 | pAssert(curveData != NULL); |
| 766 | // Keep getting random values until one is found that doesn't create a point |
| 767 | // at infinity. This will never, ever, ever, ever, ever, happen but if it does |
| 768 | // we have to get a next random value. |
| 769 | while(TRUE) |
| 770 | { |
| 771 | GetRandomPrivate(dOut, curveData->p); |
| 772 | // _cpri__EccPointMultiply does not return CRYPT_ECC_POINT if no point is |
| 773 | // provided. CRYPT_PARAMTER should not be returned because the curve ID |
| 774 | // has to be supported. Thus the only possible error is CRYPT_NO_RESULT. |
| 775 | retVal = _cpri__EccPointMultiply(Qout, curveId, dOut, NULL, NULL); |
| 776 | if(retVal != CRYPT_NO_RESULT) |
| 777 | return retVal; // Will return CRYPT_SUCCESS |
| 778 | } |
| 779 | } |
| 780 | #ifdef TPM_ALG_ECDSA //% |
| 781 | // |
| 782 | // |
| 783 | // SignEcdsa() |
| 784 | // |
| 785 | // This function implements the ECDSA signing algorithm. The method is described in the comments below. |
| 786 | // It is a fatal error if rOut, sOut, dIn, or digest are not provided. |
| 787 | // |
| 788 | LIB_EXPORT CRYPT_RESULT |
| 789 | SignEcdsa( |
| 790 | TPM2B_ECC_PARAMETER *rOut, // OUT: r component of the signature |
| 791 | TPM2B_ECC_PARAMETER *sOut, // OUT: s component of the signature |
| 792 | TPM_ECC_CURVE curveId, // IN: the curve used in the signature |
| 793 | // process |
| 794 | TPM2B_ECC_PARAMETER *dIn, // IN: the private key |
| 795 | TPM2B *digest // IN: the value to sign |
| 796 | ) |
| 797 | { |
| 798 | BIGNUM *bnK; |
| 799 | BIGNUM *bnIk; |
| 800 | BIGNUM *bnN; |
| 801 | BIGNUM *bnR; |
| 802 | // |
| 803 | BIGNUM *bnD; |
| 804 | BIGNUM *bnZ; |
| 805 | TPM2B_ECC_PARAMETER k; |
| 806 | TPMS_ECC_POINT R; |
| 807 | BN_CTX *context; |
| 808 | CRYPT_RESULT retVal = CRYPT_SUCCESS; |
| 809 | const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| 810 | pAssert(rOut != NULL && sOut != NULL && dIn != NULL && digest != NULL); |
| 811 | context = BN_CTX_new(); |
| 812 | if(context == NULL) |
| 813 | FAIL(FATAL_ERROR_ALLOCATION); |
| 814 | BN_CTX_start(context); |
| 815 | bnN = BN_CTX_get(context); |
| 816 | bnZ = BN_CTX_get(context); |
| 817 | bnR = BN_CTX_get(context); |
| 818 | bnD = BN_CTX_get(context); |
| 819 | bnIk = BN_CTX_get(context); |
| 820 | bnK = BN_CTX_get(context); |
| 821 | // Assume the size variables do not overflow, which should not happen in |
| 822 | // the contexts that this function will be called. |
| 823 | pAssert(curveData->n->size <= MAX_ECC_PARAMETER_BYTES); |
| 824 | if( bnK == NULL |
| 825 | || BN_bin2bn(curveData->n->buffer, curveData->n->size, bnN) == NULL) |
| 826 | FAIL(FATAL_ERROR_INTERNAL); |
| 827 | // The algorithm as described in "Suite B Implementer's Guide to FIPS 186-3(ECDSA)" |
| 828 | // 1. Use one of the routines in Appendix A.2 to generate (k, k^-1), a per-message |
| 829 | // secret number and its inverse modulo n. Since n is prime, the |
| 830 | // output will be invalid only if there is a failure in the RBG. |
| 831 | // 2. Compute the elliptic curve point R = [k]G = (xR, yR) using EC scalar |
| 832 | // multiplication (see [Routines]), where G is the base point included in |
| 833 | // the set of domain parameters. |
| 834 | // 3. Compute r = xR mod n. If r = 0, then return to Step 1. 1. |
| 835 | // 4. Use the selected hash function to compute H = Hash(M). |
| 836 | // 5. Convert the bit string H to an integer e as described in Appendix B.2. |
| 837 | // 6. Compute s = (k^-1 * (e + d * r)) mod n. If s = 0, return to Step 1.2. |
| 838 | // 7. Return (r, s). |
| 839 | // Generate a random value k in the range 1 <= k < n |
| 840 | // Want a K value that is the same size as the curve order |
| 841 | k.t.size = curveData->n->size; |
| 842 | while(TRUE) // This implements the loop at step 6. If s is zero, start over. |
| 843 | { |
| 844 | while(TRUE) |
| 845 | { |
| 846 | // Step 1 and 2 -- generate an ephemeral key and the modular inverse |
| 847 | // of the private key. |
| 848 | while(TRUE) |
| 849 | { |
| 850 | GetRandomPrivate(&k, curveData->n); |
| 851 | // Do the point multiply to generate a point and check to see if |
| 852 | // the point it at infinity |
| 853 | if( _cpri__EccPointMultiply(&R, curveId, &k, NULL, NULL) |
| 854 | != CRYPT_NO_RESULT) |
| 855 | break; // can only be CRYPT_SUCCESS |
| 856 | } |
| 857 | // x coordinate is mod p. Make it mod n |
| 858 | // Assume the size variables do not overflow, which should not happen |
| 859 | // in the contexts that this function will be called. |
| 860 | assert2Bsize(R.x.t); |
| 861 | BN_bin2bn(R.x.t.buffer, R.x.t.size, bnR); |
| 862 | BN_mod(bnR, bnR, bnN, context); |
| 863 | // Make sure that it is not zero; |
| 864 | if(BN_is_zero(bnR)) |
| 865 | continue; |
| 866 | // Make sure that a modular inverse exists |
| 867 | // Assume the size variables do not overflow, which should not happen |
| 868 | // in the contexts that this function will be called. |
| 869 | assert2Bsize(k.t); |
| 870 | BN_bin2bn(k.t.buffer, k.t.size, bnK); |
| 871 | if( BN_mod_inverse(bnIk, bnK, bnN, context) != NULL) |
| 872 | break; |
| 873 | } |
| 874 | // Set z = leftmost bits of the digest |
| 875 | // NOTE: This is implemented such that the key size needs to be |
| 876 | // an even number of bytes in length. |
| 877 | if(digest->size > curveData->n->size) |
| 878 | { |
| 879 | // Assume the size variables do not overflow, which should not happen |
| 880 | // in the contexts that this function will be called. |
| 881 | pAssert(curveData->n->size <= MAX_ECC_KEY_BYTES); |
| 882 | // digest is larger than n so truncate |
| 883 | BN_bin2bn(digest->buffer, curveData->n->size, bnZ); |
| 884 | } |
| 885 | else |
| 886 | { |
| 887 | // Assume the size variables do not overflow, which should not happen |
| 888 | // in the contexts that this function will be called. |
| 889 | pAssert(digest->size <= MAX_DIGEST_SIZE); |
| 890 | // digest is same or smaller than n so use it all |
| 891 | BN_bin2bn(digest->buffer, digest->size, bnZ); |
| 892 | } |
| 893 | // Assume the size variables do not overflow, which should not happen in |
| 894 | // the contexts that this function will be called. |
| 895 | assert2Bsize(dIn->t); |
| 896 | if( bnZ == NULL |
| 897 | // need the private scalar of the signing key |
| 898 | || BN_bin2bn(dIn->t.buffer, dIn->t.size, bnD) == NULL) |
| 899 | FAIL(FATAL_ERROR_INTERNAL); |
| 900 | // NOTE: When the result of an operation is going to be reduced mod x |
| 901 | // any modular multiplication is done so that the intermediate values |
| 902 | // don't get too large. |
| 903 | // |
| 904 | // now have inverse of K (bnIk), z (bnZ), r (bnR), d (bnD) and n (bnN) |
| 905 | // Compute s = k^-1 (z + r*d)(mod n) |
| 906 | // first do d = r*d mod n |
| 907 | if( !BN_mod_mul(bnD, bnR, bnD, bnN, context) |
| 908 | // d = z + r * d |
| 909 | || !BN_add(bnD, bnZ, bnD) |
| 910 | // d = k^(-1)(z + r * d)(mod n) |
| 911 | || !BN_mod_mul(bnD, bnIk, bnD, bnN, context) |
| 912 | // convert to TPM2B format |
| 913 | || !BnTo2B(&sOut->b, bnD, curveData->n->size) |
| 914 | // and write the modular reduced version of r |
| 915 | // NOTE: this was deferred to reduce the number of |
| 916 | // error checks. |
| 917 | || !BnTo2B(&rOut->b, bnR, curveData->n->size)) |
| 918 | FAIL(FATAL_ERROR_INTERNAL); |
| 919 | if(!BN_is_zero(bnD)) |
| 920 | break; // signature not zero so done |
| 921 | // if the signature value was zero, start over |
| 922 | } |
| 923 | // Free up allocated BN values |
| 924 | BN_CTX_end(context); |
| 925 | BN_CTX_free(context); |
| 926 | return retVal; |
| 927 | } |
| 928 | #endif //% |
| 929 | #if defined TPM_ALG_ECDAA || defined TPM_ALG_ECSCHNORR //% |
| 930 | // |
| 931 | // |
| 932 | // EcDaa() |
| 933 | // |
| 934 | // This function is used to perform a modified Schnorr signature for ECDAA. |
| 935 | // This function performs s = k + T * d mod n where |
| 936 | // a) 'k is a random, or pseudo-random value used in the commit phase |
| 937 | // b) T is the digest to be signed, and |
| 938 | // c) d is a private key. |
| 939 | // If tIn is NULL then use tOut as T |
| 940 | // |
| 941 | // Return Value Meaning |
| 942 | // |
| 943 | // CRYPT_SUCCESS signature created |
| 944 | // |
| 945 | static CRYPT_RESULT |
| 946 | EcDaa( |
| 947 | TPM2B_ECC_PARAMETER *tOut, // OUT: T component of the signature |
| 948 | TPM2B_ECC_PARAMETER *sOut, // OUT: s component of the signature |
| 949 | TPM_ECC_CURVE curveId, // IN: the curve used in signing |
| 950 | TPM2B_ECC_PARAMETER *dIn, // IN: the private key |
| 951 | TPM2B *tIn, // IN: the value to sign |
| 952 | TPM2B_ECC_PARAMETER *kIn // IN: a random value from commit |
| 953 | ) |
| 954 | { |
| 955 | BIGNUM *bnN, *bnK, *bnT, *bnD; |
| 956 | BN_CTX *context; |
| 957 | const TPM2B *n; |
| 958 | const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| 959 | BOOL OK = TRUE; |
| 960 | // Parameter checks |
| 961 | pAssert( sOut != NULL && dIn != NULL && tOut != NULL |
| 962 | && kIn != NULL && curveData != NULL); |
| 963 | // this just saves key strokes |
| 964 | n = curveData->n; |
| 965 | if(tIn != NULL) |
| 966 | Copy2B(&tOut->b, tIn); |
| 967 | // The size of dIn and kIn input scalars is limited by the size of the size |
| 968 | // of a TPM2B_ECC_PARAMETER and tIn can be no larger than a digest. |
| 969 | // Make sure they are within range. |
| 970 | pAssert( (int) dIn->t.size <= MAX_ECC_KEY_BYTES |
| 971 | && (int) kIn->t.size <= MAX_ECC_KEY_BYTES |
| 972 | // |
| 973 | && (int) tOut->t.size <= MAX_DIGEST_SIZE |
| 974 | ); |
| 975 | context = BN_CTX_new(); |
| 976 | if(context == NULL) |
| 977 | FAIL(FATAL_ERROR_ALLOCATION); |
| 978 | BN_CTX_start(context); |
| 979 | bnN = BN_CTX_get(context); |
| 980 | bnK = BN_CTX_get(context); |
| 981 | bnT = BN_CTX_get(context); |
| 982 | bnD = BN_CTX_get(context); |
| 983 | // Check for allocation problems |
| 984 | if(bnD == NULL) |
| 985 | FAIL(FATAL_ERROR_ALLOCATION); |
| 986 | // Convert values |
| 987 | if( BN_bin2bn(n->buffer, n->size, bnN) == NULL |
| 988 | || BN_bin2bn(kIn->t.buffer, kIn->t.size, bnK) == NULL |
| 989 | || BN_bin2bn(dIn->t.buffer, dIn->t.size, bnD) == NULL |
| 990 | || BN_bin2bn(tOut->t.buffer, tOut->t.size, bnT) == NULL) |
| 991 | FAIL(FATAL_ERROR_INTERNAL); |
| 992 | // Compute T = T mod n |
| 993 | OK = OK && BN_mod(bnT, bnT, bnN, context); |
| 994 | // compute (s = k + T * d mod n) |
| 995 | // d = T * d mod n |
| 996 | OK = OK && BN_mod_mul(bnD, bnT, bnD, bnN, context) == 1; |
| 997 | // d = k + T * d mod n |
| 998 | OK = OK && BN_mod_add(bnD, bnK, bnD, bnN, context) == 1; |
| 999 | // s = d |
| 1000 | OK = OK && BnTo2B(&sOut->b, bnD, n->size); |
| 1001 | // r = T |
| 1002 | OK = OK && BnTo2B(&tOut->b, bnT, n->size); |
| 1003 | if(!OK) |
| 1004 | FAIL(FATAL_ERROR_INTERNAL); |
| 1005 | // Cleanup |
| 1006 | BN_CTX_end(context); |
| 1007 | BN_CTX_free(context); |
| 1008 | return CRYPT_SUCCESS; |
| 1009 | } |
| 1010 | #endif //% |
| 1011 | #ifdef TPM_ALG_ECSCHNORR //% |
| 1012 | // |
| 1013 | // |
Vadim Bendebury | 0343d5b | 2015-10-08 17:31:34 -0700 | [diff] [blame] | 1014 | // Mod2B() |
| 1015 | // |
| 1016 | // Function does modular reduction of TPM2B values. |
| 1017 | // |
| 1018 | static CRYPT_RESULT |
| 1019 | Mod2B( |
| 1020 | TPM2B *x, // IN/OUT: value to reduce |
| 1021 | const TPM2B *n // IN: mod |
| 1022 | ) |
| 1023 | { |
| 1024 | int compare; |
| 1025 | compare = _math__uComp(x->size, x->buffer, n->size, n->buffer); |
| 1026 | if(compare < 0) |
| 1027 | // if x < n, then mod is x |
| 1028 | return CRYPT_SUCCESS; |
| 1029 | if(compare == 0) |
| 1030 | { |
| 1031 | // if x == n then mod is 0 |
| 1032 | x->size = 0; |
| 1033 | x->buffer[0] = 0; |
| 1034 | return CRYPT_SUCCESS; |
| 1035 | } |
| 1036 | return _math__Div(x, n, NULL, x); |
| 1037 | } |
| 1038 | |
| 1039 | // |
| 1040 | // |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1041 | // SchnorrEcc() |
| 1042 | // |
| 1043 | // This function is used to perform a modified Schnorr signature. |
| 1044 | // This function will generate a random value k and compute |
| 1045 | // a) (xR, yR) = [k]G |
| 1046 | // b) r = hash(P || xR)(mod n) |
| 1047 | // c) s= k + r * ds |
| 1048 | // d) return the tuple T, s |
| 1049 | // |
| 1050 | // |
| 1051 | // |
| 1052 | // |
| 1053 | // Return Value Meaning |
| 1054 | // |
| 1055 | // CRYPT_SUCCESS signature created |
| 1056 | // CRYPT_SCHEME hashAlg can't produce zero-length digest |
| 1057 | // |
| 1058 | static CRYPT_RESULT |
| 1059 | SchnorrEcc( |
| 1060 | TPM2B_ECC_PARAMETER *rOut, // OUT: r component of the signature |
| 1061 | TPM2B_ECC_PARAMETER *sOut, // OUT: s component of the signature |
| 1062 | TPM_ALG_ID hashAlg, // IN: hash algorithm used |
| 1063 | TPM_ECC_CURVE curveId, // IN: the curve used in signing |
| 1064 | TPM2B_ECC_PARAMETER *dIn, // IN: the private key |
| 1065 | TPM2B *digest, // IN: the digest to sign |
| 1066 | TPM2B_ECC_PARAMETER *kIn // IN: for testing |
| 1067 | ) |
| 1068 | { |
| 1069 | TPM2B_ECC_PARAMETER k; |
| 1070 | BIGNUM *bnR, *bnN, *bnK, *bnT, *bnD; |
| 1071 | BN_CTX *context; |
| 1072 | const TPM2B *n; |
| 1073 | EC_POINT *pR = NULL; |
| 1074 | EC_GROUP *group = NULL; |
| 1075 | CPRI_HASH_STATE hashState; |
| 1076 | UINT16 digestSize = _cpri__GetDigestSize(hashAlg); |
| 1077 | const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| 1078 | TPM2B_TYPE(T, MAX(MAX_DIGEST_SIZE, MAX_ECC_PARAMETER_BYTES)); |
| 1079 | TPM2B_T T2b; |
| 1080 | BOOL OK = TRUE; |
| 1081 | // Parameter checks |
| 1082 | // Must have a place for the 'r' and 's' parts of the signature, a private |
| 1083 | // key ('d') |
| 1084 | pAssert( rOut != NULL && sOut != NULL && dIn != NULL |
| 1085 | && digest != NULL && curveData != NULL); |
| 1086 | // to save key strokes |
| 1087 | n = curveData->n; |
| 1088 | // If the digest does not produce a hash, then null the signature and return |
| 1089 | // a failure. |
| 1090 | if(digestSize == 0) |
| 1091 | { |
| 1092 | rOut->t.size = 0; |
| 1093 | sOut->t.size = 0; |
| 1094 | return CRYPT_SCHEME; |
| 1095 | } |
| 1096 | // Allocate big number values |
| 1097 | context = BN_CTX_new(); |
| 1098 | if(context == NULL) |
| 1099 | FAIL(FATAL_ERROR_ALLOCATION); |
| 1100 | BN_CTX_start(context); |
| 1101 | bnR = BN_CTX_get(context); |
| 1102 | bnN = BN_CTX_get(context); |
| 1103 | bnK = BN_CTX_get(context); |
| 1104 | bnT = BN_CTX_get(context); |
| 1105 | bnD = BN_CTX_get(context); |
| 1106 | if( bnD == NULL |
| 1107 | // initialize the group parameters |
| 1108 | || (group = EccCurveInit(curveId, context)) == NULL |
| 1109 | // allocate a local point |
| 1110 | || (pR = EC_POINT_new(group)) == NULL |
| 1111 | ) |
| 1112 | FAIL(FATAL_ERROR_ALLOCATION); |
| 1113 | if(BN_bin2bn(curveData->n->buffer, curveData->n->size, bnN) == NULL) |
| 1114 | FAIL(FATAL_ERROR_INTERNAL); |
| 1115 | while(OK) |
| 1116 | { |
| 1117 | // a) set k to a random value such that 1 k n-1 |
| 1118 | if(kIn != NULL) |
| 1119 | { |
| 1120 | Copy2B(&k.b, &kIn->b); // copy input k if testing |
| 1121 | OK = FALSE; // not OK to loop |
| 1122 | } |
| 1123 | else |
| 1124 | // If get a random value in the correct range |
| 1125 | GetRandomPrivate(&k, n); |
| 1126 | // Convert 'k' and generate pR = ['k']G |
| 1127 | BnFrom2B(bnK, &k.b); |
| 1128 | // b) compute E (xE, yE) [k]G |
| 1129 | if(PointMul(group, pR, bnK, NULL, NULL, context) == CRYPT_NO_RESULT) |
| 1130 | // c) if E is the point at infinity, go to a) |
| 1131 | continue; |
| 1132 | // d) compute e xE (mod n) |
| 1133 | // Get the x coordinate of the point |
| 1134 | EC_POINT_get_affine_coordinates_GFp(group, pR, bnR, NULL, context); |
| 1135 | // make (mod n) |
| 1136 | BN_mod(bnR, bnR, bnN, context); |
| 1137 | // e) if e is zero, go to a) |
| 1138 | if(BN_is_zero(bnR)) |
| 1139 | continue; |
| 1140 | // Convert xR to a string (use T as a temp) |
| 1141 | BnTo2B(&T2b.b, bnR, (UINT16)(BN_num_bits(bnR)+7)/8); |
| 1142 | // f) compute r HschemeHash(P || e) (mod n) |
| 1143 | _cpri__StartHash(hashAlg, FALSE, &hashState); |
| 1144 | _cpri__UpdateHash(&hashState, digest->size, digest->buffer); |
| 1145 | _cpri__UpdateHash(&hashState, T2b.t.size, T2b.t.buffer); |
| 1146 | if(_cpri__CompleteHash(&hashState, digestSize, T2b.b.buffer) != digestSize) |
| 1147 | FAIL(FATAL_ERROR_INTERNAL); |
| 1148 | T2b.t.size = digestSize; |
| 1149 | BnFrom2B(bnT, &T2b.b); |
| 1150 | BN_div(NULL, bnT, bnT, bnN, context); |
| 1151 | BnTo2B(&rOut->b, bnT, (UINT16)BN_num_bytes(bnT)); |
| 1152 | // We have a value and we are going to exit the loop successfully |
| 1153 | OK = TRUE; |
| 1154 | break; |
| 1155 | } |
| 1156 | // Cleanup |
| 1157 | EC_POINT_free(pR); |
| 1158 | EC_GROUP_free(group); |
| 1159 | BN_CTX_end(context); |
| 1160 | BN_CTX_free(context); |
| 1161 | // If we have a value, finish the signature |
| 1162 | if(OK) |
| 1163 | return EcDaa(rOut, sOut, curveId, dIn, NULL, &k); |
| 1164 | else |
| 1165 | return CRYPT_NO_RESULT; |
| 1166 | } |
| 1167 | #endif //% |
| 1168 | #ifdef TPM_ALG_SM2 //% |
| 1169 | #ifdef _SM2_SIGN_DEBUG //% |
| 1170 | static int |
| 1171 | cmp_bn2hex( |
| 1172 | BIGNUM *bn, // IN: big number value |
| 1173 | const char *c // IN: character string number |
| 1174 | ) |
| 1175 | { |
| 1176 | int result; |
| 1177 | BIGNUM *bnC = BN_new(); |
| 1178 | pAssert(bnC != NULL); |
| 1179 | BN_hex2bn(&bnC, c); |
| 1180 | result = BN_ucmp(bn, bnC); |
| 1181 | BN_free(bnC); |
| 1182 | return result; |
| 1183 | } |
| 1184 | static int |
| 1185 | cmp_2B2hex( |
| 1186 | TPM2B *a, // IN: TPM2B number to compare |
| 1187 | const char *c // IN: character string |
| 1188 | ) |
| 1189 | { |
| 1190 | int result; |
| 1191 | int sl = strlen(c); |
| 1192 | BIGNUM *bnA; |
| 1193 | result = (a->size * 2) - sl; |
| 1194 | if(result != 0) |
| 1195 | return result; |
| 1196 | pAssert((bnA = BN_bin2bn(a->buffer, a->size, NULL)) != NULL); |
| 1197 | result = cmp_bn2hex(bnA, c); |
| 1198 | BN_free(bnA); |
| 1199 | return result; |
| 1200 | } |
| 1201 | static void |
| 1202 | cpy_hexTo2B( |
| 1203 | TPM2B *b, // OUT: receives value |
| 1204 | const char *c // IN: source string |
| 1205 | ) |
| 1206 | { |
| 1207 | BIGNUM *bnB = BN_new(); |
| 1208 | pAssert((strlen(c) & 1) == 0); // must have an even number of digits |
| 1209 | b->size = strlen(c) / 2; |
| 1210 | BN_hex2bn(&bnB, c); |
| 1211 | pAssert(bnB != NULL); |
| 1212 | BnTo2B(b, bnB, b->size); |
| 1213 | BN_free(bnB); |
| 1214 | } |
| 1215 | #endif //% _SM2_SIGN_DEBUG |
| 1216 | // |
| 1217 | // |
| 1218 | // SignSM2() |
| 1219 | // |
| 1220 | // This function signs a digest using the method defined in SM2 Part 2. The method in the standard will add |
| 1221 | // a header to the message to be signed that is a hash of the values that define the key. This then hashed |
| 1222 | // with the message to produce a digest (e) that is signed. This function signs e. |
| 1223 | // |
| 1224 | // |
| 1225 | // |
| 1226 | // |
| 1227 | // Return Value Meaning |
| 1228 | // |
| 1229 | // CRYPT_SUCCESS sign worked |
| 1230 | // |
| 1231 | static CRYPT_RESULT |
| 1232 | SignSM2( |
| 1233 | TPM2B_ECC_PARAMETER *rOut, // OUT: r component of the signature |
| 1234 | TPM2B_ECC_PARAMETER *sOut, // OUT: s component of the signature |
| 1235 | TPM_ECC_CURVE curveId, // IN: the curve used in signing |
| 1236 | TPM2B_ECC_PARAMETER *dIn, // IN: the private key |
| 1237 | TPM2B *digest // IN: the digest to sign |
| 1238 | ) |
| 1239 | { |
| 1240 | BIGNUM *bnR; |
| 1241 | BIGNUM *bnS; |
| 1242 | BIGNUM *bnN; |
| 1243 | BIGNUM *bnK; |
| 1244 | BIGNUM *bnX1; |
| 1245 | BIGNUM *bnD; |
| 1246 | BIGNUM *bnT; // temp |
| 1247 | BIGNUM *bnE; |
| 1248 | BN_CTX *context; |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1249 | TPM2B_ECC_PARAMETER k; |
| 1250 | TPMS_ECC_POINT p2Br; |
| 1251 | const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| 1252 | pAssert(curveData != NULL); |
| 1253 | context = BN_CTX_new(); |
| 1254 | BN_CTX_start(context); |
| 1255 | bnK = BN_CTX_get(context); |
| 1256 | bnR = BN_CTX_get(context); |
| 1257 | bnS = BN_CTX_get(context); |
| 1258 | bnX1 = BN_CTX_get(context); |
| 1259 | bnN = BN_CTX_get(context); |
| 1260 | bnD = BN_CTX_get(context); |
| 1261 | bnT = BN_CTX_get(context); |
| 1262 | bnE = BN_CTX_get(context); |
| 1263 | if(bnE == NULL) |
| 1264 | FAIL(FATAL_ERROR_ALLOCATION); |
| 1265 | BnFrom2B(bnE, digest); |
| 1266 | BnFrom2B(bnN, curveData->n); |
| 1267 | BnFrom2B(bnD, &dIn->b); |
| 1268 | #ifdef _SM2_SIGN_DEBUG |
| 1269 | BN_hex2bn(&bnE, "B524F552CD82B8B028476E005C377FB19A87E6FC682D48BB5D42E3D9B9EFFE76"); |
| 1270 | BN_hex2bn(&bnD, "128B2FA8BD433C6C068C8D803DFF79792A519A55171B1B650C23661D15897263"); |
| 1271 | #endif |
| 1272 | // A3: Use random number generator to generate random number 1 <= k <= n-1; |
| 1273 | // NOTE: Ax: numbers are from the SM2 standard |
| 1274 | k.t.size = curveData->n->size; |
| 1275 | loop: |
| 1276 | { |
| 1277 | // Get a random number |
| 1278 | _cpri__GenerateRandom(k.t.size, k.t.buffer); |
| 1279 | #ifdef _SM2_SIGN_DEBUG |
| 1280 | BN_hex2bn(&bnK, "6CB28D99385C175C94F94E934817663FC176D925DD72B727260DBAAE1FB2F96F"); |
| 1281 | BnTo2B(&k.b,bnK, 32); |
| 1282 | k.t.size = 32; |
| 1283 | #endif |
| 1284 | //make sure that the number is 0 < k < n |
| 1285 | BnFrom2B(bnK, &k.b); |
| 1286 | if( BN_ucmp(bnK, bnN) >= 0 |
| 1287 | || BN_is_zero(bnK)) |
| 1288 | goto loop; |
| 1289 | // A4: Figure out the point of elliptic curve (x1, y1)=[k]G, and according |
| 1290 | // to details specified in 4.2.7 in Part 1 of this document, transform the |
| 1291 | // data type of x1 into an integer; |
| 1292 | if( _cpri__EccPointMultiply(&p2Br, curveId, &k, NULL, NULL) |
| 1293 | == CRYPT_NO_RESULT) |
| 1294 | goto loop; |
| 1295 | BnFrom2B(bnX1, &p2Br.x.b); |
| 1296 | // A5: Figure out r = (e + x1) mod n, |
| 1297 | if(!BN_mod_add(bnR, bnE, bnX1, bnN, context)) |
| 1298 | FAIL(FATAL_ERROR_INTERNAL); |
| 1299 | #ifdef _SM2_SIGN_DEBUG |
| 1300 | pAssert(cmp_bn2hex(bnR, |
| 1301 | "40F1EC59F793D9F49E09DCEF49130D4194F79FB1EED2CAA55BACDB49C4E755D1") |
| 1302 | == 0); |
| 1303 | #endif |
| 1304 | // if r=0 or r+k=n, return to A3; |
| 1305 | if(!BN_add(bnT, bnK, bnR)) |
| 1306 | FAIL(FATAL_ERROR_INTERNAL); |
| 1307 | if(BN_is_zero(bnR) || BN_ucmp(bnT, bnN) == 0) |
| 1308 | goto loop; |
| 1309 | // A6: Figure out s = ((1 + dA)^-1 (k - r dA)) mod n, if s=0, return to A3; |
| 1310 | // compute t = (1+d)-1 |
| 1311 | BN_copy(bnT, bnD); |
| 1312 | if( !BN_add_word(bnT, 1) |
| 1313 | || !BN_mod_inverse(bnT, bnT, bnN, context) // (1 + dA)^-1 mod n |
| 1314 | ) |
| 1315 | FAIL(FATAL_ERROR_INTERNAL); |
| 1316 | #ifdef _SM2_SIGN_DEBUG |
| 1317 | pAssert(cmp_bn2hex(bnT, |
| 1318 | "79BFCF3052C80DA7B939E0C6914A18CBB2D96D8555256E83122743A7D4F5F956") |
| 1319 | == 0); |
| 1320 | #endif |
| 1321 | // compute s = t * (k - r * dA) mod n |
| 1322 | if( !BN_mod_mul(bnS, bnD, bnR, bnN, context) // (r * dA) mod n |
| 1323 | || !BN_mod_sub(bnS, bnK, bnS, bnN, context) // (k - (r * dA) mod n |
| 1324 | || !BN_mod_mul(bnS, bnT, bnS, bnN, context))// t * (k - (r * dA) mod n |
| 1325 | FAIL(FATAL_ERROR_INTERNAL); |
| 1326 | #ifdef _SM2_SIGN_DEBUG |
| 1327 | pAssert(cmp_bn2hex(bnS, |
| 1328 | "6FC6DAC32C5D5CF10C77DFB20F7C2EB667A457872FB09EC56327A67EC7DEEBE7") |
| 1329 | == 0); |
| 1330 | #endif |
| 1331 | if(BN_is_zero(bnS)) |
| 1332 | goto loop; |
| 1333 | } |
| 1334 | // A7: According to details specified in 4.2.1 in Part 1 of this document, transform |
| 1335 | // the data type of r, s into bit strings, signature of message M is (r, s). |
| 1336 | BnTo2B(&rOut->b, bnR, curveData->n->size); |
| 1337 | BnTo2B(&sOut->b, bnS, curveData->n->size); |
| 1338 | #ifdef _SM2_SIGN_DEBUG |
| 1339 | pAssert(cmp_2B2hex(&rOut->b, |
| 1340 | "40F1EC59F793D9F49E09DCEF49130D4194F79FB1EED2CAA55BACDB49C4E755D1") |
| 1341 | == 0); |
| 1342 | pAssert(cmp_2B2hex(&sOut->b, |
| 1343 | "6FC6DAC32C5D5CF10C77DFB20F7C2EB667A457872FB09EC56327A67EC7DEEBE7") |
| 1344 | == 0); |
| 1345 | #endif |
| 1346 | BN_CTX_end(context); |
| 1347 | BN_CTX_free(context); |
| 1348 | return CRYPT_SUCCESS; |
| 1349 | } |
| 1350 | #endif //% TPM_ALG_SM2 |
| 1351 | // |
| 1352 | // |
| 1353 | // _cpri__SignEcc() |
| 1354 | // |
| 1355 | // This function is the dispatch function for the various ECC-based signing schemes. |
| 1356 | // |
| 1357 | // Return Value Meaning |
| 1358 | // |
| 1359 | // CRYPT_SCHEME scheme is not supported |
| 1360 | // |
| 1361 | LIB_EXPORT CRYPT_RESULT |
| 1362 | _cpri__SignEcc( |
| 1363 | TPM2B_ECC_PARAMETER *rOut, // OUT: r component of the signature |
| 1364 | TPM2B_ECC_PARAMETER *sOut, // OUT: s component of the signature |
| 1365 | TPM_ALG_ID scheme, // IN: the scheme selector |
| 1366 | TPM_ALG_ID hashAlg, // IN: the hash algorithm if need |
| 1367 | TPM_ECC_CURVE curveId, // IN: the curve used in the signature |
| 1368 | // process |
| 1369 | TPM2B_ECC_PARAMETER *dIn, // IN: the private key |
| 1370 | TPM2B *digest, // IN: the digest to sign |
| 1371 | TPM2B_ECC_PARAMETER *kIn // IN: k for input |
| 1372 | ) |
| 1373 | { |
| 1374 | switch (scheme) |
| 1375 | { |
| 1376 | case TPM_ALG_ECDSA: |
| 1377 | // SignEcdsa always works |
| 1378 | return SignEcdsa(rOut, sOut, curveId, dIn, digest); |
| 1379 | break; |
| 1380 | #ifdef TPM_ALG_ECDAA |
| 1381 | case TPM_ALG_ECDAA: |
| 1382 | if(rOut != NULL) |
| 1383 | rOut->b.size = 0; |
| 1384 | return EcDaa(rOut, sOut, curveId, dIn, digest, kIn); |
| 1385 | break; |
| 1386 | #endif |
| 1387 | #ifdef TPM_ALG_ECSCHNORR |
| 1388 | case TPM_ALG_ECSCHNORR: |
| 1389 | return SchnorrEcc(rOut, sOut, hashAlg, curveId, dIn, digest, kIn); |
| 1390 | break; |
| 1391 | #endif |
| 1392 | #ifdef TPM_ALG_SM2 |
| 1393 | case TPM_ALG_SM2: |
| 1394 | return SignSM2(rOut, sOut, curveId, dIn, digest); |
| 1395 | break; |
| 1396 | #endif |
| 1397 | default: |
| 1398 | return CRYPT_SCHEME; |
| 1399 | } |
| 1400 | } |
| 1401 | #ifdef TPM_ALG_ECDSA //% |
| 1402 | // |
| 1403 | // |
| 1404 | // ValidateSignatureEcdsa() |
| 1405 | // |
| 1406 | // This function validates an ECDSA signature. rIn and sIn shoudl have been checked to make sure that |
| 1407 | // they are not zero. |
| 1408 | // |
| 1409 | // Return Value Meaning |
| 1410 | // |
| 1411 | // CRYPT_SUCCESS signature valid |
| 1412 | // CRYPT_FAIL signature not valid |
| 1413 | // |
| 1414 | static CRYPT_RESULT |
| 1415 | ValidateSignatureEcdsa( |
| 1416 | TPM2B_ECC_PARAMETER *rIn, // IN: r component of the signature |
| 1417 | TPM2B_ECC_PARAMETER *sIn, // IN: s component of the signature |
| 1418 | TPM_ECC_CURVE curveId, // IN: the curve used in the signature |
| 1419 | // process |
| 1420 | TPMS_ECC_POINT *Qin, // IN: the public point of the key |
| 1421 | TPM2B *digest // IN: the digest that was signed |
| 1422 | ) |
| 1423 | { |
| 1424 | TPM2B_ECC_PARAMETER U1; |
| 1425 | TPM2B_ECC_PARAMETER U2; |
| 1426 | TPMS_ECC_POINT R; |
| 1427 | const TPM2B *n; |
| 1428 | BN_CTX *context; |
| 1429 | EC_POINT *pQ = NULL; |
| 1430 | EC_GROUP *group = NULL; |
| 1431 | BIGNUM *bnU1; |
| 1432 | BIGNUM *bnU2; |
| 1433 | BIGNUM *bnR; |
| 1434 | BIGNUM *bnS; |
| 1435 | BIGNUM *bnW; |
| 1436 | BIGNUM *bnV; |
| 1437 | BIGNUM *bnN; |
| 1438 | BIGNUM *bnE; |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1439 | BIGNUM *bnQx; |
| 1440 | BIGNUM *bnQy; |
| 1441 | CRYPT_RESULT retVal = CRYPT_FAIL; |
| 1442 | int t; |
| 1443 | const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| 1444 | // The curve selector should have been filtered by the unmarshaling process |
| 1445 | pAssert (curveData != NULL); |
| 1446 | n = curveData->n; |
| 1447 | // 1. If r and s are not both integers in the interval [1, n - 1], output |
| 1448 | // INVALID. |
| 1449 | // rIn and sIn are known to be greater than zero (was checked by the caller). |
| 1450 | if( _math__uComp(rIn->t.size, rIn->t.buffer, n->size, n->buffer) >= 0 |
| 1451 | || _math__uComp(sIn->t.size, sIn->t.buffer, n->size, n->buffer) >= 0 |
| 1452 | ) |
| 1453 | return CRYPT_FAIL; |
| 1454 | context = BN_CTX_new(); |
| 1455 | if(context == NULL) |
| 1456 | FAIL(FATAL_ERROR_ALLOCATION); |
| 1457 | BN_CTX_start(context); |
| 1458 | bnR = BN_CTX_get(context); |
| 1459 | bnS = BN_CTX_get(context); |
| 1460 | bnN = BN_CTX_get(context); |
| 1461 | bnE = BN_CTX_get(context); |
| 1462 | bnV = BN_CTX_get(context); |
| 1463 | bnW = BN_CTX_get(context); |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1464 | bnQx = BN_CTX_get(context); |
| 1465 | bnQy = BN_CTX_get(context); |
| 1466 | bnU1 = BN_CTX_get(context); |
| 1467 | bnU2 = BN_CTX_get(context); |
| 1468 | // Assume the size variables do not overflow, which should not happen in |
| 1469 | // the contexts that this function will be called. |
| 1470 | assert2Bsize(Qin->x.t); |
| 1471 | assert2Bsize(rIn->t); |
| 1472 | assert2Bsize(sIn->t); |
| 1473 | // BN_CTX_get() is sticky so only need to check the last value to know that |
| 1474 | // all worked. |
| 1475 | if( bnU2 == NULL |
| 1476 | // initialize the group parameters |
| 1477 | || (group = EccCurveInit(curveId, context)) == NULL |
| 1478 | // allocate a local point |
| 1479 | || (pQ = EC_POINT_new(group)) == NULL |
| 1480 | // use the public key values (QxIn and QyIn) to initialize Q |
| 1481 | || BN_bin2bn(Qin->x.t.buffer, Qin->x.t.size, bnQx) == NULL |
| 1482 | || BN_bin2bn(Qin->x.t.buffer, Qin->x.t.size, bnQy) == NULL |
| 1483 | || !EC_POINT_set_affine_coordinates_GFp(group, pQ, bnQx, bnQy, context) |
| 1484 | // convert the signature values |
| 1485 | || BN_bin2bn(rIn->t.buffer, rIn->t.size, bnR) == NULL |
| 1486 | || BN_bin2bn(sIn->t.buffer, sIn->t.size, bnS) == NULL |
| 1487 | // convert the curve order |
| 1488 | || BN_bin2bn(curveData->n->buffer, curveData->n->size, bnN) == NULL) |
| 1489 | FAIL(FATAL_ERROR_INTERNAL); |
| 1490 | // 2. Use the selected hash function to compute H0 = Hash(M0). |
| 1491 | // This is an input parameter |
| 1492 | // 3. Convert the bit string H0 to an integer e as described in Appendix B.2. |
| 1493 | t = (digest->size > rIn->t.size) ? rIn->t.size : digest->size; |
| 1494 | if(BN_bin2bn(digest->buffer, t, bnE) == NULL) |
| 1495 | FAIL(FATAL_ERROR_INTERNAL); |
| 1496 | // 4. Compute w = (s')^-1 mod n, using the routine in Appendix B.1. |
| 1497 | if (BN_mod_inverse(bnW, bnS, bnN, context) == NULL) |
| 1498 | FAIL(FATAL_ERROR_INTERNAL); |
| 1499 | // 5. Compute u1 = (e' * w) mod n, and compute u2 = (r' * w) mod n. |
| 1500 | if( !BN_mod_mul(bnU1, bnE, bnW, bnN, context) |
| 1501 | || !BN_mod_mul(bnU2, bnR, bnW, bnN, context)) |
| 1502 | FAIL(FATAL_ERROR_INTERNAL); |
| 1503 | BnTo2B(&U1.b, bnU1, (INT16) BN_num_bytes(bnU1)); |
| 1504 | BnTo2B(&U2.b, bnU2, (INT16) BN_num_bytes(bnU2)); |
| 1505 | // 6. Compute the elliptic curve point R = (xR, yR) = u1G+u2Q, using EC |
| 1506 | // scalar multiplication and EC addition (see [Routines]). If R is equal to |
| 1507 | // the point at infinity O, output INVALID. |
| 1508 | if(_cpri__EccPointMultiply(&R, curveId, &U1, Qin, &U2) == CRYPT_SUCCESS) |
| 1509 | { |
| 1510 | // 7. Compute v = Rx mod n. |
| 1511 | if( BN_bin2bn(R.x.t.buffer, R.x.t.size, bnV) == NULL |
| 1512 | || !BN_mod(bnV, bnV, bnN, context)) |
| 1513 | FAIL(FATAL_ERROR_INTERNAL); |
| 1514 | // 8. Compare v and r0. If v = r0, output VALID; otherwise, output INVALID |
| 1515 | if(BN_cmp(bnV, bnR) == 0) |
| 1516 | retVal = CRYPT_SUCCESS; |
| 1517 | } |
| 1518 | if(pQ != NULL) EC_POINT_free(pQ); |
| 1519 | if(group != NULL) EC_GROUP_free(group); |
| 1520 | BN_CTX_end(context); |
| 1521 | BN_CTX_free(context); |
| 1522 | return retVal; |
| 1523 | } |
| 1524 | #endif //% TPM_ALG_ECDSA |
| 1525 | #ifdef TPM_ALG_ECSCHNORR //% |
| 1526 | // |
| 1527 | // |
| 1528 | // ValidateSignatureEcSchnorr() |
| 1529 | // |
| 1530 | // This function is used to validate an EC Schnorr signature. rIn and sIn are required to be greater than |
| 1531 | // zero. This is checked in _cpri__ValidateSignatureEcc(). |
| 1532 | // |
| 1533 | // Return Value Meaning |
| 1534 | // |
| 1535 | // CRYPT_SUCCESS signature valid |
| 1536 | // CRYPT_FAIL signature not valid |
| 1537 | // CRYPT_SCHEME hashAlg is not supported |
| 1538 | // |
| 1539 | static CRYPT_RESULT |
| 1540 | ValidateSignatureEcSchnorr( |
| 1541 | TPM2B_ECC_PARAMETER *rIn, // IN: r component of the signature |
| 1542 | TPM2B_ECC_PARAMETER *sIn, // IN: s component of the signature |
| 1543 | TPM_ALG_ID hashAlg, // IN: hash algorithm of the signature |
| 1544 | TPM_ECC_CURVE curveId, // IN: the curve used in the signature |
| 1545 | // process |
| 1546 | TPMS_ECC_POINT *Qin, // IN: the public point of the key |
| 1547 | TPM2B *digest // IN: the digest that was signed |
| 1548 | ) |
| 1549 | { |
| 1550 | TPMS_ECC_POINT pE; |
| 1551 | const TPM2B *n; |
| 1552 | CPRI_HASH_STATE hashState; |
| 1553 | TPM2B_DIGEST rPrime; |
| 1554 | TPM2B_ECC_PARAMETER minusR; |
| 1555 | UINT16 digestSize = _cpri__GetDigestSize(hashAlg); |
| 1556 | const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| 1557 | // The curve parameter should have been filtered by unmarshaling code |
| 1558 | pAssert(curveData != NULL); |
| 1559 | if(digestSize == 0) |
| 1560 | return CRYPT_SCHEME; |
| 1561 | // Input parameter validation |
| 1562 | pAssert(rIn != NULL && sIn != NULL && Qin != NULL && digest != NULL); |
| 1563 | n = curveData->n; |
| 1564 | // if sIn or rIn are not between 1 and N-1, signature check fails |
| 1565 | // sIn and rIn were verified to be non-zero by the caller |
| 1566 | if( _math__uComp(sIn->b.size, sIn->b.buffer, n->size, n->buffer) >= 0 |
| 1567 | || _math__uComp(rIn->b.size, rIn->b.buffer, n->size, n->buffer) >= 0 |
| 1568 | ) |
| 1569 | return CRYPT_FAIL; |
| 1570 | //E = [s]InG - [r]InQ |
| 1571 | _math__sub(n->size, n->buffer, |
| 1572 | rIn->t.size, rIn->t.buffer, |
| 1573 | &minusR.t.size, minusR.t.buffer); |
| 1574 | if(_cpri__EccPointMultiply(&pE, curveId, sIn, Qin, &minusR) != CRYPT_SUCCESS) |
| 1575 | return CRYPT_FAIL; |
| 1576 | // Ex = Ex mod N |
| 1577 | if(Mod2B(&pE.x.b, n) != CRYPT_SUCCESS) |
| 1578 | FAIL(FATAL_ERROR_INTERNAL); |
| 1579 | _math__Normalize2B(&pE.x.b); |
| 1580 | // rPrime = h(digest || pE.x) mod n; |
| 1581 | _cpri__StartHash(hashAlg, FALSE, &hashState); |
| 1582 | _cpri__UpdateHash(&hashState, digest->size, digest->buffer); |
| 1583 | _cpri__UpdateHash(&hashState, pE.x.t.size, pE.x.t.buffer); |
| 1584 | if(_cpri__CompleteHash(&hashState, digestSize, rPrime.t.buffer) != digestSize) |
| 1585 | FAIL(FATAL_ERROR_INTERNAL); |
| 1586 | rPrime.t.size = digestSize; |
| 1587 | // rPrime = rPrime (mod n) |
| 1588 | if(Mod2B(&rPrime.b, n) != CRYPT_SUCCESS) |
| 1589 | FAIL(FATAL_ERROR_INTERNAL); |
| 1590 | // if the values don't match, then the signature is bad |
| 1591 | if(_math__uComp(rIn->t.size, rIn->t.buffer, |
| 1592 | rPrime.t.size, rPrime.t.buffer) != 0) |
| 1593 | return CRYPT_FAIL; |
| 1594 | else |
| 1595 | return CRYPT_SUCCESS; |
| 1596 | } |
| 1597 | #endif //% TPM_ALG_ECSCHNORR |
| 1598 | #ifdef TPM_ALG_SM2 //% |
| 1599 | // |
| 1600 | // |
| 1601 | // ValidateSignatueSM2Dsa() |
| 1602 | // |
| 1603 | // This function is used to validate an SM2 signature. |
| 1604 | // |
| 1605 | // Return Value Meaning |
| 1606 | // |
| 1607 | // CRYPT_SUCCESS signature valid |
| 1608 | // CRYPT_FAIL signature not valid |
| 1609 | // |
| 1610 | static CRYPT_RESULT |
| 1611 | ValidateSignatureSM2Dsa( |
| 1612 | TPM2B_ECC_PARAMETER *rIn, // IN: r component of the signature |
| 1613 | TPM2B_ECC_PARAMETER *sIn, // IN: s component of the signature |
| 1614 | TPM_ECC_CURVE curveId, // IN: the curve used in the signature |
| 1615 | // process |
| 1616 | TPMS_ECC_POINT *Qin, // IN: the public point of the key |
| 1617 | TPM2B *digest // IN: the digest that was signed |
| 1618 | ) |
| 1619 | { |
| 1620 | BIGNUM *bnR; |
| 1621 | BIGNUM *bnRp; |
| 1622 | BIGNUM *bnT; |
| 1623 | BIGNUM *bnS; |
| 1624 | BIGNUM *bnE; |
Jocelyn Bohr | ddcb1ce | 2015-08-14 15:32:09 -0700 | [diff] [blame] | 1625 | BIGNUM *order; |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1626 | EC_POINT *pQ; |
| 1627 | BN_CTX *context; |
| 1628 | EC_GROUP *group = NULL; |
| 1629 | const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| 1630 | BOOL fail = FALSE; |
| 1631 | // |
| 1632 | if((context = BN_CTX_new()) == NULL || curveData == NULL) |
| 1633 | FAIL(FATAL_ERROR_INTERNAL); |
| 1634 | bnR = BN_CTX_get(context); |
| 1635 | bnRp= BN_CTX_get(context); |
| 1636 | bnE = BN_CTX_get(context); |
| 1637 | bnT = BN_CTX_get(context); |
| 1638 | bnS = BN_CTX_get(context); |
Jocelyn Bohr | ddcb1ce | 2015-08-14 15:32:09 -0700 | [diff] [blame] | 1639 | order = BN_CTX_get(context); |
| 1640 | if( order == NULL |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1641 | || (group = EccCurveInit(curveId, context)) == NULL) |
| 1642 | FAIL(FATAL_ERROR_INTERNAL); |
| 1643 | #ifdef _SM2_SIGN_DEBUG |
| 1644 | cpy_hexTo2B(&Qin->x.b, |
| 1645 | "0AE4C7798AA0F119471BEE11825BE46202BB79E2A5844495E97C04FF4DF2548A"); |
| 1646 | cpy_hexTo2B(&Qin->y.b, |
| 1647 | "7C0240F88F1CD4E16352A73C17B7F16F07353E53A176D684A9FE0C6BB798E857"); |
| 1648 | cpy_hexTo2B(digest, |
| 1649 | "B524F552CD82B8B028476E005C377FB19A87E6FC682D48BB5D42E3D9B9EFFE76"); |
| 1650 | #endif |
| 1651 | pQ = EccInitPoint2B(group, Qin, context); |
| 1652 | #ifdef _SM2_SIGN_DEBUG |
| 1653 | pAssert(EC_POINT_get_affine_coordinates_GFp(group, pQ, bnT, bnS, context)); |
| 1654 | pAssert(cmp_bn2hex(bnT, |
| 1655 | "0AE4C7798AA0F119471BEE11825BE46202BB79E2A5844495E97C04FF4DF2548A") |
| 1656 | == 0); |
| 1657 | pAssert(cmp_bn2hex(bnS, |
| 1658 | "7C0240F88F1CD4E16352A73C17B7F16F07353E53A176D684A9FE0C6BB798E857") |
| 1659 | == 0); |
| 1660 | #endif |
| 1661 | BnFrom2B(bnR, &rIn->b); |
| 1662 | BnFrom2B(bnS, &sIn->b); |
| 1663 | BnFrom2B(bnE, digest); |
| 1664 | #ifdef _SM2_SIGN_DEBUG |
| 1665 | // Make sure that the input signature is the test signature |
| 1666 | pAssert(cmp_2B2hex(&rIn->b, |
| 1667 | "40F1EC59F793D9F49E09DCEF49130D4194F79FB1EED2CAA55BACDB49C4E755D1") == 0); |
| 1668 | pAssert(cmp_2B2hex(&sIn->b, |
| 1669 | "6FC6DAC32C5D5CF10C77DFB20F7C2EB667A457872FB09EC56327A67EC7DEEBE7") == 0); |
| 1670 | #endif |
| 1671 | // a) verify that r and s are in the inclusive interval 1 to (n 1) |
Jocelyn Bohr | ddcb1ce | 2015-08-14 15:32:09 -0700 | [diff] [blame] | 1672 | if (!EC_GROUP_get_order(group, order, context)) goto Cleanup; |
| 1673 | fail = (BN_ucmp(bnR, order) >= 0); |
| 1674 | fail = (BN_ucmp(bnS, order) >= 0) || fail; |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1675 | if(fail) |
| 1676 | // There is no reason to continue. Since r and s are inputs from the caller, |
| 1677 | // they can know that the values are not in the proper range. So, exiting here |
| 1678 | // does not disclose any information. |
| 1679 | goto Cleanup; |
| 1680 | // b) compute t := (r + s) mod n |
Jocelyn Bohr | ddcb1ce | 2015-08-14 15:32:09 -0700 | [diff] [blame] | 1681 | if(!BN_mod_add(bnT, bnR, bnS, order, context)) |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1682 | FAIL(FATAL_ERROR_INTERNAL); |
| 1683 | #ifdef _SM2_SIGN_DEBUG |
| 1684 | pAssert(cmp_bn2hex(bnT, |
| 1685 | "2B75F07ED7ECE7CCC1C8986B991F441AD324D6D619FE06DD63ED32E0C997C801") |
| 1686 | == 0); |
| 1687 | #endif |
| 1688 | // c) verify that t > 0 |
| 1689 | if(BN_is_zero(bnT)) { |
| 1690 | fail = TRUE; |
| 1691 | // set to a value that should allow rest of the computations to run without |
| 1692 | // trouble |
| 1693 | BN_copy(bnT, bnS); |
| 1694 | } |
| 1695 | // d) compute (x, y) := [s]G + [t]Q |
| 1696 | if(!EC_POINT_mul(group, pQ, bnS, pQ, bnT, context)) |
| 1697 | FAIL(FATAL_ERROR_INTERNAL); |
| 1698 | // Get the x coordinate of the point |
| 1699 | if(!EC_POINT_get_affine_coordinates_GFp(group, pQ, bnT, NULL, context)) |
| 1700 | FAIL(FATAL_ERROR_INTERNAL); |
| 1701 | #ifdef _SM2_SIGN_DEBUG |
| 1702 | pAssert(cmp_bn2hex(bnT, |
| 1703 | "110FCDA57615705D5E7B9324AC4B856D23E6D9188B2AE47759514657CE25D112") |
| 1704 | == 0); |
| 1705 | #endif |
| 1706 | // e) compute r' := (e + x) mod n (the x coordinate is in bnT) |
Jocelyn Bohr | ddcb1ce | 2015-08-14 15:32:09 -0700 | [diff] [blame] | 1707 | if(!BN_mod_add(bnRp, bnE, bnT, order, context)) |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1708 | FAIL(FATAL_ERROR_INTERNAL); |
| 1709 | // f) verify that r' = r |
| 1710 | fail = BN_ucmp(bnR, bnRp) != 0 || fail; |
| 1711 | Cleanup: |
| 1712 | if(pQ) EC_POINT_free(pQ); |
| 1713 | if(group) EC_GROUP_free(group); |
| 1714 | BN_CTX_end(context); |
| 1715 | BN_CTX_free(context); |
| 1716 | if(fail) |
| 1717 | return CRYPT_FAIL; |
| 1718 | else |
| 1719 | return CRYPT_SUCCESS; |
| 1720 | } |
| 1721 | #endif //% TPM_ALG_SM2 |
| 1722 | // |
| 1723 | // |
| 1724 | // _cpri__ValidateSignatureEcc() |
| 1725 | // |
| 1726 | // This function validates |
| 1727 | // |
| 1728 | // Return Value Meaning |
| 1729 | // |
| 1730 | // CRYPT_SUCCESS signature is valid |
| 1731 | // CRYPT_FAIL not a valid signature |
| 1732 | // CRYPT_SCHEME unsupported scheme |
| 1733 | // |
| 1734 | LIB_EXPORT CRYPT_RESULT |
| 1735 | _cpri__ValidateSignatureEcc( |
| 1736 | TPM2B_ECC_PARAMETER *rIn, // IN: r component of the signature |
| 1737 | TPM2B_ECC_PARAMETER *sIn, // IN: s component of the signature |
| 1738 | TPM_ALG_ID scheme, // IN: the scheme selector |
| 1739 | TPM_ALG_ID hashAlg, // IN: the hash algorithm used (not used |
| 1740 | // in all schemes) |
| 1741 | TPM_ECC_CURVE curveId, // IN: the curve used in the signature |
| 1742 | // process |
| 1743 | TPMS_ECC_POINT *Qin, // IN: the public point of the key |
| 1744 | TPM2B *digest // IN: the digest that was signed |
| 1745 | ) |
| 1746 | { |
| 1747 | CRYPT_RESULT retVal; |
| 1748 | // return failure if either part of the signature is zero |
| 1749 | if(_math__Normalize2B(&rIn->b) == 0 || _math__Normalize2B(&sIn->b) == 0) |
| 1750 | return CRYPT_FAIL; |
| 1751 | switch (scheme) |
| 1752 | { |
| 1753 | case TPM_ALG_ECDSA: |
| 1754 | retVal = ValidateSignatureEcdsa(rIn, sIn, curveId, Qin, digest); |
| 1755 | break; |
| 1756 | #ifdef TPM_ALG_ECSCHNORR |
| 1757 | case TPM_ALG_ECSCHNORR: |
| 1758 | retVal = ValidateSignatureEcSchnorr(rIn, sIn, hashAlg, curveId, Qin, |
| 1759 | digest); |
| 1760 | break; |
| 1761 | #endif |
| 1762 | #ifdef TPM_ALG_SM2 |
| 1763 | case TPM_ALG_SM2: |
| 1764 | retVal = ValidateSignatureSM2Dsa(rIn, sIn, curveId, Qin, digest); |
| 1765 | #endif |
| 1766 | default: |
| 1767 | retVal = CRYPT_SCHEME; |
| 1768 | break; |
| 1769 | } |
| 1770 | return retVal; |
| 1771 | } |
| 1772 | #if CC_ZGen_2Phase == YES //% |
| 1773 | #ifdef TPM_ALG_ECMQV |
| 1774 | // |
| 1775 | // |
| 1776 | // avf1() |
| 1777 | // |
| 1778 | // This function does the associated value computation required by MQV key exchange. Process: |
| 1779 | // a) Convert xQ to an integer xqi using the convention specified in Appendix C.3. |
| 1780 | // b) Calculate xqm = xqi mod 2^ceil(f/2) (where f = ceil(log2(n)). |
| 1781 | // c) Calculate the associate value function avf(Q) = xqm + 2ceil(f / 2) |
| 1782 | // |
| 1783 | static BOOL |
| 1784 | avf1( |
| 1785 | BIGNUM *bnX, // IN/OUT: the reduced value |
| 1786 | BIGNUM *bnN // IN: the order of the curve |
| 1787 | ) |
| 1788 | { |
| 1789 | // compute f = 2^(ceil(ceil(log2(n)) / 2)) |
| 1790 | int f = (BN_num_bits(bnN) + 1) / 2; |
| 1791 | // x' = 2^f + (x mod 2^f) |
| 1792 | BN_mask_bits(bnX, f); // This is mod 2*2^f but it doesn't matter because |
| 1793 | // the next operation will SET the extra bit anyway |
| 1794 | BN_set_bit(bnX, f); |
| 1795 | return TRUE; |
| 1796 | } |
| 1797 | // |
| 1798 | // |
| 1799 | // C_2_2_MQV() |
| 1800 | // |
| 1801 | // This function performs the key exchange defined in SP800-56A 6.1.1.4 Full MQV, C(2, 2, ECC MQV). |
| 1802 | // CAUTION: Implementation of this function may require use of essential claims in patents not owned by |
| 1803 | // TCG members. |
| 1804 | // Points QsB() and QeB() are required to be on the curve of inQsA. The function will fail, possibly |
| 1805 | // catastrophically, if this is not the case. |
| 1806 | // |
| 1807 | // |
| 1808 | // |
| 1809 | // Return Value Meaning |
| 1810 | // |
| 1811 | // CRYPT_SUCCESS results is valid |
| 1812 | // CRYPT_NO_RESULT the value for dsA does not give a valid point on the curve |
| 1813 | // |
| 1814 | static CRYPT_RESULT |
| 1815 | C_2_2_MQV( |
| 1816 | TPMS_ECC_POINT *outZ, // OUT: the computed point |
| 1817 | TPM_ECC_CURVE curveId, // IN: the curve for the computations |
| 1818 | TPM2B_ECC_PARAMETER *dsA, // IN: static private TPM key |
| 1819 | TPM2B_ECC_PARAMETER *deA, // IN: ephemeral private TPM key |
| 1820 | TPMS_ECC_POINT *QsB, // IN: static public party B key |
| 1821 | TPMS_ECC_POINT *QeB // IN: ephemeral public party B key |
| 1822 | ) |
| 1823 | { |
| 1824 | BN_CTX *context; |
| 1825 | EC_POINT *pQeA = NULL; |
| 1826 | EC_POINT *pQeB = NULL; |
| 1827 | EC_POINT *pQsB = NULL; |
| 1828 | EC_GROUP *group = NULL; |
| 1829 | BIGNUM *bnTa; |
| 1830 | BIGNUM *bnDeA; |
| 1831 | BIGNUM *bnDsA; |
| 1832 | BIGNUM *bnXeA; // x coordinate of ephemeral party A key |
| 1833 | BIGNUM *bnH; |
| 1834 | BIGNUM *bnN; |
| 1835 | BIGNUM *bnXeB; |
| 1836 | const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| 1837 | CRYPT_RESULT retVal; |
| 1838 | pAssert( curveData != NULL && outZ != NULL && dsA != NULL |
| 1839 | && deA != NULL && QsB != NULL && QeB != NULL); |
| 1840 | context = BN_CTX_new(); |
| 1841 | if(context == NULL || curveData == NULL) |
| 1842 | FAIL(FATAL_ERROR_ALLOCATION); |
| 1843 | BN_CTX_start(context); |
| 1844 | bnTa = BN_CTX_get(context); |
| 1845 | bnDeA = BN_CTX_get(context); |
| 1846 | bnDsA = BN_CTX_get(context); |
| 1847 | bnXeA = BN_CTX_get(context); |
| 1848 | bnH = BN_CTX_get(context); |
| 1849 | bnN = BN_CTX_get(context); |
| 1850 | bnXeB = BN_CTX_get(context); |
| 1851 | if(bnXeB == NULL) |
| 1852 | FAIL(FATAL_ERROR_ALLOCATION); |
| 1853 | // Process: |
| 1854 | // 1. implicitsigA = (de,A + avf(Qe,A)ds,A ) mod n. |
| 1855 | // 2. P = h(implicitsigA)(Qe,B + avf(Qe,B)Qs,B). |
| 1856 | // 3. If P = O, output an error indicator. |
| 1857 | // 4. Z=xP, where xP is the x-coordinate of P. |
| 1858 | // Initialize group parameters and local values of input |
| 1859 | if((group = EccCurveInit(curveId, context)) == NULL) |
| 1860 | FAIL(FATAL_ERROR_INTERNAL); |
| 1861 | if((pQeA = EC_POINT_new(group)) == NULL) |
| 1862 | FAIL(FATAL_ERROR_ALLOCATION); |
| 1863 | BnFrom2B(bnDeA, &deA->b); |
| 1864 | BnFrom2B(bnDsA, &dsA->b); |
| 1865 | BnFrom2B(bnH, curveData->h); |
| 1866 | BnFrom2B(bnN, curveData->n); |
| 1867 | BnFrom2B(bnXeB, &QeB->x.b); |
| 1868 | pQeB = EccInitPoint2B(group, QeB, context); |
| 1869 | pQsB = EccInitPoint2B(group, QsB, context); |
| 1870 | // Compute the public ephemeral key pQeA = [de,A]G |
| 1871 | if( (retVal = PointMul(group, pQeA, bnDeA, NULL, NULL, context)) |
| 1872 | != CRYPT_SUCCESS) |
| 1873 | goto Cleanup; |
| 1874 | if(EC_POINT_get_affine_coordinates_GFp(group, pQeA, bnXeA, NULL, context) != 1) |
| 1875 | FAIL(FATAL_ERROR_INTERNAL); |
| 1876 | // 1. implicitsigA = (de,A + avf(Qe,A)ds,A ) mod n. |
| 1877 | // tA := (ds,A + de,A avf(Xe,A)) mod n (3) |
| 1878 | // Compute 'tA' = ('deA' + 'dsA' avf('XeA')) mod n |
| 1879 | // Ta = avf(XeA); |
| 1880 | BN_copy(bnTa, bnXeA); |
| 1881 | avf1(bnTa, bnN); |
| 1882 | if(// do Ta = ds,A * Ta mod n = dsA * avf(XeA) mod n |
| 1883 | !BN_mod_mul(bnTa, bnDsA, bnTa, bnN, context) |
| 1884 | // now Ta = deA + Ta mod n = deA + dsA * avf(XeA) mod n |
| 1885 | || !BN_mod_add(bnTa, bnDeA, bnTa, bnN, context) |
| 1886 | ) |
| 1887 | FAIL(FATAL_ERROR_INTERNAL); |
| 1888 | // 2. P = h(implicitsigA)(Qe,B + avf(Qe,B)Qs,B). |
| 1889 | // Put this in because almost every case of h is == 1 so skip the call when |
| 1890 | // not necessary. |
| 1891 | if(!BN_is_one(bnH)) |
| 1892 | { |
| 1893 | // Cofactor is not 1 so compute Ta := Ta * h mod n |
| 1894 | if(!BN_mul(bnTa, bnTa, bnH, context)) |
| 1895 | FAIL(FATAL_ERROR_INTERNAL); |
| 1896 | } |
| 1897 | // Now that 'tA' is (h * 'tA' mod n) |
| 1898 | // 'outZ' = (tA)(Qe,B + avf(Qe,B)Qs,B). |
| 1899 | // first, compute XeB = avf(XeB) |
| 1900 | avf1(bnXeB, bnN); |
| 1901 | // QsB := [XeB]QsB |
| 1902 | if( !EC_POINT_mul(group, pQsB, NULL, pQsB, bnXeB, context) |
| 1903 | // QeB := QsB + QeB |
| 1904 | || !EC_POINT_add(group, pQeB, pQeB, pQsB, context) |
| 1905 | ) |
| 1906 | FAIL(FATAL_ERROR_INTERNAL); |
| 1907 | // QeB := [tA]QeB = [tA](QsB + [Xe,B]QeB) and check for at infinity |
| 1908 | if(PointMul(group, pQeB, NULL, pQeB, bnTa, context) == CRYPT_SUCCESS) |
| 1909 | // Convert BIGNUM E to TPM2B E |
| 1910 | Point2B(group, outZ, pQeB, (INT16)BN_num_bytes(bnN), context); |
| 1911 | Cleanup: |
| 1912 | if(pQeA != NULL) EC_POINT_free(pQeA); |
| 1913 | if(pQeB != NULL) EC_POINT_free(pQeB); |
| 1914 | if(pQsB != NULL) EC_POINT_free(pQsB); |
| 1915 | if(group != NULL) EC_GROUP_free(group); |
| 1916 | BN_CTX_end(context); |
| 1917 | BN_CTX_free(context); |
| 1918 | return retVal; |
| 1919 | } |
| 1920 | #endif // TPM_ALG_ECMQV |
| 1921 | #ifdef TPM_ALG_SM2 //% |
| 1922 | // |
| 1923 | // |
| 1924 | // avfSm2() |
| 1925 | // |
| 1926 | // This function does the associated value computation required by SM2 key exchange. This is different |
| 1927 | // form the avf() in the international standards because it returns a value that is half the size of the value |
| 1928 | // returned by the standard avf. For example, if n is 15, Ws (w in the standard) is 2 but the W here is 1. This |
| 1929 | // means that an input value of 14 (1110b) would return a value of 110b with the standard but 10b with the |
| 1930 | // scheme in SM2. |
| 1931 | // |
| 1932 | static BOOL |
| 1933 | avfSm2( |
| 1934 | BIGNUM *bnX, // IN/OUT: the reduced value |
| 1935 | BIGNUM *bnN // IN: the order of the curve |
| 1936 | ) |
| 1937 | { |
| 1938 | // a) set w := ceil(ceil(log2(n)) / 2) - 1 |
| 1939 | int w = ((BN_num_bits(bnN) + 1) / 2) - 1; |
| 1940 | // b) set x' := 2^w + ( x & (2^w - 1)) |
| 1941 | // This is just like the avf for MQV where x' = 2^w + (x mod 2^w) |
| 1942 | BN_mask_bits(bnX, w); // as wiht avf1, this is too big by a factor of 2 but |
| 1943 | // it doesn't matter becasue we SET the extra bit anyway |
| 1944 | BN_set_bit(bnX, w); |
| 1945 | return TRUE; |
| 1946 | } |
| 1947 | // |
| 1948 | // SM2KeyExchange() This function performs the key exchange defined in SM2. The first step is to compute |
| 1949 | // tA = (dsA + deA avf(Xe,A)) mod n Then, compute the Z value from outZ = (h tA mod n) (QsA + |
| 1950 | // [avf(QeB().x)](QeB())). The function will compute the ephemeral public key from the ephemeral private |
| 1951 | // key. All points are required to be on the curve of inQsA. The function will fail catastrophically if this is not |
| 1952 | // the case |
| 1953 | // |
| 1954 | // Return Value Meaning |
| 1955 | // |
| 1956 | // CRYPT_SUCCESS results is valid |
| 1957 | // CRYPT_NO_RESULT the value for dsA does not give a valid point on the curve |
| 1958 | // |
| 1959 | static CRYPT_RESULT |
| 1960 | SM2KeyExchange( |
| 1961 | TPMS_ECC_POINT *outZ, // OUT: the computed point |
| 1962 | TPM_ECC_CURVE curveId, // IN: the curve for the computations |
| 1963 | TPM2B_ECC_PARAMETER *dsA, // IN: static private TPM key |
| 1964 | TPM2B_ECC_PARAMETER *deA, // IN: ephemeral private TPM key |
| 1965 | TPMS_ECC_POINT *QsB, // IN: static public party B key |
| 1966 | TPMS_ECC_POINT *QeB // IN: ephemeral public party B key |
| 1967 | ) |
| 1968 | { |
| 1969 | BN_CTX *context; |
| 1970 | EC_POINT *pQeA = NULL; |
| 1971 | EC_POINT *pQeB = NULL; |
| 1972 | EC_POINT *pQsB = NULL; |
| 1973 | EC_GROUP *group = NULL; |
| 1974 | BIGNUM *bnTa; |
| 1975 | BIGNUM *bnDeA; |
| 1976 | BIGNUM *bnDsA; |
| 1977 | BIGNUM *bnXeA; // x coordinate of ephemeral party A key |
| 1978 | BIGNUM *bnH; |
| 1979 | BIGNUM *bnN; |
| 1980 | BIGNUM *bnXeB; |
| 1981 | // |
| 1982 | const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| 1983 | CRYPT_RESULT retVal; |
| 1984 | pAssert( curveData != NULL && outZ != NULL && dsA != NULL |
| 1985 | && deA != NULL && QsB != NULL && QeB != NULL); |
| 1986 | context = BN_CTX_new(); |
| 1987 | if(context == NULL || curveData == NULL) |
| 1988 | FAIL(FATAL_ERROR_ALLOCATION); |
| 1989 | BN_CTX_start(context); |
| 1990 | bnTa = BN_CTX_get(context); |
| 1991 | bnDeA = BN_CTX_get(context); |
| 1992 | bnDsA = BN_CTX_get(context); |
| 1993 | bnXeA = BN_CTX_get(context); |
| 1994 | bnH = BN_CTX_get(context); |
| 1995 | bnN = BN_CTX_get(context); |
| 1996 | bnXeB = BN_CTX_get(context); |
| 1997 | if(bnXeB == NULL) |
| 1998 | FAIL(FATAL_ERROR_ALLOCATION); |
| 1999 | // Initialize group parameters and local values of input |
| 2000 | if((group = EccCurveInit(curveId, context)) == NULL) |
| 2001 | FAIL(FATAL_ERROR_INTERNAL); |
| 2002 | if((pQeA = EC_POINT_new(group)) == NULL) |
| 2003 | FAIL(FATAL_ERROR_ALLOCATION); |
| 2004 | BnFrom2B(bnDeA, &deA->b); |
| 2005 | BnFrom2B(bnDsA, &dsA->b); |
| 2006 | BnFrom2B(bnH, curveData->h); |
| 2007 | BnFrom2B(bnN, curveData->n); |
| 2008 | BnFrom2B(bnXeB, &QeB->x.b); |
| 2009 | pQeB = EccInitPoint2B(group, QeB, context); |
| 2010 | pQsB = EccInitPoint2B(group, QsB, context); |
| 2011 | // Compute the public ephemeral key pQeA = [de,A]G |
| 2012 | if( (retVal = PointMul(group, pQeA, bnDeA, NULL, NULL, context)) |
| 2013 | != CRYPT_SUCCESS) |
| 2014 | goto Cleanup; |
| 2015 | if(EC_POINT_get_affine_coordinates_GFp(group, pQeA, bnXeA, NULL, context) != 1) |
| 2016 | FAIL(FATAL_ERROR_INTERNAL); |
| 2017 | // tA := (ds,A + de,A avf(Xe,A)) mod n (3) |
| 2018 | // Compute 'tA' = ('dsA' + 'deA' avf('XeA')) mod n |
| 2019 | // Ta = avf(XeA); |
| 2020 | BN_copy(bnTa, bnXeA); |
| 2021 | avfSm2(bnTa, bnN); |
| 2022 | if(// do Ta = de,A * Ta mod n = deA * avf(XeA) mod n |
| 2023 | !BN_mod_mul(bnTa, bnDeA, bnTa, bnN, context) |
| 2024 | // now Ta = dsA + Ta mod n = dsA + deA * avf(XeA) mod n |
| 2025 | || !BN_mod_add(bnTa, bnDsA, bnTa, bnN, context) |
| 2026 | ) |
| 2027 | FAIL(FATAL_ERROR_INTERNAL); |
| 2028 | // outZ ? [h tA mod n] (Qs,B + [avf(Xe,B)](Qe,B)) (4) |
| 2029 | // Put this in because almost every case of h is == 1 so skip the call when |
| 2030 | // not necessary. |
| 2031 | if(!BN_is_one(bnH)) |
| 2032 | { |
| 2033 | // Cofactor is not 1 so compute Ta := Ta * h mod n |
| 2034 | if(!BN_mul(bnTa, bnTa, bnH, context)) |
| 2035 | FAIL(FATAL_ERROR_INTERNAL); |
| 2036 | } |
| 2037 | // Now that 'tA' is (h * 'tA' mod n) |
| 2038 | // 'outZ' = ['tA'](QsB + [avf(QeB.x)](QeB)). |
| 2039 | // first, compute XeB = avf(XeB) |
| 2040 | avfSm2(bnXeB, bnN); |
| 2041 | // QeB := [XeB]QeB |
| 2042 | if( !EC_POINT_mul(group, pQeB, NULL, pQeB, bnXeB, context) |
| 2043 | // QeB := QsB + QeB |
| 2044 | || !EC_POINT_add(group, pQeB, pQeB, pQsB, context) |
| 2045 | ) |
| 2046 | FAIL(FATAL_ERROR_INTERNAL); |
| 2047 | // QeB := [tA]QeB = [tA](QsB + [Xe,B]QeB) and check for at infinity |
| 2048 | if(PointMul(group, pQeB, NULL, pQeB, bnTa, context) == CRYPT_SUCCESS) |
| 2049 | // Convert BIGNUM E to TPM2B E |
| 2050 | Point2B(group, outZ, pQeB, (INT16)BN_num_bytes(bnN), context); |
| 2051 | Cleanup: |
| 2052 | if(pQeA != NULL) EC_POINT_free(pQeA); |
| 2053 | if(pQeB != NULL) EC_POINT_free(pQeB); |
| 2054 | if(pQsB != NULL) EC_POINT_free(pQsB); |
| 2055 | if(group != NULL) EC_GROUP_free(group); |
| 2056 | BN_CTX_end(context); |
| 2057 | BN_CTX_free(context); |
| 2058 | return retVal; |
| 2059 | } |
| 2060 | #endif //% TPM_ALG_SM2 |
| 2061 | // |
| 2062 | // |
| 2063 | // C_2_2_ECDH() |
| 2064 | // |
| 2065 | // This function performs the two phase key exchange defined in SP800-56A, 6.1.1.2 Full Unified Model, |
| 2066 | // C(2, 2, ECC CDH). |
| 2067 | // |
| 2068 | static CRYPT_RESULT |
| 2069 | C_2_2_ECDH( |
| 2070 | TPMS_ECC_POINT *outZ1, // OUT: Zs |
| 2071 | TPMS_ECC_POINT *outZ2, // OUT: Ze |
| 2072 | TPM_ECC_CURVE curveId, // IN: the curve for the computations |
| 2073 | TPM2B_ECC_PARAMETER *dsA, // IN: static private TPM key |
| 2074 | TPM2B_ECC_PARAMETER *deA, // IN: ephemeral private TPM key |
| 2075 | TPMS_ECC_POINT *QsB, // IN: static public party B key |
| 2076 | TPMS_ECC_POINT *QeB // IN: ephemeral public party B key |
| 2077 | ) |
| 2078 | { |
Jocelyn Bohr | ddcb1ce | 2015-08-14 15:32:09 -0700 | [diff] [blame] | 2079 | BIGNUM *order; |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 2080 | BN_CTX *context; |
| 2081 | EC_POINT *pQ = NULL; |
| 2082 | EC_GROUP *group = NULL; |
| 2083 | BIGNUM *bnD; |
| 2084 | INT16 size; |
| 2085 | const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| 2086 | context = BN_CTX_new(); |
| 2087 | if(context == NULL || curveData == NULL) |
| 2088 | FAIL(FATAL_ERROR_ALLOCATION); |
| 2089 | BN_CTX_start(context); |
Jocelyn Bohr | ddcb1ce | 2015-08-14 15:32:09 -0700 | [diff] [blame] | 2090 | order = BN_CTX_get(context); |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 2091 | if((bnD = BN_CTX_get(context)) == NULL) |
| 2092 | FAIL(FATAL_ERROR_INTERNAL); |
| 2093 | // Initialize group parameters and local values of input |
| 2094 | if((group = EccCurveInit(curveId, context)) == NULL) |
| 2095 | FAIL(FATAL_ERROR_INTERNAL); |
Jocelyn Bohr | ddcb1ce | 2015-08-14 15:32:09 -0700 | [diff] [blame] | 2096 | if (!EC_GROUP_get_order(group, order, context)) |
| 2097 | FAIL(FATAL_ERROR_INTERNAL); |
| 2098 | size = (INT16)BN_num_bytes(order); |
Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 2099 | // Get the static private key of A |
| 2100 | BnFrom2B(bnD, &dsA->b); |
| 2101 | // Initialize the static public point from B |
| 2102 | pQ = EccInitPoint2B(group, QsB, context); |
| 2103 | // Do the point multiply for the Zs value |
| 2104 | if(PointMul(group, pQ, NULL, pQ, bnD, context) != CRYPT_NO_RESULT) |
| 2105 | // Convert the Zs value |
| 2106 | Point2B(group, outZ1, pQ, size, context); |
| 2107 | // Get the ephemeral private key of A |
| 2108 | BnFrom2B(bnD, &deA->b); |
| 2109 | // Initalize the ephemeral public point from B |
| 2110 | PointFrom2B(group, pQ, QeB, context); |
| 2111 | // Do the point multiply for the Ze value |
| 2112 | if(PointMul(group, pQ, NULL, pQ, bnD, context) != CRYPT_NO_RESULT) |
| 2113 | // Convert the Ze value. |
| 2114 | Point2B(group, outZ2, pQ, size, context); |
| 2115 | if(pQ != NULL) EC_POINT_free(pQ); |
| 2116 | if(group != NULL) EC_GROUP_free(group); |
| 2117 | BN_CTX_end(context); |
| 2118 | BN_CTX_free(context); |
| 2119 | return CRYPT_SUCCESS; |
| 2120 | } |
| 2121 | // |
| 2122 | // |
| 2123 | // _cpri__C_2_2_KeyExchange() |
| 2124 | // |
| 2125 | // This function is the dispatch routine for the EC key exchange function that use two ephemeral and two |
| 2126 | // static keys. |
| 2127 | // |
| 2128 | // Return Value Meaning |
| 2129 | // |
| 2130 | // CRYPT_SCHEME scheme is not defined |
| 2131 | // |
| 2132 | LIB_EXPORT CRYPT_RESULT |
| 2133 | _cpri__C_2_2_KeyExchange( |
| 2134 | TPMS_ECC_POINT *outZ1, // OUT: a computed point |
| 2135 | TPMS_ECC_POINT *outZ2, // OUT: and optional second point |
| 2136 | TPM_ECC_CURVE curveId, // IN: the curve for the computations |
| 2137 | TPM_ALG_ID scheme, // IN: the key exchange scheme |
| 2138 | TPM2B_ECC_PARAMETER *dsA, // IN: static private TPM key |
| 2139 | TPM2B_ECC_PARAMETER *deA, // IN: ephemeral private TPM key |
| 2140 | TPMS_ECC_POINT *QsB, // IN: static public party B key |
| 2141 | TPMS_ECC_POINT *QeB // IN: ephemeral public party B key |
| 2142 | ) |
| 2143 | { |
| 2144 | pAssert( outZ1 != NULL |
| 2145 | && dsA != NULL && deA != NULL |
| 2146 | && QsB != NULL && QeB != NULL); |
| 2147 | // Initalize the output points so that they are empty until one of the |
| 2148 | // functions decides otherwise |
| 2149 | outZ1->x.b.size = 0; |
| 2150 | outZ1->y.b.size = 0; |
| 2151 | if(outZ2 != NULL) |
| 2152 | { |
| 2153 | outZ2->x.b.size = 0; |
| 2154 | outZ2->y.b.size = 0; |
| 2155 | } |
| 2156 | switch (scheme) |
| 2157 | { |
| 2158 | case TPM_ALG_ECDH: |
| 2159 | return C_2_2_ECDH(outZ1, outZ2, curveId, dsA, deA, QsB, QeB); |
| 2160 | break; |
| 2161 | #ifdef TPM_ALG_ECMQV |
| 2162 | case TPM_ALG_ECMQV: |
| 2163 | return C_2_2_MQV(outZ1, curveId, dsA, deA, QsB, QeB); |
| 2164 | break; |
| 2165 | #endif |
| 2166 | #ifdef TPM_ALG_SM2 |
| 2167 | case TPM_ALG_SM2: |
| 2168 | return SM2KeyExchange(outZ1, curveId, dsA, deA, QsB, QeB); |
| 2169 | break; |
| 2170 | #endif |
| 2171 | default: |
| 2172 | return CRYPT_SCHEME; |
| 2173 | } |
| 2174 | } |
| 2175 | #else //% |
| 2176 | // |
| 2177 | // Stub used when the 2-phase key exchange is not defined so that the linker has something to associate |
| 2178 | // with the value in the .def file. |
| 2179 | // |
| 2180 | LIB_EXPORT CRYPT_RESULT |
| 2181 | _cpri__C_2_2_KeyExchange( |
| 2182 | void |
| 2183 | ) |
| 2184 | { |
| 2185 | return CRYPT_FAIL; |
| 2186 | } |
| 2187 | #endif //% CC_ZGen_2Phase |
| 2188 | #endif // TPM_ALG_ECC |