Vadim Bendebury | 5679752 | 2015-05-20 10:32:25 -0700 | [diff] [blame] | 1 | // This file was extracted from the TCG Published |
| 2 | // Trusted Platform Module Library |
| 3 | // Part 4: Supporting Routines |
| 4 | // Family "2.0" |
| 5 | // Level 00 Revision 01.16 |
| 6 | // October 30, 2014 |
| 7 | |
| 8 | #include "OsslCryptoEngine.h" |
| 9 | // |
| 10 | // The following sets of defines are used to allow use of the SM4 algorithm identifier while waiting for the |
| 11 | // SM4 implementation code to appear. |
| 12 | // |
| 13 | typedef AES_KEY SM4_KEY; |
| 14 | #define SM4_set_encrypt_key AES_set_encrypt_key |
| 15 | #define SM4_set_decrypt_key AES_set_decrypt_key |
| 16 | #define SM4_decrypt AES_decrypt |
| 17 | #define SM4_encrypt AES_encrypt |
| 18 | // |
| 19 | // |
| 20 | // Utility Functions |
| 21 | // |
| 22 | // _cpri_SymStartup() |
| 23 | // |
| 24 | LIB_EXPORT BOOL |
| 25 | _cpri__SymStartup( |
| 26 | void |
| 27 | ) |
| 28 | { |
| 29 | return TRUE; |
| 30 | } |
| 31 | // |
| 32 | // |
| 33 | // _cpri__GetSymmetricBlockSize() |
| 34 | // |
| 35 | // This function returns the block size of the algorithm. |
| 36 | // |
| 37 | // Return Value Meaning |
| 38 | // |
| 39 | // <= 0 cipher not supported |
| 40 | // >0 the cipher block size in bytes |
| 41 | // |
| 42 | LIB_EXPORT INT16 |
| 43 | _cpri__GetSymmetricBlockSize( |
| 44 | TPM_ALG_ID symmetricAlg, // IN: the symmetric algorithm |
| 45 | UINT16 keySizeInBits // IN: the key size |
| 46 | ) |
| 47 | { |
| 48 | switch (symmetricAlg) |
| 49 | { |
| 50 | #ifdef TPM_ALG_AES |
| 51 | case TPM_ALG_AES: |
| 52 | #endif |
| 53 | #ifdef TPM_ALG_SM4 // Both AES and SM4 use the same block size |
| 54 | case TPM_ALG_SM4: |
| 55 | #endif |
| 56 | if(keySizeInBits != 0) // This is mostly to have a reference to |
| 57 | // keySizeInBits for the compiler |
| 58 | return 16; |
| 59 | else |
| 60 | return 0; |
| 61 | break; |
| 62 | default: |
| 63 | return 0; |
| 64 | } |
| 65 | } |
| 66 | // |
| 67 | // |
| 68 | // AES Encryption |
| 69 | // |
| 70 | // _cpri__AESEncryptCBC() |
| 71 | // |
| 72 | // This function performs AES encryption in CBC chain mode. The input dIn buffer is encrypted into dOut. |
| 73 | // The input iv buffer is required to have a size equal to the block size (16 bytes). The dInSize is required to |
| 74 | // be a multiple of the block size. |
| 75 | // |
| 76 | // Return Value Meaning |
| 77 | // |
| 78 | // CRYPT_SUCCESS if success |
| 79 | // CRYPT_PARAMETER dInSize is not a multiple of the block size |
| 80 | // |
| 81 | LIB_EXPORT CRYPT_RESULT |
| 82 | _cpri__AESEncryptCBC( |
| 83 | BYTE *dOut, // OUT: |
| 84 | UINT32 keySizeInBits, // IN: key size in bit |
| 85 | BYTE *key, // IN: key buffer. The size of this buffer in |
| 86 | // bytes is (keySizeInBits + 7) / 8 |
| 87 | BYTE *iv, // IN/OUT: IV for decryption. |
| 88 | UINT32 dInSize, // IN: data size (is required to be a multiple |
| 89 | // of 16 bytes) |
| 90 | BYTE *dIn // IN: data buffer |
| 91 | ) |
| 92 | { |
| 93 | AES_KEY AesKey; |
| 94 | BYTE *pIv; |
| 95 | INT32 dSize; // Need a signed version |
| 96 | int i; |
| 97 | pAssert(dOut != NULL && key != NULL && iv != NULL && dIn != NULL); |
| 98 | if(dInSize == 0) |
| 99 | return CRYPT_SUCCESS; |
| 100 | pAssert(dInSize <= INT32_MAX); |
| 101 | dSize = (INT32)dInSize; |
| 102 | // For CBC, the data size must be an even multiple of the |
| 103 | // cipher block size |
| 104 | if((dSize % 16) != 0) |
| 105 | return CRYPT_PARAMETER; |
| 106 | // Create AES encrypt key schedule |
| 107 | if (AES_set_encrypt_key(key, keySizeInBits, &AesKey) != 0) |
| 108 | FAIL(FATAL_ERROR_INTERNAL); |
| 109 | // XOR the data block into the IV, encrypt the IV into the IV |
| 110 | // and then copy the IV to the output |
| 111 | for(; dSize > 0; dSize -= 16) |
| 112 | { |
| 113 | pIv = iv; |
| 114 | for(i = 16; i > 0; i--) |
| 115 | *pIv++ ^= *dIn++; |
| 116 | AES_encrypt(iv, iv, &AesKey); |
| 117 | pIv = iv; |
| 118 | for(i = 16; i > 0; i--) |
| 119 | *dOut++ = *pIv++; |
| 120 | } |
| 121 | return CRYPT_SUCCESS; |
| 122 | } |
| 123 | // |
| 124 | // |
| 125 | // _cpri__AESDecryptCBC() |
| 126 | // |
| 127 | // This function performs AES decryption in CBC chain mode. The input dIn buffer is decrypted into dOut. |
| 128 | // The input iv buffer is required to have a size equal to the block size (16 bytes). The dInSize is required to |
| 129 | // be a multiple of the block size. |
| 130 | // |
| 131 | // Return Value Meaning |
| 132 | // |
| 133 | // CRYPT_SUCCESS if success |
| 134 | // CRYPT_PARAMETER dInSize is not a multiple of the block size |
| 135 | // |
| 136 | LIB_EXPORT CRYPT_RESULT |
| 137 | _cpri__AESDecryptCBC( |
| 138 | BYTE *dOut, // OUT: the decrypted data |
| 139 | UINT32 keySizeInBits, // IN: key size in bit |
| 140 | BYTE *key, // IN: key buffer. The size of this buffer in |
| 141 | // bytes is (keySizeInBits + 7) / 8 |
| 142 | BYTE *iv, // IN/OUT: IV for decryption. The size of this |
| 143 | // buffer is 16 byte |
| 144 | UINT32 dInSize, // IN: data size |
| 145 | BYTE *dIn // IN: data buffer |
| 146 | ) |
| 147 | { |
| 148 | AES_KEY AesKey; |
| 149 | BYTE *pIv; |
| 150 | int i; |
| 151 | BYTE tmp[16]; |
| 152 | BYTE *pT = NULL; |
| 153 | INT32 dSize; |
| 154 | pAssert(dOut != NULL && key != NULL && iv != NULL && dIn != NULL); |
| 155 | if(dInSize == 0) |
| 156 | return CRYPT_SUCCESS; |
| 157 | pAssert(dInSize <= INT32_MAX); |
| 158 | dSize = (INT32)dInSize; |
| 159 | // For CBC, the data size must be an even multiple of the |
| 160 | // cipher block size |
| 161 | if((dSize % 16) != 0) |
| 162 | return CRYPT_PARAMETER; |
| 163 | // Create AES key schedule |
| 164 | if (AES_set_decrypt_key(key, keySizeInBits, &AesKey) != 0) |
| 165 | FAIL(FATAL_ERROR_INTERNAL); |
| 166 | // Copy the input data to a temp buffer, decrypt the buffer into the output; |
| 167 | // XOR in the IV, and copy the temp buffer to the IV and repeat. |
| 168 | for(; dSize > 0; dSize -= 16) |
| 169 | { |
| 170 | // |
| 171 | pT = tmp; |
| 172 | for(i = 16; i> 0; i--) |
| 173 | *pT++ = *dIn++; |
| 174 | AES_decrypt(tmp, dOut, &AesKey); |
| 175 | pIv = iv; |
| 176 | pT = tmp; |
| 177 | for(i = 16; i> 0; i--) |
| 178 | { |
| 179 | *dOut++ ^= *pIv; |
| 180 | *pIv++ = *pT++; |
| 181 | } |
| 182 | } |
| 183 | return CRYPT_SUCCESS; |
| 184 | } |
| 185 | // |
| 186 | // |
| 187 | // _cpri__AESEncryptCFB() |
| 188 | // |
| 189 | // This function performs AES encryption in CFB chain mode. The dOut buffer receives the values |
| 190 | // encrypted dIn. The input iv is assumed to be the size of an encryption block (16 bytes). The iv buffer will |
| 191 | // be modified to contain the last encrypted block. |
| 192 | // |
| 193 | // Return Value Meaning |
| 194 | // |
| 195 | // CRYPT_SUCCESS no non-fatal errors |
| 196 | // |
| 197 | LIB_EXPORT CRYPT_RESULT |
| 198 | _cpri__AESEncryptCFB( |
| 199 | BYTE *dOut, // OUT: the encrypted |
| 200 | UINT32 keySizeInBits, // IN: key size in bit |
| 201 | BYTE *key, // IN: key buffer. The size of this buffer in |
| 202 | // bytes is (keySizeInBits + 7) / 8 |
| 203 | BYTE *iv, // IN/OUT: IV for decryption. |
| 204 | UINT32 dInSize, // IN: data size |
| 205 | BYTE *dIn // IN: data buffer |
| 206 | ) |
| 207 | { |
| 208 | BYTE *pIv = NULL; |
| 209 | AES_KEY AesKey; |
| 210 | INT32 dSize; // Need a signed version of dInSize |
| 211 | int i; |
| 212 | pAssert(dOut != NULL && key != NULL && iv != NULL && dIn != NULL); |
| 213 | if(dInSize == 0) |
| 214 | return CRYPT_SUCCESS; |
| 215 | pAssert(dInSize <= INT32_MAX); |
| 216 | dSize = (INT32)dInSize; |
| 217 | // Create AES encryption key schedule |
| 218 | if (AES_set_encrypt_key(key, keySizeInBits, &AesKey) != 0) |
| 219 | FAIL(FATAL_ERROR_INTERNAL); |
| 220 | // Encrypt the IV into the IV, XOR in the data, and copy to output |
| 221 | for(; dSize > 0; dSize -= 16) |
| 222 | { |
| 223 | // Encrypt the current value of the IV |
| 224 | AES_encrypt(iv, iv, &AesKey); |
| 225 | pIv = iv; |
| 226 | for(i = (int)(dSize < 16) ? dSize : 16; i > 0; i--) |
| 227 | // XOR the data into the IV to create the cipher text |
| 228 | // and put into the output |
| 229 | *dOut++ = *pIv++ ^= *dIn++; |
| 230 | } |
| 231 | // If the inner loop (i loop) was smaller than 16, then dSize would have been |
| 232 | // smaller than 16 and it is now negative. If it is negative, then it indicates |
| 233 | // how many bytes are needed to pad out the IV for the next round. |
| 234 | for(; dSize < 0; dSize++) |
| 235 | *pIv++ = 0; |
| 236 | return CRYPT_SUCCESS; |
| 237 | } |
| 238 | // |
| 239 | // |
| 240 | // _cpri__AESDecryptCFB() |
| 241 | // |
| 242 | // This function performs AES decrypt in CFB chain mode. The dOut buffer receives the values decrypted |
| 243 | // from dIn. |
| 244 | // The input iv is assumed to be the size of an encryption block (16 bytes). The iv buffer will be modified to |
| 245 | // contain the last decoded block, padded with zeros |
| 246 | // |
| 247 | // Return Value Meaning |
| 248 | // |
| 249 | // CRYPT_SUCCESS no non-fatal errors |
| 250 | // |
| 251 | LIB_EXPORT CRYPT_RESULT |
| 252 | _cpri__AESDecryptCFB( |
| 253 | BYTE *dOut, // OUT: the decrypted data |
| 254 | UINT32 keySizeInBits, // IN: key size in bit |
| 255 | BYTE *key, // IN: key buffer. The size of this buffer in |
| 256 | // bytes is (keySizeInBits + 7) / 8 |
| 257 | BYTE *iv, // IN/OUT: IV for decryption. |
| 258 | UINT32 dInSize, // IN: data size |
| 259 | BYTE *dIn // IN: data buffer |
| 260 | ) |
| 261 | { |
| 262 | BYTE *pIv = NULL; |
| 263 | BYTE tmp[16]; |
| 264 | int i; |
| 265 | BYTE *pT; |
| 266 | AES_KEY AesKey; |
| 267 | INT32 dSize; |
| 268 | pAssert(dOut != NULL && key != NULL && iv != NULL && dIn != NULL); |
| 269 | if(dInSize == 0) |
| 270 | return CRYPT_SUCCESS; |
| 271 | pAssert(dInSize <= INT32_MAX); |
| 272 | dSize = (INT32)dInSize; |
| 273 | // Create AES encryption key schedule |
| 274 | if (AES_set_encrypt_key(key, keySizeInBits, &AesKey) != 0) |
| 275 | FAIL(FATAL_ERROR_INTERNAL); |
| 276 | for(; dSize > 0; dSize -= 16) |
| 277 | { |
| 278 | // Encrypt the IV into the temp buffer |
| 279 | AES_encrypt(iv, tmp, &AesKey); |
| 280 | pT = tmp; |
| 281 | pIv = iv; |
| 282 | for(i = (dSize < 16) ? dSize : 16; i > 0; i--) |
| 283 | // Copy the current cipher text to IV, XOR |
| 284 | // with the temp buffer and put into the output |
| 285 | *dOut++ = *pT++ ^ (*pIv++ = *dIn++); |
| 286 | } |
| 287 | // If the inner loop (i loop) was smaller than 16, then dSize |
| 288 | // would have been smaller than 16 and it is now negative |
| 289 | // If it is negative, then it indicates how may fill bytes |
| 290 | // are needed to pad out the IV for the next round. |
| 291 | for(; dSize < 0; dSize++) |
| 292 | *pIv++ = 0; |
| 293 | return CRYPT_SUCCESS; |
| 294 | } |
| 295 | // |
| 296 | // |
| 297 | // _cpri__AESEncryptCTR() |
| 298 | // |
| 299 | // This function performs AES encryption/decryption in CTR chain mode. The dIn buffer is encrypted into |
| 300 | // dOut. The input iv buffer is assumed to have a size equal to the AES block size (16 bytes). The iv will be |
| 301 | // incremented by the number of blocks (full and partial) that were encrypted. |
| 302 | // |
| 303 | // Return Value Meaning |
| 304 | // |
| 305 | // CRYPT_SUCCESS no non-fatal errors |
| 306 | // |
| 307 | LIB_EXPORT CRYPT_RESULT |
| 308 | _cpri__AESEncryptCTR( |
| 309 | BYTE *dOut, // OUT: the encrypted data |
| 310 | UINT32 keySizeInBits, // IN: key size in bit |
| 311 | BYTE *key, // IN: key buffer. The size of this buffer in |
| 312 | // bytes is (keySizeInBits + 7) / 8 |
| 313 | BYTE *iv, // IN/OUT: IV for decryption. |
| 314 | UINT32 dInSize, // IN: data size |
| 315 | BYTE *dIn // IN: data buffer |
| 316 | ) |
| 317 | { |
| 318 | BYTE tmp[16]; |
| 319 | BYTE *pT; |
| 320 | AES_KEY AesKey; |
| 321 | int i; |
| 322 | INT32 dSize; |
| 323 | pAssert(dOut != NULL && key != NULL && iv != NULL && dIn != NULL); |
| 324 | if(dInSize == 0) |
| 325 | return CRYPT_SUCCESS; |
| 326 | pAssert(dInSize <= INT32_MAX); |
| 327 | dSize = (INT32)dInSize; |
| 328 | // Create AES encryption schedule |
| 329 | if (AES_set_encrypt_key(key, keySizeInBits, &AesKey) != 0) |
| 330 | FAIL(FATAL_ERROR_INTERNAL); |
| 331 | for(; dSize > 0; dSize -= 16) |
| 332 | { |
| 333 | // Encrypt the current value of the IV(counter) |
| 334 | AES_encrypt(iv, (BYTE *)tmp, &AesKey); |
| 335 | //increment the counter (counter is big-endian so start at end) |
| 336 | for(i = 15; i >= 0; i--) |
| 337 | if((iv[i] += 1) != 0) |
| 338 | break; |
| 339 | // XOR the encrypted counter value with input and put into output |
| 340 | pT = tmp; |
| 341 | for(i = (dSize < 16) ? dSize : 16; i > 0; i--) |
| 342 | *dOut++ = *dIn++ ^ *pT++; |
| 343 | } |
| 344 | return CRYPT_SUCCESS; |
| 345 | } |
| 346 | // |
| 347 | // _cpri__AESDecryptCTR() |
| 348 | // |
| 349 | // Counter mode decryption uses the same algorithm as encryption. The _cpri__AESDecryptCTR() function |
| 350 | // is implemented as a macro call to _cpri__AESEncryptCTR(). (skip) |
| 351 | // |
| 352 | //% #define _cpri__AESDecryptCTR(dOut, keySize, key, iv, dInSize, dIn) \ |
| 353 | //% _cpri__AESEncryptCTR( \ |
| 354 | //% ((BYTE *)dOut), \ |
| 355 | //% ((UINT32)keySize), \ |
| 356 | //% ((BYTE *)key), \ |
| 357 | //% ((BYTE *)iv), \ |
| 358 | //% ((UINT32)dInSize), \ |
| 359 | //% ((BYTE *)dIn) \ |
| 360 | //% ) |
| 361 | //% |
| 362 | // The //% is used by the prototype extraction program to cause it to include the |
| 363 | // line in the prototype file after removing the //%. Need an extra line with |
| 364 | // |
| 365 | // nothing on it so that a blank line will separate this macro from the next definition. |
| 366 | // |
| 367 | // _cpri__AESEncryptECB() |
| 368 | // |
| 369 | // AES encryption in ECB mode. The data buffer is modified to contain the cipher text. |
| 370 | // |
| 371 | // Return Value Meaning |
| 372 | // |
| 373 | // CRYPT_SUCCESS no non-fatal errors |
| 374 | // |
| 375 | LIB_EXPORT CRYPT_RESULT |
| 376 | _cpri__AESEncryptECB( |
| 377 | BYTE *dOut, // OUT: encrypted data |
| 378 | UINT32 keySizeInBits, // IN: key size in bit |
| 379 | BYTE *key, // IN: key buffer. The size of this buffer in |
| 380 | // bytes is (keySizeInBits + 7) / 8 |
| 381 | UINT32 dInSize, // IN: data size |
| 382 | BYTE *dIn // IN: clear text buffer |
| 383 | ) |
| 384 | { |
| 385 | AES_KEY AesKey; |
| 386 | INT32 dSize; |
| 387 | pAssert(dOut != NULL && key != NULL && dIn != NULL); |
| 388 | if(dInSize == 0) |
| 389 | return CRYPT_SUCCESS; |
| 390 | pAssert(dInSize <= INT32_MAX); |
| 391 | dSize = (INT32)dInSize; |
| 392 | // For ECB, the data size must be an even multiple of the |
| 393 | // cipher block size |
| 394 | if((dSize % 16) != 0) |
| 395 | return CRYPT_PARAMETER; |
| 396 | // Create AES encrypting key schedule |
| 397 | if (AES_set_encrypt_key(key, keySizeInBits, &AesKey) != 0) |
| 398 | FAIL(FATAL_ERROR_INTERNAL); |
| 399 | for(; dSize > 0; dSize -= 16) |
| 400 | { |
| 401 | AES_encrypt(dIn, dOut, &AesKey); |
| 402 | dIn = &dIn[16]; |
| 403 | dOut = &dOut[16]; |
| 404 | } |
| 405 | return CRYPT_SUCCESS; |
| 406 | } |
| 407 | // |
| 408 | // |
| 409 | // _cpri__AESDecryptECB() |
| 410 | // |
| 411 | // This function performs AES decryption using ECB (not recommended). The cipher text dIn is decrypted |
| 412 | // into dOut. |
| 413 | // |
| 414 | // Return Value Meaning |
| 415 | // |
| 416 | // CRYPT_SUCCESS no non-fatal errors |
| 417 | // |
| 418 | LIB_EXPORT CRYPT_RESULT |
| 419 | _cpri__AESDecryptECB( |
| 420 | BYTE *dOut, // OUT: the clear text data |
| 421 | UINT32 keySizeInBits, // IN: key size in bit |
| 422 | BYTE *key, // IN: key buffer. The size of this buffer in |
| 423 | // bytes is (keySizeInBits + 7) / 8 |
| 424 | UINT32 dInSize, // IN: data size |
| 425 | BYTE *dIn // IN: cipher text buffer |
| 426 | ) |
| 427 | { |
| 428 | AES_KEY AesKey; |
| 429 | INT32 dSize; |
| 430 | pAssert(dOut != NULL && key != NULL && dIn != NULL); |
| 431 | if(dInSize == 0) |
| 432 | return CRYPT_SUCCESS; |
| 433 | pAssert(dInSize <= INT32_MAX); |
| 434 | dSize = (INT32)dInSize; |
| 435 | // For ECB, the data size must be an even multiple of the |
| 436 | // cipher block size |
| 437 | if((dSize % 16) != 0) |
| 438 | return CRYPT_PARAMETER; |
| 439 | // Create AES decryption key schedule |
| 440 | if (AES_set_decrypt_key(key, keySizeInBits, &AesKey) != 0) |
| 441 | FAIL(FATAL_ERROR_INTERNAL); |
| 442 | for(; dSize > 0; dSize -= 16) |
| 443 | { |
| 444 | AES_decrypt(dIn, dOut, &AesKey); |
| 445 | dIn = &dIn[16]; |
| 446 | dOut = &dOut[16]; |
| 447 | } |
| 448 | return CRYPT_SUCCESS; |
| 449 | } |
| 450 | // |
| 451 | // |
| 452 | // _cpri__AESEncryptOFB() |
| 453 | // |
| 454 | // This function performs AES encryption/decryption in OFB chain mode. The dIn buffer is modified to |
| 455 | // contain the encrypted/decrypted text. |
| 456 | // The input iv buffer is assumed to have a size equal to the block size (16 bytes). The returned value of iv |
| 457 | // will be the nth encryption of the IV, where n is the number of blocks (full or partial) in the data stream. |
| 458 | // |
| 459 | // |
| 460 | // |
| 461 | // |
| 462 | // Return Value Meaning |
| 463 | // |
| 464 | // CRYPT_SUCCESS no non-fatal errors |
| 465 | // |
| 466 | LIB_EXPORT CRYPT_RESULT |
| 467 | _cpri__AESEncryptOFB( |
| 468 | BYTE *dOut, // OUT: the encrypted/decrypted data |
| 469 | UINT32 keySizeInBits, // IN: key size in bit |
| 470 | BYTE *key, // IN: key buffer. The size of this buffer in |
| 471 | // bytes is (keySizeInBits + 7) / 8 |
| 472 | BYTE *iv, // IN/OUT: IV for decryption. The size of this |
| 473 | // buffer is 16 byte |
| 474 | UINT32 dInSize, // IN: data size |
| 475 | BYTE *dIn // IN: data buffer |
| 476 | ) |
| 477 | { |
| 478 | BYTE *pIv; |
| 479 | AES_KEY AesKey; |
| 480 | INT32 dSize; |
| 481 | int i; |
| 482 | pAssert(dOut != NULL && key != NULL && iv != NULL && dIn != NULL); |
| 483 | if(dInSize == 0) |
| 484 | return CRYPT_SUCCESS; |
| 485 | pAssert(dInSize <= INT32_MAX); |
| 486 | dSize = (INT32)dInSize; |
| 487 | // Create AES key schedule |
| 488 | if (AES_set_encrypt_key(key, keySizeInBits, &AesKey) != 0) |
| 489 | FAIL(FATAL_ERROR_INTERNAL); |
| 490 | // This is written so that dIn and dOut may be the same |
| 491 | for(; dSize > 0; dSize -= 16) |
| 492 | { |
| 493 | // Encrypt the current value of the "IV" |
| 494 | AES_encrypt(iv, iv, &AesKey); |
| 495 | // XOR the encrypted IV into dIn to create the cipher text (dOut) |
| 496 | pIv = iv; |
| 497 | for(i = (dSize < 16) ? dSize : 16; i > 0; i--) |
| 498 | *dOut++ = (*pIv++ ^ *dIn++); |
| 499 | } |
| 500 | return CRYPT_SUCCESS; |
| 501 | } |
| 502 | // |
| 503 | // |
| 504 | // _cpri__AESDecryptOFB() |
| 505 | // |
| 506 | // OFB encryption and decryption use the same algorithms for both. The _cpri__AESDecryptOFB() function |
| 507 | // is implemented as a macro call to _cpri__AESEncrytOFB(). (skip) |
| 508 | // |
| 509 | //%#define _cpri__AESDecryptOFB(dOut,keySizeInBits, key, iv, dInSize, dIn) \ |
| 510 | //% _cpri__AESEncryptOFB ( \ |
| 511 | //% ((BYTE *)dOut), \ |
| 512 | //% ((UINT32)keySizeInBits), \ |
| 513 | //% ((BYTE *)key), \ |
| 514 | //% ((BYTE *)iv), \ |
| 515 | //% ((UINT32)dInSize), \ |
| 516 | //% ((BYTE *)dIn) \ |
| 517 | //% ) |
| 518 | //% |
| 519 | // |
| 520 | #ifdef TPM_ALG_SM4 //% |
| 521 | // |
| 522 | // |
| 523 | // SM4 Encryption |
| 524 | // |
| 525 | // _cpri__SM4EncryptCBC() |
| 526 | // |
| 527 | // This function performs SM4 encryption in CBC chain mode. The input dIn buffer is encrypted into dOut. |
| 528 | // The input iv buffer is required to have a size equal to the block size (16 bytes). The dInSize is required to |
| 529 | // be a multiple of the block size. |
| 530 | // |
| 531 | // Return Value Meaning |
| 532 | // |
| 533 | // CRYPT_SUCCESS if success |
| 534 | // CRYPT_PARAMETER dInSize is not a multiple of the block size |
| 535 | // |
| 536 | LIB_EXPORT CRYPT_RESULT |
| 537 | _cpri__SM4EncryptCBC( |
| 538 | BYTE *dOut, // OUT: |
| 539 | UINT32 keySizeInBits, // IN: key size in bit |
| 540 | BYTE *key, // IN: key buffer. The size of this buffer in |
| 541 | // bytes is (keySizeInBits + 7) / 8 |
| 542 | BYTE *iv, // IN/OUT: IV for decryption. |
| 543 | UINT32 dInSize, // IN: data size (is required to be a multiple |
| 544 | // of 16 bytes) |
| 545 | BYTE *dIn // IN: data buffer |
| 546 | ) |
| 547 | { |
| 548 | SM4_KEY Sm4Key; |
| 549 | BYTE *pIv; |
| 550 | INT32 dSize; // Need a signed version |
| 551 | int i; |
| 552 | pAssert(dOut != NULL && key != NULL && iv != NULL && dIn != NULL); |
| 553 | if(dInSize == 0) |
| 554 | return CRYPT_SUCCESS; |
| 555 | pAssert(dInSize <= INT32_MAX); |
| 556 | dSize = (INT32)dInSize; |
| 557 | // For CBC, the data size must be an even multiple of the |
| 558 | // cipher block size |
| 559 | if((dSize % 16) != 0) |
| 560 | return CRYPT_PARAMETER; |
| 561 | // Create SM4 encrypt key schedule |
| 562 | if (SM4_set_encrypt_key(key, keySizeInBits, &Sm4Key) != 0) |
| 563 | FAIL(FATAL_ERROR_INTERNAL); |
| 564 | // XOR the data block into the IV, encrypt the IV into the IV |
| 565 | // and then copy the IV to the output |
| 566 | for(; dSize > 0; dSize -= 16) |
| 567 | { |
| 568 | pIv = iv; |
| 569 | for(i = 16; i > 0; i--) |
| 570 | *pIv++ ^= *dIn++; |
| 571 | SM4_encrypt(iv, iv, &Sm4Key); |
| 572 | pIv = iv; |
| 573 | for(i = 16; i > 0; i--) |
| 574 | *dOut++ = *pIv++; |
| 575 | } |
| 576 | return CRYPT_SUCCESS; |
| 577 | } |
| 578 | // |
| 579 | // |
| 580 | // _cpri__SM4DecryptCBC() |
| 581 | // |
| 582 | // This function performs SM4 decryption in CBC chain mode. The input dIn buffer is decrypted into dOut. |
| 583 | // The input iv buffer is required to have a size equal to the block size (16 bytes). The dInSize is required to |
| 584 | // be a multiple of the block size. |
| 585 | // |
| 586 | // Return Value Meaning |
| 587 | // |
| 588 | // CRYPT_SUCCESS if success |
| 589 | // CRYPT_PARAMETER dInSize is not a multiple of the block size |
| 590 | // |
| 591 | LIB_EXPORT CRYPT_RESULT |
| 592 | _cpri__SM4DecryptCBC( |
| 593 | BYTE *dOut, // OUT: the decrypted data |
| 594 | UINT32 keySizeInBits, // IN: key size in bit |
| 595 | BYTE *key, // IN: key buffer. The size of this buffer in |
| 596 | // bytes is (keySizeInBits + 7) / 8 |
| 597 | BYTE *iv, // IN/OUT: IV for decryption. The size of this |
| 598 | // buffer is 16 byte |
| 599 | UINT32 dInSize, // IN: data size |
| 600 | BYTE *dIn // IN: data buffer |
| 601 | ) |
| 602 | { |
| 603 | SM4_KEY Sm4Key; |
| 604 | BYTE *pIv; |
| 605 | int i; |
| 606 | BYTE tmp[16]; |
| 607 | BYTE *pT = NULL; |
| 608 | INT32 dSize; |
| 609 | pAssert(dOut != NULL && key != NULL && iv != NULL && dIn != NULL); |
| 610 | if(dInSize == 0) |
| 611 | return CRYPT_SUCCESS; |
| 612 | pAssert(dInSize <= INT32_MAX); |
| 613 | dSize = (INT32)dInSize; |
| 614 | // For CBC, the data size must be an even multiple of the |
| 615 | // cipher block size |
| 616 | if((dSize % 16) != 0) |
| 617 | return CRYPT_PARAMETER; |
| 618 | // Create SM4 key schedule |
| 619 | if (SM4_set_decrypt_key(key, keySizeInBits, &Sm4Key) != 0) |
| 620 | FAIL(FATAL_ERROR_INTERNAL); |
| 621 | // Copy the input data to a temp buffer, decrypt the buffer into the output; |
| 622 | // XOR in the IV, and copy the temp buffer to the IV and repeat. |
| 623 | for(; dSize > 0; dSize -= 16) |
| 624 | { |
| 625 | pT = tmp; |
| 626 | for(i = 16; i> 0; i--) |
| 627 | *pT++ = *dIn++; |
| 628 | SM4_decrypt(tmp, dOut, &Sm4Key); |
| 629 | pIv = iv; |
| 630 | pT = tmp; |
| 631 | for(i = 16; i> 0; i--) |
| 632 | { |
| 633 | *dOut++ ^= *pIv; |
| 634 | // |
| 635 | *pIv++ = *pT++; |
| 636 | } |
| 637 | } |
| 638 | return CRYPT_SUCCESS; |
| 639 | } |
| 640 | // |
| 641 | // |
| 642 | // _cpri__SM4EncryptCFB() |
| 643 | // |
| 644 | // This function performs SM4 encryption in CFB chain mode. The dOut buffer receives the values |
| 645 | // encrypted dIn. The input iv is assumed to be the size of an encryption block (16 bytes). The iv buffer will |
| 646 | // be modified to contain the last encrypted block. |
| 647 | // |
| 648 | // Return Value Meaning |
| 649 | // |
| 650 | // CRYPT_SUCCESS no non-fatal errors |
| 651 | // |
| 652 | LIB_EXPORT CRYPT_RESULT |
| 653 | _cpri__SM4EncryptCFB( |
| 654 | BYTE *dOut, // OUT: the encrypted |
| 655 | UINT32 keySizeInBits, // IN: key size in bit |
| 656 | BYTE *key, // IN: key buffer. The size of this buffer in |
| 657 | // bytes is (keySizeInBits + 7) / 8 |
| 658 | BYTE *iv, // IN/OUT: IV for decryption. |
| 659 | UINT32 dInSize, // IN: data size |
| 660 | BYTE *dIn // IN: data buffer |
| 661 | ) |
| 662 | { |
| 663 | BYTE *pIv; |
| 664 | SM4_KEY Sm4Key; |
| 665 | INT32 dSize; // Need a signed version of dInSize |
| 666 | int i; |
| 667 | pAssert(dOut != NULL && key != NULL && iv != NULL && dIn != NULL); |
| 668 | if(dInSize == 0) |
| 669 | return CRYPT_SUCCESS; |
| 670 | pAssert(dInSize <= INT32_MAX); |
| 671 | dSize = (INT32)dInSize; |
| 672 | // Create SM4 encryption key schedule |
| 673 | if (SM4_set_encrypt_key(key, keySizeInBits, &Sm4Key) != 0) |
| 674 | FAIL(FATAL_ERROR_INTERNAL); |
| 675 | // Encrypt the IV into the IV, XOR in the data, and copy to output |
| 676 | for(; dSize > 0; dSize -= 16) |
| 677 | { |
| 678 | // Encrypt the current value of the IV |
| 679 | SM4_encrypt(iv, iv, &Sm4Key); |
| 680 | pIv = iv; |
| 681 | for(i = (int)(dSize < 16) ? dSize : 16; i > 0; i--) |
| 682 | // XOR the data into the IV to create the cipher text |
| 683 | // and put into the output |
| 684 | *dOut++ = *pIv++ ^= *dIn++; |
| 685 | } |
| 686 | return CRYPT_SUCCESS; |
| 687 | } |
| 688 | // |
| 689 | // |
| 690 | // _cpri__SM4DecryptCFB() |
| 691 | // |
| 692 | // This function performs SM4 decrypt in CFB chain mode. The dOut buffer receives the values decrypted |
| 693 | // from dIn. |
| 694 | // |
| 695 | // The input iv is assumed to be the size of an encryption block (16 bytes). The iv buffer will be modified to |
| 696 | // contain the last decoded block, padded with zeros |
| 697 | // |
| 698 | // Return Value Meaning |
| 699 | // |
| 700 | // CRYPT_SUCCESS no non-fatal errors |
| 701 | // |
| 702 | LIB_EXPORT CRYPT_RESULT |
| 703 | _cpri__SM4DecryptCFB( |
| 704 | BYTE *dOut, // OUT: the decrypted data |
| 705 | UINT32 keySizeInBits, // IN: key size in bit |
| 706 | BYTE *key, // IN: key buffer. The size of this buffer in |
| 707 | // bytes is (keySizeInBits + 7) / 8 |
| 708 | BYTE *iv, // IN/OUT: IV for decryption. |
| 709 | UINT32 dInSize, // IN: data size |
| 710 | BYTE *dIn // IN: data buffer |
| 711 | ) |
| 712 | { |
| 713 | BYTE *pIv; |
| 714 | BYTE tmp[16]; |
| 715 | int i; |
| 716 | BYTE *pT; |
| 717 | SM4_KEY Sm4Key; |
| 718 | INT32 dSize; |
| 719 | pAssert(dOut != NULL && key != NULL && iv != NULL && dIn != NULL); |
| 720 | if(dInSize == 0) |
| 721 | return CRYPT_SUCCESS; |
| 722 | pAssert(dInSize <= INT32_MAX); |
| 723 | dSize = (INT32)dInSize; |
| 724 | // Create SM4 encryption key schedule |
| 725 | if (SM4_set_encrypt_key(key, keySizeInBits, &Sm4Key) != 0) |
| 726 | FAIL(FATAL_ERROR_INTERNAL); |
| 727 | for(; dSize > 0; dSize -= 16) |
| 728 | { |
| 729 | // Encrypt the IV into the temp buffer |
| 730 | SM4_encrypt(iv, tmp, &Sm4Key); |
| 731 | pT = tmp; |
| 732 | pIv = iv; |
| 733 | for(i = (dSize < 16) ? dSize : 16; i > 0; i--) |
| 734 | // Copy the current cipher text to IV, XOR |
| 735 | // with the temp buffer and put into the output |
| 736 | *dOut++ = *pT++ ^ (*pIv++ = *dIn++); |
| 737 | } |
| 738 | // If the inner loop (i loop) was smaller than 16, then dSize |
| 739 | // would have been smaller than 16 and it is now negative |
| 740 | // If it is negative, then it indicates how may fill bytes |
| 741 | // are needed to pad out the IV for the next round. |
| 742 | for(; dSize < 0; dSize++) |
| 743 | *iv++ = 0; |
| 744 | return CRYPT_SUCCESS; |
| 745 | } |
| 746 | // |
| 747 | // |
| 748 | // _cpri__SM4EncryptCTR() |
| 749 | // |
| 750 | // This function performs SM4 encryption/decryption in CTR chain mode. The dIn buffer is encrypted into |
| 751 | // dOut. The input iv buffer is assumed to have a size equal to the SM4 block size (16 bytes). The iv will be |
| 752 | // incremented by the number of blocks (full and partial) that were encrypted. |
| 753 | // |
| 754 | // Return Value Meaning |
| 755 | // |
| 756 | // CRYPT_SUCCESS no non-fatal errors |
| 757 | // |
| 758 | LIB_EXPORT CRYPT_RESULT |
| 759 | _cpri__SM4EncryptCTR( |
| 760 | BYTE *dOut, // OUT: the encrypted data |
| 761 | UINT32 keySizeInBits, // IN: key size in bit |
| 762 | BYTE *key, // IN: key buffer. The size of this buffer in |
| 763 | // bytes is (keySizeInBits + 7) / 8 |
| 764 | BYTE *iv, // IN/OUT: IV for decryption. |
| 765 | UINT32 dInSize, // IN: data size |
| 766 | BYTE *dIn // IN: data buffer |
| 767 | ) |
| 768 | { |
| 769 | BYTE tmp[16]; |
| 770 | BYTE *pT; |
| 771 | SM4_KEY Sm4Key; |
| 772 | int i; |
| 773 | INT32 dSize; |
| 774 | pAssert(dOut != NULL && key != NULL && iv != NULL && dIn != NULL); |
| 775 | if(dInSize == 0) |
| 776 | return CRYPT_SUCCESS; |
| 777 | pAssert(dInSize <= INT32_MAX); |
| 778 | dSize = (INT32)dInSize; |
| 779 | // Create SM4 encryption schedule |
| 780 | if (SM4_set_encrypt_key(key, keySizeInBits, &Sm4Key) != 0) |
| 781 | FAIL(FATAL_ERROR_INTERNAL); |
| 782 | for(; dSize > 0; dSize--) |
| 783 | { |
| 784 | // Encrypt the current value of the IV(counter) |
| 785 | SM4_encrypt(iv, (BYTE *)tmp, &Sm4Key); |
| 786 | //increment the counter |
| 787 | for(i = 0; i < 16; i++) |
| 788 | if((iv[i] += 1) != 0) |
| 789 | break; |
| 790 | // XOR the encrypted counter value with input and put into output |
| 791 | pT = tmp; |
| 792 | for(i = (dSize < 16) ? dSize : 16; i > 0; i--) |
| 793 | *dOut++ = *dIn++ ^ *pT++; |
| 794 | } |
| 795 | return CRYPT_SUCCESS; |
| 796 | } |
| 797 | // |
| 798 | // |
| 799 | // _cpri__SM4DecryptCTR() |
| 800 | // |
| 801 | // Counter mode decryption uses the same algorithm as encryption. The _cpri__SM4DecryptCTR() function |
| 802 | // is implemented as a macro call to _cpri__SM4EncryptCTR(). (skip) |
| 803 | // |
| 804 | //% #define _cpri__SM4DecryptCTR(dOut, keySize, key, iv, dInSize, dIn) \ |
| 805 | //% _cpri__SM4EncryptCTR( \ |
| 806 | //% ((BYTE *)dOut), \ |
| 807 | //% ((UINT32)keySize), \ |
| 808 | //% ((BYTE *)key), \ |
| 809 | //% ((BYTE *)iv), \ |
| 810 | //% ((UINT32)dInSize), \ |
| 811 | // |
| 812 | //% ((BYTE *)dIn) \ |
| 813 | //% ) |
| 814 | //% |
| 815 | // The //% is used by the prototype extraction program to cause it to include the |
| 816 | // line in the prototype file after removing the //%. Need an extra line with |
| 817 | // |
| 818 | // nothing on it so that a blank line will separate this macro from the next definition. |
| 819 | // |
| 820 | // _cpri__SM4EncryptECB() |
| 821 | // |
| 822 | // SM4 encryption in ECB mode. The data buffer is modified to contain the cipher text. |
| 823 | // |
| 824 | // Return Value Meaning |
| 825 | // |
| 826 | // CRYPT_SUCCESS no non-fatal errors |
| 827 | // |
| 828 | LIB_EXPORT CRYPT_RESULT |
| 829 | _cpri__SM4EncryptECB( |
| 830 | BYTE *dOut, // OUT: encrypted data |
| 831 | UINT32 keySizeInBits, // IN: key size in bit |
| 832 | BYTE *key, // IN: key buffer. The size of this buffer in |
| 833 | // bytes is (keySizeInBits + 7) / 8 |
| 834 | UINT32 dInSize, // IN: data size |
| 835 | BYTE *dIn // IN: clear text buffer |
| 836 | ) |
| 837 | { |
| 838 | SM4_KEY Sm4Key; |
| 839 | INT32 dSize; |
| 840 | pAssert(dOut != NULL && key != NULL && dIn != NULL); |
| 841 | if(dInSize == 0) |
| 842 | return CRYPT_SUCCESS; |
| 843 | pAssert(dInSize <= INT32_MAX); |
| 844 | dSize = (INT32)dInSize; |
| 845 | // For ECB, the data size must be an even multiple of the |
| 846 | // cipher block size |
| 847 | if((dSize % 16) != 0) |
| 848 | return CRYPT_PARAMETER; |
| 849 | // Create SM4 encrypting key schedule |
| 850 | if (SM4_set_encrypt_key(key, keySizeInBits, &Sm4Key) != 0) |
| 851 | FAIL(FATAL_ERROR_INTERNAL); |
| 852 | for(; dSize > 0; dSize -= 16) |
| 853 | { |
| 854 | SM4_encrypt(dIn, dOut, &Sm4Key); |
| 855 | dIn = &dIn[16]; |
| 856 | dOut = &dOut[16]; |
| 857 | } |
| 858 | return CRYPT_SUCCESS; |
| 859 | } |
| 860 | // |
| 861 | // |
| 862 | // _cpri__SM4DecryptECB() |
| 863 | // |
| 864 | // This function performs SM4 decryption using ECB (not recommended). The cipher text dIn is decrypted |
| 865 | // into dOut. |
| 866 | // |
| 867 | // |
| 868 | // |
| 869 | // |
| 870 | // Return Value Meaning |
| 871 | // |
| 872 | // CRYPT_SUCCESS no non-fatal errors |
| 873 | // |
| 874 | LIB_EXPORT CRYPT_RESULT |
| 875 | _cpri__SM4DecryptECB( |
| 876 | BYTE *dOut, // OUT: the clear text data |
| 877 | UINT32 keySizeInBits, // IN: key size in bit |
| 878 | BYTE *key, // IN: key buffer. The size of this buffer in |
| 879 | // bytes is (keySizeInBits + 7) / 8 |
| 880 | UINT32 dInSize, // IN: data size |
| 881 | BYTE *dIn // IN: cipher text buffer |
| 882 | ) |
| 883 | { |
| 884 | SM4_KEY Sm4Key; |
| 885 | INT32 dSize; |
| 886 | pAssert(dOut != NULL && key != NULL && dIn != NULL); |
| 887 | if(dInSize == 0) |
| 888 | return CRYPT_SUCCESS; |
| 889 | pAssert(dInSize <= INT32_MAX); |
| 890 | dSize = (INT32)dInSize; |
| 891 | // For ECB, the data size must be an even multiple of the |
| 892 | // cipher block size |
| 893 | if((dSize % 16) != 0) |
| 894 | return CRYPT_PARAMETER; |
| 895 | // Create SM4 decryption key schedule |
| 896 | if (SM4_set_decrypt_key(key, keySizeInBits, &Sm4Key) != 0) |
| 897 | FAIL(FATAL_ERROR_INTERNAL); |
| 898 | for(; dSize > 0; dSize -= 16) |
| 899 | { |
| 900 | SM4_decrypt(dIn, dOut, &Sm4Key); |
| 901 | dIn = &dIn[16]; |
| 902 | dOut = &dOut[16]; |
| 903 | } |
| 904 | return CRYPT_SUCCESS; |
| 905 | } |
| 906 | // |
| 907 | // |
| 908 | // _cpri__SM4EncryptOFB() |
| 909 | // |
| 910 | // This function performs SM4 encryption/decryption in OFB chain mode. The dIn buffer is modified to |
| 911 | // contain the encrypted/decrypted text. |
| 912 | // The input iv buffer is assumed to have a size equal to the block size (16 bytes). The returned value of iv |
| 913 | // will be the nth encryption of the IV, where n is the number of blocks (full or partial) in the data stream. |
| 914 | // |
| 915 | // Return Value Meaning |
| 916 | // |
| 917 | // CRYPT_SUCCESS no non-fatal errors |
| 918 | // |
| 919 | LIB_EXPORT CRYPT_RESULT |
| 920 | _cpri__SM4EncryptOFB( |
| 921 | BYTE *dOut, // OUT: the encrypted/decrypted data |
| 922 | UINT32 keySizeInBits, // IN: key size in bit |
| 923 | BYTE *key, // IN: key buffer. The size of this buffer in |
| 924 | // bytes is (keySizeInBits + 7) / 8 |
| 925 | BYTE *iv, // IN/OUT: IV for decryption. The size of this |
| 926 | // buffer is 16 byte |
| 927 | UINT32 dInSize, // IN: data size |
| 928 | BYTE *dIn // IN: data buffer |
| 929 | ) |
| 930 | { |
| 931 | BYTE *pIv; |
| 932 | SM4_KEY Sm4Key; |
| 933 | INT32 dSize; |
| 934 | int i; |
| 935 | pAssert(dOut != NULL && key != NULL && iv != NULL && dIn != NULL); |
| 936 | if(dInSize == 0) |
| 937 | return CRYPT_SUCCESS; |
| 938 | pAssert(dInSize <= INT32_MAX); |
| 939 | dSize = (INT32)dInSize; |
| 940 | // Create SM4 key schedule |
| 941 | if (SM4_set_encrypt_key(key, keySizeInBits, &Sm4Key) != 0) |
| 942 | FAIL(FATAL_ERROR_INTERNAL); |
| 943 | // This is written so that dIn and dOut may be the same |
| 944 | for(; dSize > 0; dSize -= 16) |
| 945 | { |
| 946 | // Encrypt the current value of the "IV" |
| 947 | SM4_encrypt(iv, iv, &Sm4Key); |
| 948 | // XOR the encrypted IV into dIn to create the cipher text (dOut) |
| 949 | pIv = iv; |
| 950 | for(i = (dSize < 16) ? dSize : 16; i > 0; i--) |
| 951 | *dOut++ = (*pIv++ ^ *dIn++); |
| 952 | } |
| 953 | return CRYPT_SUCCESS; |
| 954 | } |
| 955 | // |
| 956 | // |
| 957 | // _cpri__SM4DecryptOFB() |
| 958 | // |
| 959 | // OFB encryption and decryption use the same algorithms for both. The _cpri__SM4DecryptOFB() function |
| 960 | // is implemented as a macro call to _cpri__SM4EncrytOFB(). (skip) |
| 961 | // |
| 962 | //%#define _cpri__SM4DecryptOFB(dOut,keySizeInBits, key, iv, dInSize, dIn) \ |
| 963 | //% _cpri__SM4EncryptOFB ( \ |
| 964 | //% ((BYTE *)dOut), \ |
| 965 | //% ((UINT32)keySizeInBits), \ |
| 966 | //% ((BYTE *)key), \ |
| 967 | //% ((BYTE *)iv), \ |
| 968 | //% ((UINT32)dInSize), \ |
| 969 | //% ((BYTE *)dIn) \ |
| 970 | //% ) |
| 971 | //% |
| 972 | #endif //% TPM_ALG_SM4 |