blob: d76e49dcd0588b9a1b934e68e9c21e932d7edc00 [file] [log] [blame]
#!/usr/bin/python
"""Small functions to help with plots"""
from matplotlib import pyplot as plt
GOLDEN_RATIO = 1.618034
def normalize_title(title, opt_title):
"""
Return a string with that contains the title and opt_title if it's not the empty string
See test_normalize_title() for usage
"""
if opt_title is not "":
title = opt_title + " - " + title
return title
def set_lim(lim, get_lim, set_lim):
"""Set x or y limitis of the plot
lim can be a tuple containing the limits or the string "default"
or "range". "default" does nothing and uses matplotlib default.
"range" extends the current margin by 10%. This is useful since
the default xlim and ylim of the plots sometimes make it harder to
see data that is just in the margin.
"""
if lim == "default":
return
if lim == "range":
cur_lim = get_lim()
lim = (cur_lim[0] - 0.1 * (cur_lim[1] - cur_lim[0]),
cur_lim[1] + 0.1 * (cur_lim[1] - cur_lim[0]))
set_lim(lim[0], lim[1])
def set_xlim(ax, xlim):
"""Set the xlim of the plot
See set_lim() for the details
"""
set_lim(xlim, ax.get_xlim, ax.set_xlim)
def set_ylim(ax, ylim):
"""Set the ylim of the plot
See set_lim() for the details
"""
set_lim(ylim, ax.get_ylim, ax.set_ylim)
def pre_plot_setup(width=None, height=None):
"""initialize a figure
width and height are numbers. This function should be called
before any calls to plot()
"""
if height is None:
if width is None:
height = 6
width = 10
else:
height = width / GOLDEN_RATIO
else:
if width is None:
width = height * GOLDEN_RATIO
_, ax = plt.subplots(figsize=(width, height))
return ax
def post_plot_setup(ax, title="", xlabel=None, xlim="default", ylim="range"):
"""Set xlabel, title, xlim adn ylim of the plot
This has to be called after calls to .plot(). The default ylim is
to extend it by 10% because matplotlib default makes it hard
values that are close to the margins
"""
if xlabel is not None:
plt.xlabel(xlabel)
if title:
plt.title(title)
set_ylim(ax, ylim)
set_xlim(ax, xlim)
def plot_temperature(thermal_dict, width=None, height=None, ylim="range"):
"""Plot temperatures
thermal_dict is a dictionary with the first argument being the
label in the legend and the values a Thermal and ThermalGovernor
instance. Extract the control_temp from the governor data and
plot the temperatures reported by the thermal framework. The
governor doesn't track temperature when it's off, so the thermal
framework trace is more reliable.
"""
ax = pre_plot_setup(width, height)
for name, data in thermal_dict.iteritems():
(thermal, gov) = data
current_temp = gov.data_frame["current_temperature"]
delta_temp = gov.data_frame["delta_temperature"]
control_temp_series = (current_temp + delta_temp) / 1000
thermal.plot_temperature(control_temperature=control_temp_series, ax=ax,
legend_label=name)
post_plot_setup(ax, title="Temperature", ylim=ylim)
plt.legend(loc="best")
def plot_hist(data, title, bins, xlabel, xlim, ylim):
"""Plot a histogram"""
mean = data.mean()
std = data.std()
title += " (mean = {:.2f}, std = {:.2f})".format(mean, std)
ax = pre_plot_setup()
data.hist(ax=ax, bins=bins)
post_plot_setup(ax, title=title, xlabel=xlabel, xlim=xlim, ylim=ylim)