Javi Merino | 491cf73 | 2014-03-31 17:34:44 +0100 | [diff] [blame] | 1 | #!/usr/bin/python |
Javi Merino | 5bd3d44 | 2014-04-08 12:55:13 +0100 | [diff] [blame] | 2 | """Process the output of the power allocator trace in the current |
| 3 | directory's trace.dat""" |
Javi Merino | 572049d | 2014-03-31 16:45:23 +0100 | [diff] [blame] | 4 | |
| 5 | import os |
Javi Merino | ee56c36 | 2014-03-31 17:30:34 +0100 | [diff] [blame] | 6 | import re |
Javi Merino | 952815a | 2014-03-31 18:08:32 +0100 | [diff] [blame] | 7 | from StringIO import StringIO |
Javi Merino | f78ea5b | 2014-03-31 17:51:38 +0100 | [diff] [blame] | 8 | import pandas as pd |
Javi Merino | a6399fb | 2014-03-31 19:17:08 +0100 | [diff] [blame] | 9 | from matplotlib import pyplot as plt |
Javi Merino | 572049d | 2014-03-31 16:45:23 +0100 | [diff] [blame] | 10 | |
Javi Merino | 3a73655 | 2014-06-19 19:22:44 +0100 | [diff] [blame] | 11 | from plot_utils import normalize_title, pre_plot_setup, post_plot_setup |
Javi Merino | 51db363 | 2014-06-13 11:24:51 +0100 | [diff] [blame] | 12 | |
Javi Merino | 9ce2fb6 | 2014-07-04 20:02:13 +0100 | [diff] [blame] | 13 | def trace_parser_explode_array(string, array_lengths): |
Javi Merino | b2ff569 | 2014-06-30 17:41:50 +0100 | [diff] [blame] | 14 | """Explode an array in the trace into individual elements for easy parsing |
| 15 | |
| 16 | Basically, turn "load={1 1 2 2}" into "load0=1 load1=1 load2=2 |
Javi Merino | 9ce2fb6 | 2014-07-04 20:02:13 +0100 | [diff] [blame] | 17 | load3=2". array_lengths is a dictionary of array names and their |
| 18 | expected length. If we get array that's shorter than the expected |
| 19 | length, additional keys have to be introduced with value 0 to |
| 20 | compensate. For example, "load={1 2}" with array_lengths being |
| 21 | {"load": 4} returns "load0=1 load1=2 load2=0 load3=0" |
Javi Merino | b2ff569 | 2014-06-30 17:41:50 +0100 | [diff] [blame] | 22 | |
| 23 | """ |
| 24 | |
Javi Merino | 9ce2fb6 | 2014-07-04 20:02:13 +0100 | [diff] [blame] | 25 | while True: |
Javi Merino | d44312f | 2014-07-02 18:34:24 +0100 | [diff] [blame] | 26 | match = re.search(r"[^ ]+={[^}]+}", string) |
| 27 | if match is None: |
| 28 | break |
Javi Merino | b2ff569 | 2014-06-30 17:41:50 +0100 | [diff] [blame] | 29 | |
Javi Merino | d44312f | 2014-07-02 18:34:24 +0100 | [diff] [blame] | 30 | to_explode = match.group() |
| 31 | col_basename = re.match(r"([^=]+)=", to_explode).groups()[0] |
| 32 | vals_str = re.search(r"{(.+)}", to_explode).groups()[0] |
| 33 | vals_array = vals_str.split(' ') |
Javi Merino | b2ff569 | 2014-06-30 17:41:50 +0100 | [diff] [blame] | 34 | |
Javi Merino | d44312f | 2014-07-02 18:34:24 +0100 | [diff] [blame] | 35 | exploded_str = "" |
| 36 | for (idx, val) in enumerate(vals_array): |
| 37 | exploded_str += "{}{}={} ".format(col_basename, idx, val) |
Javi Merino | b2ff569 | 2014-06-30 17:41:50 +0100 | [diff] [blame] | 38 | |
Javi Merino | 9ce2fb6 | 2014-07-04 20:02:13 +0100 | [diff] [blame] | 39 | vals_added = len(vals_array) |
| 40 | if vals_added < array_lengths[col_basename]: |
| 41 | for idx in range(vals_added, array_lengths[col_basename]): |
| 42 | exploded_str += "{}{}=0 ".format(col_basename, idx) |
| 43 | |
Javi Merino | d44312f | 2014-07-02 18:34:24 +0100 | [diff] [blame] | 44 | exploded_str = exploded_str[:-1] |
| 45 | begin_idx = match.start() |
| 46 | end_idx = match.end() |
Javi Merino | b2ff569 | 2014-06-30 17:41:50 +0100 | [diff] [blame] | 47 | |
Javi Merino | d44312f | 2014-07-02 18:34:24 +0100 | [diff] [blame] | 48 | string = string[:begin_idx] + exploded_str + string[end_idx:] |
| 49 | |
| 50 | return string |
Javi Merino | b2ff569 | 2014-06-30 17:41:50 +0100 | [diff] [blame] | 51 | |
Javi Merino | c2ec568 | 2014-04-01 15:16:06 +0100 | [diff] [blame] | 52 | class BaseThermal(object): |
Javi Merino | 5bd3d44 | 2014-04-08 12:55:13 +0100 | [diff] [blame] | 53 | """Base class to parse trace.dat dumps. |
| 54 | |
| 55 | Don't use directly, create a subclass that defines the unique_word |
| 56 | you want to match in the output""" |
Javi Merino | 6846155 | 2014-04-08 11:40:09 +0100 | [diff] [blame] | 57 | def __init__(self, basepath, unique_word): |
| 58 | if basepath is None: |
| 59 | basepath = "." |
Javi Merino | c2ec568 | 2014-04-01 15:16:06 +0100 | [diff] [blame] | 60 | |
Javi Merino | 6846155 | 2014-04-08 11:40:09 +0100 | [diff] [blame] | 61 | self.basepath = basepath |
Javi Merino | 952815a | 2014-03-31 18:08:32 +0100 | [diff] [blame] | 62 | self.data_csv = "" |
Javi Merino | 6846155 | 2014-04-08 11:40:09 +0100 | [diff] [blame] | 63 | self.unique_word = unique_word |
| 64 | |
| 65 | if not os.path.isfile(os.path.join(basepath, "trace.txt")): |
| 66 | self.__run_trace_cmd_report() |
Javi Merino | 572049d | 2014-03-31 16:45:23 +0100 | [diff] [blame] | 67 | |
Javi Merino | d556228 | 2014-08-08 17:28:03 +0100 | [diff] [blame] | 68 | self.__parse_into_csv() |
Javi Merino | 92f4d01 | 2014-08-08 17:55:32 +0100 | [diff] [blame] | 69 | self.__create_data_frame() |
Javi Merino | d556228 | 2014-08-08 17:28:03 +0100 | [diff] [blame] | 70 | |
Javi Merino | 572049d | 2014-03-31 16:45:23 +0100 | [diff] [blame] | 71 | def __run_trace_cmd_report(self): |
Javi Merino | 5bd3d44 | 2014-04-08 12:55:13 +0100 | [diff] [blame] | 72 | """Run "trace-cmd report > trace.txt". |
| 73 | |
| 74 | Overwrites the contents of trace.txt if it exists.""" |
Javi Merino | ee56c36 | 2014-03-31 17:30:34 +0100 | [diff] [blame] | 75 | from subprocess import check_output |
| 76 | |
Javi Merino | 6846155 | 2014-04-08 11:40:09 +0100 | [diff] [blame] | 77 | if not os.path.isfile(os.path.join(self.basepath, "trace.dat")): |
Javi Merino | 1a3725a | 2014-03-31 18:35:15 +0100 | [diff] [blame] | 78 | raise IOError("No such file or directory: trace.dat") |
| 79 | |
Javi Merino | 6846155 | 2014-04-08 11:40:09 +0100 | [diff] [blame] | 80 | previous_path = os.getcwd() |
| 81 | os.chdir(self.basepath) |
Javi Merino | 572049d | 2014-03-31 16:45:23 +0100 | [diff] [blame] | 82 | |
Javi Merino | 6846155 | 2014-04-08 11:40:09 +0100 | [diff] [blame] | 83 | # This would better be done with a context manager (i.e. |
| 84 | # http://stackoverflow.com/a/13197763/970766) |
| 85 | try: |
| 86 | with open(os.devnull) as devnull: |
| 87 | out = check_output(["trace-cmd", "report"], stderr=devnull) |
| 88 | |
| 89 | finally: |
| 90 | os.chdir(previous_path) |
| 91 | |
Javi Merino | 5bd3d44 | 2014-04-08 12:55:13 +0100 | [diff] [blame] | 92 | with open(os.path.join(self.basepath, "trace.txt"), "w") as fout: |
| 93 | fout.write(out) |
Javi Merino | c08ca68 | 2014-03-31 17:29:27 +0100 | [diff] [blame] | 94 | |
Javi Merino | 9ce2fb6 | 2014-07-04 20:02:13 +0100 | [diff] [blame] | 95 | def get_trace_array_lengths(self, fname): |
| 96 | """Calculate the lengths of all arrays in the trace |
| 97 | |
| 98 | Returns a dict with the name of each array found in the trace |
| 99 | as keys and their corresponding length as value |
| 100 | |
| 101 | """ |
Javi Merino | a3e98c8 | 2014-08-01 14:38:22 +0100 | [diff] [blame] | 102 | from collections import defaultdict |
Javi Merino | 9ce2fb6 | 2014-07-04 20:02:13 +0100 | [diff] [blame] | 103 | |
| 104 | pat_array = re.compile(r"([A-Za-z0-9_]+)={([^}]+)}") |
| 105 | |
Javi Merino | a3e98c8 | 2014-08-01 14:38:22 +0100 | [diff] [blame] | 106 | ret = defaultdict(int) |
Javi Merino | 9ce2fb6 | 2014-07-04 20:02:13 +0100 | [diff] [blame] | 107 | |
| 108 | with open(fname) as fin: |
| 109 | for line in fin: |
| 110 | if not re.search(self.unique_word, line): |
| 111 | continue |
| 112 | |
| 113 | while True: |
| 114 | match = re.search(pat_array, line) |
| 115 | if not match: |
| 116 | break |
| 117 | |
| 118 | (array_name, array_elements) = match.groups() |
| 119 | |
| 120 | array_len = len(array_elements.split(' ')) |
| 121 | |
Javi Merino | a3e98c8 | 2014-08-01 14:38:22 +0100 | [diff] [blame] | 122 | if array_len > ret[array_name]: |
Javi Merino | 9ce2fb6 | 2014-07-04 20:02:13 +0100 | [diff] [blame] | 123 | ret[array_name] = array_len |
| 124 | |
| 125 | line = line[match.end():] |
| 126 | |
| 127 | return ret |
| 128 | |
Javi Merino | d556228 | 2014-08-08 17:28:03 +0100 | [diff] [blame] | 129 | def __parse_into_csv(self): |
Javi Merino | 5bd3d44 | 2014-04-08 12:55:13 +0100 | [diff] [blame] | 130 | """Create a csv representation of the thermal data and store |
| 131 | it in self.data_csv""" |
Javi Merino | 9ce2fb6 | 2014-07-04 20:02:13 +0100 | [diff] [blame] | 132 | |
| 133 | fin_fname = os.path.join(self.basepath, "trace.txt") |
| 134 | |
| 135 | array_lengths = self.get_trace_array_lengths(fin_fname) |
| 136 | |
Javi Merino | c08ca68 | 2014-03-31 17:29:27 +0100 | [diff] [blame] | 137 | pat_timestamp = re.compile(r"([0-9]+\.[0-9]+):") |
Javi Merino | cfb49b7 | 2014-06-30 17:51:51 +0100 | [diff] [blame] | 138 | pat_data = re.compile(r"[A-Za-z0-9_]+=([^ {]+)") |
Javi Merino | 0e83b61 | 2014-06-05 11:45:23 +0100 | [diff] [blame] | 139 | pat_header = re.compile(r"([A-Za-z0-9_]+)=[^ ]+") |
Javi Merino | 45a59c3 | 2014-07-02 19:21:17 +0100 | [diff] [blame] | 140 | pat_empty_array = re.compile(r"[A-Za-z0-9_]+=\{\} ") |
Javi Merino | c08ca68 | 2014-03-31 17:29:27 +0100 | [diff] [blame] | 141 | header = "" |
| 142 | |
Javi Merino | 9ce2fb6 | 2014-07-04 20:02:13 +0100 | [diff] [blame] | 143 | with open(fin_fname) as fin: |
Javi Merino | 952815a | 2014-03-31 18:08:32 +0100 | [diff] [blame] | 144 | for line in fin: |
Javi Merino | c2ec568 | 2014-04-01 15:16:06 +0100 | [diff] [blame] | 145 | if not re.search(self.unique_word, line): |
Javi Merino | 952815a | 2014-03-31 18:08:32 +0100 | [diff] [blame] | 146 | continue |
| 147 | |
| 148 | line = line[:-1] |
| 149 | |
Javi Merino | 5bd3d44 | 2014-04-08 12:55:13 +0100 | [diff] [blame] | 150 | timestamp_match = re.search(pat_timestamp, line) |
| 151 | timestamp = timestamp_match.group(1) |
Javi Merino | 952815a | 2014-03-31 18:08:32 +0100 | [diff] [blame] | 152 | |
Javi Merino | c2ec568 | 2014-04-01 15:16:06 +0100 | [diff] [blame] | 153 | data_start_idx = re.search(r"[A-Za-z0-9_]+=", line).start() |
| 154 | data_str = line[data_start_idx:] |
Javi Merino | 952815a | 2014-03-31 18:08:32 +0100 | [diff] [blame] | 155 | |
Javi Merino | 45a59c3 | 2014-07-02 19:21:17 +0100 | [diff] [blame] | 156 | # Remove empty arrays from the trace |
| 157 | data_str = re.sub(pat_empty_array, r"", data_str) |
| 158 | |
Javi Merino | 9ce2fb6 | 2014-07-04 20:02:13 +0100 | [diff] [blame] | 159 | data_str = trace_parser_explode_array(data_str, array_lengths) |
Javi Merino | cfb49b7 | 2014-06-30 17:51:51 +0100 | [diff] [blame] | 160 | |
Javi Merino | 952815a | 2014-03-31 18:08:32 +0100 | [diff] [blame] | 161 | if not header: |
Javi Merino | 0af4721 | 2014-04-02 16:23:23 +0100 | [diff] [blame] | 162 | header = re.sub(pat_header, r"\1", data_str) |
| 163 | header = re.sub(r" ", r",", header) |
Javi Merino | 2a16a44 | 2014-06-21 19:23:45 +0100 | [diff] [blame] | 164 | header = "Time," + header + "\n" |
Javi Merino | 952815a | 2014-03-31 18:08:32 +0100 | [diff] [blame] | 165 | self.data_csv = header |
| 166 | |
Javi Merino | 0af4721 | 2014-04-02 16:23:23 +0100 | [diff] [blame] | 167 | parsed_data = re.sub(pat_data, r"\1", data_str) |
Javi Merino | 35c1ac7 | 2014-07-04 10:29:04 +0100 | [diff] [blame] | 168 | parsed_data = re.sub(r",", r"", parsed_data) |
Javi Merino | 0af4721 | 2014-04-02 16:23:23 +0100 | [diff] [blame] | 169 | parsed_data = re.sub(r" ", r",", parsed_data) |
Javi Merino | 952815a | 2014-03-31 18:08:32 +0100 | [diff] [blame] | 170 | |
| 171 | parsed_data = timestamp + "," + parsed_data + "\n" |
| 172 | self.data_csv += parsed_data |
| 173 | |
Javi Merino | 92f4d01 | 2014-08-08 17:55:32 +0100 | [diff] [blame] | 174 | def __create_data_frame(self): |
| 175 | """Create a pandas data frame for the run in self.data_frame""" |
Javi Merino | f0f51ff | 2014-04-10 12:34:53 +0100 | [diff] [blame] | 176 | if self.data_csv is "": |
Javi Merino | 92f4d01 | 2014-08-08 17:55:32 +0100 | [diff] [blame] | 177 | self.data_frame = pd.DataFrame() |
| 178 | else: |
Javi Merino | 988df23 | 2014-08-08 18:17:29 +0100 | [diff] [blame^] | 179 | self.data_frame = pd.read_csv(StringIO(self.data_csv)) |
| 180 | self.data_frame.set_index("Time", inplace=True) |
Javi Merino | df8316a | 2014-03-31 18:39:42 +0100 | [diff] [blame] | 181 | |
Javi Merino | 0e83b61 | 2014-06-05 11:45:23 +0100 | [diff] [blame] | 182 | class Thermal(BaseThermal): |
| 183 | """Process the thermal framework data in a ftrace dump""" |
| 184 | def __init__(self, path=None): |
| 185 | super(Thermal, self).__init__( |
| 186 | basepath=path, |
Javi Merino | af45d87 | 2014-07-03 09:49:40 +0100 | [diff] [blame] | 187 | unique_word="thermal_temperature:", |
Javi Merino | 0e83b61 | 2014-06-05 11:45:23 +0100 | [diff] [blame] | 188 | ) |
| 189 | |
Javi Merino | 516d594 | 2014-06-26 15:06:04 +0100 | [diff] [blame] | 190 | def plot_temperature(self, control_temperature=None, title="", width=None, |
Javi Merino | 8011416 | 2014-08-08 16:48:32 +0100 | [diff] [blame] | 191 | height=None, ylim="range", ax=None, legend_label=""): |
Javi Merino | 516d594 | 2014-06-26 15:06:04 +0100 | [diff] [blame] | 192 | """Plot the temperature. |
| 193 | |
| 194 | If control_temp is a pd.Series() representing the (possible) |
| 195 | variation of control_temp during the run, draw it using a |
| 196 | dashed yellow line. Otherwise, only the temperature is |
| 197 | plotted. |
| 198 | |
| 199 | """ |
Javi Merino | c68737a | 2014-06-10 15:21:59 +0100 | [diff] [blame] | 200 | title = normalize_title("Temperature", title) |
| 201 | |
Javi Merino | 49cbcfe | 2014-08-08 16:03:49 +0100 | [diff] [blame] | 202 | setup_plot = False |
| 203 | if not ax: |
| 204 | ax = pre_plot_setup(width, height) |
| 205 | setup_plot = True |
| 206 | |
Javi Merino | 8011416 | 2014-08-08 16:48:32 +0100 | [diff] [blame] | 207 | temp_label = normalize_title("Temperature", legend_label) |
Javi Merino | 92f4d01 | 2014-08-08 17:55:32 +0100 | [diff] [blame] | 208 | (self.data_frame["temp"] / 1000).plot(ax=ax, label=temp_label) |
Javi Merino | 516d594 | 2014-06-26 15:06:04 +0100 | [diff] [blame] | 209 | if control_temperature is not None: |
Javi Merino | 8011416 | 2014-08-08 16:48:32 +0100 | [diff] [blame] | 210 | ct_label = normalize_title("Control", legend_label) |
Javi Merino | 516d594 | 2014-06-26 15:06:04 +0100 | [diff] [blame] | 211 | control_temperature.plot(ax=ax, color="y", linestyle="--", |
Javi Merino | 8011416 | 2014-08-08 16:48:32 +0100 | [diff] [blame] | 212 | label=ct_label) |
Javi Merino | c68737a | 2014-06-10 15:21:59 +0100 | [diff] [blame] | 213 | |
Javi Merino | 49cbcfe | 2014-08-08 16:03:49 +0100 | [diff] [blame] | 214 | if setup_plot: |
| 215 | post_plot_setup(ax, title=title, ylim=ylim) |
| 216 | plt.legend() |
Javi Merino | c68737a | 2014-06-10 15:21:59 +0100 | [diff] [blame] | 217 | |
Javi Merino | 1e69e2c | 2014-06-04 18:25:09 +0100 | [diff] [blame] | 218 | class ThermalGovernor(BaseThermal): |
Javi Merino | 5bd3d44 | 2014-04-08 12:55:13 +0100 | [diff] [blame] | 219 | """Process the power allocator data in a ftrace dump""" |
Javi Merino | 6846155 | 2014-04-08 11:40:09 +0100 | [diff] [blame] | 220 | def __init__(self, path=None): |
Javi Merino | 1e69e2c | 2014-06-04 18:25:09 +0100 | [diff] [blame] | 221 | super(ThermalGovernor, self).__init__( |
Javi Merino | 6846155 | 2014-04-08 11:40:09 +0100 | [diff] [blame] | 222 | basepath=path, |
Javi Merino | a67b86f | 2014-07-03 15:44:19 +0100 | [diff] [blame] | 223 | unique_word="thermal_power_allocator:", |
Javi Merino | c2ec568 | 2014-04-01 15:16:06 +0100 | [diff] [blame] | 224 | ) |
| 225 | |
| 226 | def write_thermal_csv(self): |
| 227 | """Write the csv info in thermal.csv""" |
Javi Merino | c2ec568 | 2014-04-01 15:16:06 +0100 | [diff] [blame] | 228 | with open("thermal.csv", "w") as fout: |
| 229 | fout.write(self.data_csv) |
| 230 | |
Javi Merino | d6d5f89 | 2014-07-03 16:24:23 +0100 | [diff] [blame] | 231 | def plot_input_power(self, actor_order, title="", width=None, height=None): |
| 232 | """Plot input power |
| 233 | |
| 234 | actor_order is an array with the order in which the actors were registered. |
| 235 | """ |
| 236 | |
Javi Merino | 92f4d01 | 2014-08-08 17:55:32 +0100 | [diff] [blame] | 237 | dfr = self.data_frame |
Javi Merino | f7968a7 | 2014-07-03 15:35:02 +0100 | [diff] [blame] | 238 | in_cols = [s for s in dfr.columns if re.match("req_power[0-9]+", s)] |
Javi Merino | e0ddf0d | 2014-05-07 18:40:12 +0100 | [diff] [blame] | 239 | |
Javi Merino | d6d5f89 | 2014-07-03 16:24:23 +0100 | [diff] [blame] | 240 | plot_dfr = dfr[in_cols] |
| 241 | # Rename the columns from "req_power0" to "A15" or whatever is |
| 242 | # in actor_order. Note that we can do it just with an |
| 243 | # assignment because the columns are already sorted (i.e.: |
| 244 | # req_power0, req_power1...) |
| 245 | plot_dfr.columns = actor_order |
| 246 | |
Javi Merino | c00feff | 2014-04-14 15:41:51 +0100 | [diff] [blame] | 247 | title = normalize_title("Input Power", title) |
Javi Merino | 8ecd817 | 2014-07-03 16:09:01 +0100 | [diff] [blame] | 248 | |
| 249 | ax = pre_plot_setup(width, height) |
Javi Merino | d6d5f89 | 2014-07-03 16:24:23 +0100 | [diff] [blame] | 250 | plot_dfr.plot(ax=ax) |
Javi Merino | 8ecd817 | 2014-07-03 16:09:01 +0100 | [diff] [blame] | 251 | post_plot_setup(ax, title=title) |
Javi Merino | 9c01077 | 2014-04-02 16:54:41 +0100 | [diff] [blame] | 252 | |
Javi Merino | d6d5f89 | 2014-07-03 16:24:23 +0100 | [diff] [blame] | 253 | def plot_output_power(self, actor_order, title="", width=None, height=None): |
| 254 | """Plot output power |
| 255 | |
| 256 | actor_order is an array with the order in which the actors were registered. |
| 257 | """ |
| 258 | |
Javi Merino | 92f4d01 | 2014-08-08 17:55:32 +0100 | [diff] [blame] | 259 | out_cols = [s for s in self.data_frame.columns |
Javi Merino | f7968a7 | 2014-07-03 15:35:02 +0100 | [diff] [blame] | 260 | if re.match("granted_power[0-9]+", s)] |
Javi Merino | e0ddf0d | 2014-05-07 18:40:12 +0100 | [diff] [blame] | 261 | |
Javi Merino | d6d5f89 | 2014-07-03 16:24:23 +0100 | [diff] [blame] | 262 | # See the note in plot_input_power() |
Javi Merino | 92f4d01 | 2014-08-08 17:55:32 +0100 | [diff] [blame] | 263 | plot_dfr = self.data_frame[out_cols] |
Javi Merino | d6d5f89 | 2014-07-03 16:24:23 +0100 | [diff] [blame] | 264 | plot_dfr.columns = actor_order |
| 265 | |
Javi Merino | c00feff | 2014-04-14 15:41:51 +0100 | [diff] [blame] | 266 | title = normalize_title("Output Power", title) |
Javi Merino | 8ecd817 | 2014-07-03 16:09:01 +0100 | [diff] [blame] | 267 | |
| 268 | ax = pre_plot_setup(width, height) |
Javi Merino | d6d5f89 | 2014-07-03 16:24:23 +0100 | [diff] [blame] | 269 | plot_dfr.plot(ax=ax) |
Javi Merino | 8ecd817 | 2014-07-03 16:09:01 +0100 | [diff] [blame] | 270 | post_plot_setup(ax, title=title) |
Javi Merino | cd4a827 | 2014-04-14 15:50:01 +0100 | [diff] [blame] | 271 | |
Javi Merino | 9fc5485 | 2014-05-07 19:06:53 +0100 | [diff] [blame] | 272 | def plot_inout_power(self, title="", width=None, height=None): |
| 273 | """Make multiple plots showing input and output power for each actor""" |
Javi Merino | 92f4d01 | 2014-08-08 17:55:32 +0100 | [diff] [blame] | 274 | dfr = self.data_frame |
Javi Merino | 9fc5485 | 2014-05-07 19:06:53 +0100 | [diff] [blame] | 275 | |
| 276 | actors = [] |
| 277 | for col in dfr.columns: |
| 278 | match = re.match("P(.*)_in", col) |
| 279 | if match and col != "Ptot_in": |
| 280 | actors.append(match.group(1)) |
| 281 | |
| 282 | for actor in actors: |
| 283 | cols = ["P" + actor + "_in", "P" + actor + "_out"] |
| 284 | this_title = normalize_title(actor, title) |
| 285 | dfr[cols].plot(title=this_title) |