blob: b5edc75676ff7a300712b1b6ab7287ad6da2ba3e [file] [log] [blame]
Rubin Xu7bc1b612021-02-16 09:38:50 +00001// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2012 the V8 project authors. All rights reserved.
34
35#ifndef V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_H_
36#define V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_H_
37
38#include <stdio.h>
39#include <memory>
40#include <set>
41
42#include "src/codegen/assembler.h"
43#include "src/codegen/external-reference.h"
44#include "src/codegen/label.h"
45#include "src/codegen/mips64/constants-mips64.h"
46#include "src/codegen/mips64/register-mips64.h"
47#include "src/objects/contexts.h"
48#include "src/objects/smi.h"
49
50namespace v8 {
51namespace internal {
52
53class SafepointTableBuilder;
54
55// -----------------------------------------------------------------------------
56// Machine instruction Operands.
57constexpr int kSmiShift = kSmiTagSize + kSmiShiftSize;
58constexpr uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1;
59// Class Operand represents a shifter operand in data processing instructions.
60class Operand {
61 public:
62 // Immediate.
63 V8_INLINE explicit Operand(int64_t immediate,
64 RelocInfo::Mode rmode = RelocInfo::NONE)
65 : rm_(no_reg), rmode_(rmode) {
66 value_.immediate = immediate;
67 }
68 V8_INLINE explicit Operand(const ExternalReference& f)
69 : rm_(no_reg), rmode_(RelocInfo::EXTERNAL_REFERENCE) {
70 value_.immediate = static_cast<int64_t>(f.address());
71 }
72 V8_INLINE explicit Operand(const char* s);
73 explicit Operand(Handle<HeapObject> handle);
74 V8_INLINE explicit Operand(Smi value) : rm_(no_reg), rmode_(RelocInfo::NONE) {
75 value_.immediate = static_cast<intptr_t>(value.ptr());
76 }
77
78 static Operand EmbeddedNumber(double number); // Smi or HeapNumber.
79 static Operand EmbeddedStringConstant(const StringConstantBase* str);
80
81 // Register.
82 V8_INLINE explicit Operand(Register rm) : rm_(rm) {}
83
84 // Return true if this is a register operand.
85 V8_INLINE bool is_reg() const;
86
87 inline int64_t immediate() const;
88
89 bool IsImmediate() const { return !rm_.is_valid(); }
90
91 HeapObjectRequest heap_object_request() const {
92 DCHECK(IsHeapObjectRequest());
93 return value_.heap_object_request;
94 }
95
96 bool IsHeapObjectRequest() const {
97 DCHECK_IMPLIES(is_heap_object_request_, IsImmediate());
98 DCHECK_IMPLIES(is_heap_object_request_,
99 rmode_ == RelocInfo::FULL_EMBEDDED_OBJECT ||
100 rmode_ == RelocInfo::CODE_TARGET);
101 return is_heap_object_request_;
102 }
103
104 Register rm() const { return rm_; }
105
106 RelocInfo::Mode rmode() const { return rmode_; }
107
108 private:
109 Register rm_;
110 union Value {
111 Value() {}
112 HeapObjectRequest heap_object_request; // if is_heap_object_request_
113 int64_t immediate; // otherwise
114 } value_; // valid if rm_ == no_reg
115 bool is_heap_object_request_ = false;
116 RelocInfo::Mode rmode_;
117
118 friend class Assembler;
119 friend class MacroAssembler;
120};
121
122// On MIPS we have only one addressing mode with base_reg + offset.
123// Class MemOperand represents a memory operand in load and store instructions.
124class V8_EXPORT_PRIVATE MemOperand : public Operand {
125 public:
126 // Immediate value attached to offset.
127 enum OffsetAddend { offset_minus_one = -1, offset_zero = 0 };
128
129 explicit MemOperand(Register rn, int32_t offset = 0);
130 explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
131 OffsetAddend offset_addend = offset_zero);
132 int32_t offset() const { return offset_; }
133
134 bool OffsetIsInt16Encodable() const { return is_int16(offset_); }
135
136 private:
137 int32_t offset_;
138
139 friend class Assembler;
140};
141
142class V8_EXPORT_PRIVATE Assembler : public AssemblerBase {
143 public:
144 // Create an assembler. Instructions and relocation information are emitted
145 // into a buffer, with the instructions starting from the beginning and the
146 // relocation information starting from the end of the buffer. See CodeDesc
147 // for a detailed comment on the layout (globals.h).
148 //
149 // If the provided buffer is nullptr, the assembler allocates and grows its
150 // own buffer. Otherwise it takes ownership of the provided buffer.
151 explicit Assembler(const AssemblerOptions&,
152 std::unique_ptr<AssemblerBuffer> = {});
153
154 virtual ~Assembler() {}
155
156 // GetCode emits any pending (non-emitted) code and fills the descriptor desc.
157 static constexpr int kNoHandlerTable = 0;
158 static constexpr SafepointTableBuilder* kNoSafepointTable = nullptr;
159 void GetCode(Isolate* isolate, CodeDesc* desc,
160 SafepointTableBuilder* safepoint_table_builder,
161 int handler_table_offset);
162
163 // Convenience wrapper for code without safepoint or handler tables.
164 void GetCode(Isolate* isolate, CodeDesc* desc) {
165 GetCode(isolate, desc, kNoSafepointTable, kNoHandlerTable);
166 }
167
168 // Unused on this architecture.
169 void MaybeEmitOutOfLineConstantPool() {}
170
171 // Mips uses BlockTrampolinePool to prevent generating trampoline inside a
172 // continuous instruction block. For Call instruction, it prevents generating
173 // trampoline between jalr and delay slot instruction. In the destructor of
174 // BlockTrampolinePool, it must check if it needs to generate trampoline
175 // immediately, if it does not do this, the branch range will go beyond the
176 // max branch offset, that means the pc_offset after call CheckTrampolinePool
177 // may be not the Call instruction's location. So we use last_call_pc here for
178 // safepoint record.
179 int pc_offset_for_safepoint() {
180#ifdef DEBUG
181 Instr instr1 =
182 instr_at(static_cast<int>(last_call_pc_ - buffer_start_ - kInstrSize));
183 Instr instr2 = instr_at(
184 static_cast<int>(last_call_pc_ - buffer_start_ - kInstrSize * 2));
185 if (GetOpcodeField(instr1) != SPECIAL) { // instr1 == jialc.
186 DCHECK((kArchVariant == kMips64r6) && GetOpcodeField(instr1) == POP76 &&
187 GetRs(instr1) == 0);
188 } else {
189 if (GetFunctionField(instr1) == SLL) { // instr1 == nop, instr2 == jalr.
190 DCHECK(GetOpcodeField(instr2) == SPECIAL &&
191 GetFunctionField(instr2) == JALR);
192 } else { // instr1 == jalr.
193 DCHECK(GetFunctionField(instr1) == JALR);
194 }
195 }
196#endif
197 return static_cast<int>(last_call_pc_ - buffer_start_);
198 }
199
200 // Label operations & relative jumps (PPUM Appendix D).
201 //
202 // Takes a branch opcode (cc) and a label (L) and generates
203 // either a backward branch or a forward branch and links it
204 // to the label fixup chain. Usage:
205 //
206 // Label L; // unbound label
207 // j(cc, &L); // forward branch to unbound label
208 // bind(&L); // bind label to the current pc
209 // j(cc, &L); // backward branch to bound label
210 // bind(&L); // illegal: a label may be bound only once
211 //
212 // Note: The same Label can be used for forward and backward branches
213 // but it may be bound only once.
214 void bind(Label* L); // Binds an unbound label L to current code position.
215
216 enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 };
217
218 // Determines if Label is bound and near enough so that branch instruction
219 // can be used to reach it, instead of jump instruction.
220 bool is_near(Label* L);
221 bool is_near(Label* L, OffsetSize bits);
222 bool is_near_branch(Label* L);
223 inline bool is_near_pre_r6(Label* L) {
224 DCHECK(!(kArchVariant == kMips64r6));
225 return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
226 }
227 inline bool is_near_r6(Label* L) {
228 DCHECK_EQ(kArchVariant, kMips64r6);
229 return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize;
230 }
231
232 int BranchOffset(Instr instr);
233
234 // Returns the branch offset to the given label from the current code
235 // position. Links the label to the current position if it is still unbound.
236 // Manages the jump elimination optimization if the second parameter is true.
237 int32_t branch_offset_helper(Label* L, OffsetSize bits);
238 inline int32_t branch_offset(Label* L) {
239 return branch_offset_helper(L, OffsetSize::kOffset16);
240 }
241 inline int32_t branch_offset21(Label* L) {
242 return branch_offset_helper(L, OffsetSize::kOffset21);
243 }
244 inline int32_t branch_offset26(Label* L) {
245 return branch_offset_helper(L, OffsetSize::kOffset26);
246 }
247 inline int32_t shifted_branch_offset(Label* L) {
248 return branch_offset(L) >> 2;
249 }
250 inline int32_t shifted_branch_offset21(Label* L) {
251 return branch_offset21(L) >> 2;
252 }
253 inline int32_t shifted_branch_offset26(Label* L) {
254 return branch_offset26(L) >> 2;
255 }
256 uint64_t jump_address(Label* L);
257 uint64_t jump_offset(Label* L);
258 uint64_t branch_long_offset(Label* L);
259
260 // Puts a labels target address at the given position.
261 // The high 8 bits are set to zero.
262 void label_at_put(Label* L, int at_offset);
263
264 // Read/Modify the code target address in the branch/call instruction at pc.
265 // The isolate argument is unused (and may be nullptr) when skipping flushing.
266 static Address target_address_at(Address pc);
267 V8_INLINE static void set_target_address_at(
268 Address pc, Address target,
269 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) {
270 set_target_value_at(pc, target, icache_flush_mode);
271 }
272 // On MIPS there is no Constant Pool so we skip that parameter.
273 V8_INLINE static Address target_address_at(Address pc,
274 Address constant_pool) {
275 return target_address_at(pc);
276 }
277 V8_INLINE static void set_target_address_at(
278 Address pc, Address constant_pool, Address target,
279 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) {
280 set_target_address_at(pc, target, icache_flush_mode);
281 }
282
283 static void set_target_value_at(
284 Address pc, uint64_t target,
285 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
286
287 static void JumpLabelToJumpRegister(Address pc);
288
289 // This sets the branch destination (which gets loaded at the call address).
290 // This is for calls and branches within generated code. The serializer
291 // has already deserialized the lui/ori instructions etc.
292 inline static void deserialization_set_special_target_at(
293 Address instruction_payload, Code code, Address target);
294
295 // Get the size of the special target encoded at 'instruction_payload'.
296 inline static int deserialization_special_target_size(
297 Address instruction_payload);
298
299 // This sets the internal reference at the pc.
300 inline static void deserialization_set_target_internal_reference_at(
301 Address pc, Address target,
302 RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
303
304 // Difference between address of current opcode and target address offset.
305 static constexpr int kBranchPCOffset = kInstrSize;
306
307 // Difference between address of current opcode and target address offset,
308 // when we are generatinga sequence of instructions for long relative PC
309 // branches
310 static constexpr int kLongBranchPCOffset = 3 * kInstrSize;
311
312 // Adjust ra register in branch delay slot of bal instruction so to skip
313 // instructions not needed after optimization of PIC in
314 // TurboAssembler::BranchAndLink method.
315
316 static constexpr int kOptimizedBranchAndLinkLongReturnOffset = 4 * kInstrSize;
317
318 // Here we are patching the address in the LUI/ORI instruction pair.
319 // These values are used in the serialization process and must be zero for
320 // MIPS platform, as Code, Embedded Object or External-reference pointers
321 // are split across two consecutive instructions and don't exist separately
322 // in the code, so the serializer should not step forwards in memory after
323 // a target is resolved and written.
324 static constexpr int kSpecialTargetSize = 0;
325
326 // Number of consecutive instructions used to store 32bit/64bit constant.
327 // This constant was used in RelocInfo::target_address_address() function
328 // to tell serializer address of the instruction that follows
329 // LUI/ORI instruction pair.
330 static constexpr int kInstructionsFor32BitConstant = 2;
331 static constexpr int kInstructionsFor64BitConstant = 4;
332
333 // Difference between address of current opcode and value read from pc
334 // register.
335 static constexpr int kPcLoadDelta = 4;
336
337 // Max offset for instructions with 16-bit offset field
338 static constexpr int kMaxBranchOffset = (1 << (18 - 1)) - 1;
339
340 // Max offset for compact branch instructions with 26-bit offset field
341 static constexpr int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1;
342
343 static constexpr int kTrampolineSlotsSize =
344 kArchVariant == kMips64r6 ? 2 * kInstrSize : 7 * kInstrSize;
345
346 RegList* GetScratchRegisterList() { return &scratch_register_list_; }
347
348 // ---------------------------------------------------------------------------
349 // Code generation.
350
351 // Insert the smallest number of nop instructions
352 // possible to align the pc offset to a multiple
353 // of m. m must be a power of 2 (>= 4).
354 void Align(int m);
355 // Insert the smallest number of zero bytes possible to align the pc offset
356 // to a mulitple of m. m must be a power of 2 (>= 2).
357 void DataAlign(int m);
358 // Aligns code to something that's optimal for a jump target for the platform.
359 void CodeTargetAlign();
360
361 // Different nop operations are used by the code generator to detect certain
362 // states of the generated code.
363 enum NopMarkerTypes {
364 NON_MARKING_NOP = 0,
365 DEBUG_BREAK_NOP,
366 // IC markers.
367 PROPERTY_ACCESS_INLINED,
368 PROPERTY_ACCESS_INLINED_CONTEXT,
369 PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
370 // Helper values.
371 LAST_CODE_MARKER,
372 FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
373 };
374
375 // Type == 0 is the default non-marking nop. For mips this is a
376 // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
377 // marking, to avoid conflict with ssnop and ehb instructions.
378 void nop(unsigned int type = 0) {
379 DCHECK_LT(type, 32);
380 Register nop_rt_reg = (type == 0) ? zero_reg : at;
381 sll(zero_reg, nop_rt_reg, type, true);
382 }
383
384 // --------Branch-and-jump-instructions----------
385 // We don't use likely variant of instructions.
386 void b(int16_t offset);
387 inline void b(Label* L) { b(shifted_branch_offset(L)); }
388 void bal(int16_t offset);
389 inline void bal(Label* L) { bal(shifted_branch_offset(L)); }
390 void bc(int32_t offset);
391 inline void bc(Label* L) { bc(shifted_branch_offset26(L)); }
392 void balc(int32_t offset);
393 inline void balc(Label* L) { balc(shifted_branch_offset26(L)); }
394
395 void beq(Register rs, Register rt, int16_t offset);
396 inline void beq(Register rs, Register rt, Label* L) {
397 beq(rs, rt, shifted_branch_offset(L));
398 }
399 void bgez(Register rs, int16_t offset);
400 void bgezc(Register rt, int16_t offset);
401 inline void bgezc(Register rt, Label* L) {
402 bgezc(rt, shifted_branch_offset(L));
403 }
404 void bgeuc(Register rs, Register rt, int16_t offset);
405 inline void bgeuc(Register rs, Register rt, Label* L) {
406 bgeuc(rs, rt, shifted_branch_offset(L));
407 }
408 void bgec(Register rs, Register rt, int16_t offset);
409 inline void bgec(Register rs, Register rt, Label* L) {
410 bgec(rs, rt, shifted_branch_offset(L));
411 }
412 void bgezal(Register rs, int16_t offset);
413 void bgezalc(Register rt, int16_t offset);
414 inline void bgezalc(Register rt, Label* L) {
415 bgezalc(rt, shifted_branch_offset(L));
416 }
417 void bgezall(Register rs, int16_t offset);
418 inline void bgezall(Register rs, Label* L) {
419 bgezall(rs, branch_offset(L) >> 2);
420 }
421 void bgtz(Register rs, int16_t offset);
422 void bgtzc(Register rt, int16_t offset);
423 inline void bgtzc(Register rt, Label* L) {
424 bgtzc(rt, shifted_branch_offset(L));
425 }
426 void blez(Register rs, int16_t offset);
427 void blezc(Register rt, int16_t offset);
428 inline void blezc(Register rt, Label* L) {
429 blezc(rt, shifted_branch_offset(L));
430 }
431 void bltz(Register rs, int16_t offset);
432 void bltzc(Register rt, int16_t offset);
433 inline void bltzc(Register rt, Label* L) {
434 bltzc(rt, shifted_branch_offset(L));
435 }
436 void bltuc(Register rs, Register rt, int16_t offset);
437 inline void bltuc(Register rs, Register rt, Label* L) {
438 bltuc(rs, rt, shifted_branch_offset(L));
439 }
440 void bltc(Register rs, Register rt, int16_t offset);
441 inline void bltc(Register rs, Register rt, Label* L) {
442 bltc(rs, rt, shifted_branch_offset(L));
443 }
444 void bltzal(Register rs, int16_t offset);
445 void nal() { bltzal(zero_reg, 0); }
446 void blezalc(Register rt, int16_t offset);
447 inline void blezalc(Register rt, Label* L) {
448 blezalc(rt, shifted_branch_offset(L));
449 }
450 void bltzalc(Register rt, int16_t offset);
451 inline void bltzalc(Register rt, Label* L) {
452 bltzalc(rt, shifted_branch_offset(L));
453 }
454 void bgtzalc(Register rt, int16_t offset);
455 inline void bgtzalc(Register rt, Label* L) {
456 bgtzalc(rt, shifted_branch_offset(L));
457 }
458 void beqzalc(Register rt, int16_t offset);
459 inline void beqzalc(Register rt, Label* L) {
460 beqzalc(rt, shifted_branch_offset(L));
461 }
462 void beqc(Register rs, Register rt, int16_t offset);
463 inline void beqc(Register rs, Register rt, Label* L) {
464 beqc(rs, rt, shifted_branch_offset(L));
465 }
466 void beqzc(Register rs, int32_t offset);
467 inline void beqzc(Register rs, Label* L) {
468 beqzc(rs, shifted_branch_offset21(L));
469 }
470 void bnezalc(Register rt, int16_t offset);
471 inline void bnezalc(Register rt, Label* L) {
472 bnezalc(rt, shifted_branch_offset(L));
473 }
474 void bnec(Register rs, Register rt, int16_t offset);
475 inline void bnec(Register rs, Register rt, Label* L) {
476 bnec(rs, rt, shifted_branch_offset(L));
477 }
478 void bnezc(Register rt, int32_t offset);
479 inline void bnezc(Register rt, Label* L) {
480 bnezc(rt, shifted_branch_offset21(L));
481 }
482 void bne(Register rs, Register rt, int16_t offset);
483 inline void bne(Register rs, Register rt, Label* L) {
484 bne(rs, rt, shifted_branch_offset(L));
485 }
486 void bovc(Register rs, Register rt, int16_t offset);
487 inline void bovc(Register rs, Register rt, Label* L) {
488 bovc(rs, rt, shifted_branch_offset(L));
489 }
490 void bnvc(Register rs, Register rt, int16_t offset);
491 inline void bnvc(Register rs, Register rt, Label* L) {
492 bnvc(rs, rt, shifted_branch_offset(L));
493 }
494
495 // Never use the int16_t b(l)cond version with a branch offset
496 // instead of using the Label* version.
497
498 void jalr(Register rs, Register rd = ra);
499 void jr(Register target);
500 void jic(Register rt, int16_t offset);
501 void jialc(Register rt, int16_t offset);
502
503 // Following instructions are deprecated and require 256 MB
504 // code alignment. Use PC-relative instructions instead.
505 void j(int64_t target);
506 void jal(int64_t target);
507 void j(Label* target);
508 void jal(Label* target);
509
510 // -------Data-processing-instructions---------
511
512 // Arithmetic.
513 void addu(Register rd, Register rs, Register rt);
514 void subu(Register rd, Register rs, Register rt);
515
516 void div(Register rs, Register rt);
517 void divu(Register rs, Register rt);
518 void ddiv(Register rs, Register rt);
519 void ddivu(Register rs, Register rt);
520 void div(Register rd, Register rs, Register rt);
521 void divu(Register rd, Register rs, Register rt);
522 void ddiv(Register rd, Register rs, Register rt);
523 void ddivu(Register rd, Register rs, Register rt);
524 void mod(Register rd, Register rs, Register rt);
525 void modu(Register rd, Register rs, Register rt);
526 void dmod(Register rd, Register rs, Register rt);
527 void dmodu(Register rd, Register rs, Register rt);
528
529 void mul(Register rd, Register rs, Register rt);
530 void muh(Register rd, Register rs, Register rt);
531 void mulu(Register rd, Register rs, Register rt);
532 void muhu(Register rd, Register rs, Register rt);
533 void mult(Register rs, Register rt);
534 void multu(Register rs, Register rt);
535 void dmul(Register rd, Register rs, Register rt);
536 void dmuh(Register rd, Register rs, Register rt);
537 void dmulu(Register rd, Register rs, Register rt);
538 void dmuhu(Register rd, Register rs, Register rt);
539 void daddu(Register rd, Register rs, Register rt);
540 void dsubu(Register rd, Register rs, Register rt);
541 void dmult(Register rs, Register rt);
542 void dmultu(Register rs, Register rt);
543
544 void addiu(Register rd, Register rs, int32_t j);
545 void daddiu(Register rd, Register rs, int32_t j);
546
547 // Logical.
548 void and_(Register rd, Register rs, Register rt);
549 void or_(Register rd, Register rs, Register rt);
550 void xor_(Register rd, Register rs, Register rt);
551 void nor(Register rd, Register rs, Register rt);
552
553 void andi(Register rd, Register rs, int32_t j);
554 void ori(Register rd, Register rs, int32_t j);
555 void xori(Register rd, Register rs, int32_t j);
556 void lui(Register rd, int32_t j);
557 void aui(Register rt, Register rs, int32_t j);
558 void daui(Register rt, Register rs, int32_t j);
559 void dahi(Register rs, int32_t j);
560 void dati(Register rs, int32_t j);
561
562 // Shifts.
563 // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
564 // and may cause problems in normal code. coming_from_nop makes sure this
565 // doesn't happen.
566 void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
567 void sllv(Register rd, Register rt, Register rs);
568 void srl(Register rd, Register rt, uint16_t sa);
569 void srlv(Register rd, Register rt, Register rs);
570 void sra(Register rt, Register rd, uint16_t sa);
571 void srav(Register rt, Register rd, Register rs);
572 void rotr(Register rd, Register rt, uint16_t sa);
573 void rotrv(Register rd, Register rt, Register rs);
574 void dsll(Register rd, Register rt, uint16_t sa);
575 void dsllv(Register rd, Register rt, Register rs);
576 void dsrl(Register rd, Register rt, uint16_t sa);
577 void dsrlv(Register rd, Register rt, Register rs);
578 void drotr(Register rd, Register rt, uint16_t sa);
579 void drotr32(Register rd, Register rt, uint16_t sa);
580 void drotrv(Register rd, Register rt, Register rs);
581 void dsra(Register rt, Register rd, uint16_t sa);
582 void dsrav(Register rd, Register rt, Register rs);
583 void dsll32(Register rt, Register rd, uint16_t sa);
584 void dsrl32(Register rt, Register rd, uint16_t sa);
585 void dsra32(Register rt, Register rd, uint16_t sa);
586
587 // ------------Memory-instructions-------------
588
589 void lb(Register rd, const MemOperand& rs);
590 void lbu(Register rd, const MemOperand& rs);
591 void lh(Register rd, const MemOperand& rs);
592 void lhu(Register rd, const MemOperand& rs);
593 void lw(Register rd, const MemOperand& rs);
594 void lwu(Register rd, const MemOperand& rs);
595 void lwl(Register rd, const MemOperand& rs);
596 void lwr(Register rd, const MemOperand& rs);
597 void sb(Register rd, const MemOperand& rs);
598 void sh(Register rd, const MemOperand& rs);
599 void sw(Register rd, const MemOperand& rs);
600 void swl(Register rd, const MemOperand& rs);
601 void swr(Register rd, const MemOperand& rs);
602 void ldl(Register rd, const MemOperand& rs);
603 void ldr(Register rd, const MemOperand& rs);
604 void sdl(Register rd, const MemOperand& rs);
605 void sdr(Register rd, const MemOperand& rs);
606 void ld(Register rd, const MemOperand& rs);
607 void sd(Register rd, const MemOperand& rs);
608
609 // ----------Atomic instructions--------------
610
611 void ll(Register rd, const MemOperand& rs);
612 void sc(Register rd, const MemOperand& rs);
613 void lld(Register rd, const MemOperand& rs);
614 void scd(Register rd, const MemOperand& rs);
615
616 // ---------PC-Relative-instructions-----------
617
618 void addiupc(Register rs, int32_t imm19);
619 void lwpc(Register rs, int32_t offset19);
620 void lwupc(Register rs, int32_t offset19);
621 void ldpc(Register rs, int32_t offset18);
622 void auipc(Register rs, int16_t imm16);
623 void aluipc(Register rs, int16_t imm16);
624
625 // ----------------Prefetch--------------------
626
627 void pref(int32_t hint, const MemOperand& rs);
628
629 // -------------Misc-instructions--------------
630
631 // Break / Trap instructions.
632 void break_(uint32_t code, bool break_as_stop = false);
633 void stop(uint32_t code = kMaxStopCode);
634 void tge(Register rs, Register rt, uint16_t code);
635 void tgeu(Register rs, Register rt, uint16_t code);
636 void tlt(Register rs, Register rt, uint16_t code);
637 void tltu(Register rs, Register rt, uint16_t code);
638 void teq(Register rs, Register rt, uint16_t code);
639 void tne(Register rs, Register rt, uint16_t code);
640
641 // Memory barrier instruction.
642 void sync();
643
644 // Move from HI/LO register.
645 void mfhi(Register rd);
646 void mflo(Register rd);
647
648 // Set on less than.
649 void slt(Register rd, Register rs, Register rt);
650 void sltu(Register rd, Register rs, Register rt);
651 void slti(Register rd, Register rs, int32_t j);
652 void sltiu(Register rd, Register rs, int32_t j);
653
654 // Conditional move.
655 void movz(Register rd, Register rs, Register rt);
656 void movn(Register rd, Register rs, Register rt);
657 void movt(Register rd, Register rs, uint16_t cc = 0);
658 void movf(Register rd, Register rs, uint16_t cc = 0);
659
660 void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
661 void sel_s(FPURegister fd, FPURegister fs, FPURegister ft);
662 void sel_d(FPURegister fd, FPURegister fs, FPURegister ft);
663 void seleqz(Register rd, Register rs, Register rt);
664 void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
665 FPURegister ft);
666 void selnez(Register rs, Register rt, Register rd);
667 void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
668 FPURegister ft);
669 void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft);
670 void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft);
671 void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft);
672 void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft);
673
674 void movz_s(FPURegister fd, FPURegister fs, Register rt);
675 void movz_d(FPURegister fd, FPURegister fs, Register rt);
676 void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
677 void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
678 void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
679 void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
680 void movn_s(FPURegister fd, FPURegister fs, Register rt);
681 void movn_d(FPURegister fd, FPURegister fs, Register rt);
682 // Bit twiddling.
683 void clz(Register rd, Register rs);
684 void dclz(Register rd, Register rs);
685 void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
686 void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
687 void dext_(Register rt, Register rs, uint16_t pos, uint16_t size);
688 void dextm_(Register rt, Register rs, uint16_t pos, uint16_t size);
689 void dextu_(Register rt, Register rs, uint16_t pos, uint16_t size);
690 void dins_(Register rt, Register rs, uint16_t pos, uint16_t size);
691 void dinsm_(Register rt, Register rs, uint16_t pos, uint16_t size);
692 void dinsu_(Register rt, Register rs, uint16_t pos, uint16_t size);
693 void bitswap(Register rd, Register rt);
694 void dbitswap(Register rd, Register rt);
695 void align(Register rd, Register rs, Register rt, uint8_t bp);
696 void dalign(Register rd, Register rs, Register rt, uint8_t bp);
697
698 void wsbh(Register rd, Register rt);
699 void dsbh(Register rd, Register rt);
700 void dshd(Register rd, Register rt);
701 void seh(Register rd, Register rt);
702 void seb(Register rd, Register rt);
703
704 // --------Coprocessor-instructions----------------
705
706 // Load, store, and move.
707 void lwc1(FPURegister fd, const MemOperand& src);
708 void ldc1(FPURegister fd, const MemOperand& src);
709
710 void swc1(FPURegister fs, const MemOperand& dst);
711 void sdc1(FPURegister fs, const MemOperand& dst);
712
713 void mtc1(Register rt, FPURegister fs);
714 void mthc1(Register rt, FPURegister fs);
715 void dmtc1(Register rt, FPURegister fs);
716
717 void mfc1(Register rt, FPURegister fs);
718 void mfhc1(Register rt, FPURegister fs);
719 void dmfc1(Register rt, FPURegister fs);
720
721 void ctc1(Register rt, FPUControlRegister fs);
722 void cfc1(Register rt, FPUControlRegister fs);
723
724 // Arithmetic.
725 void add_s(FPURegister fd, FPURegister fs, FPURegister ft);
726 void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
727 void sub_s(FPURegister fd, FPURegister fs, FPURegister ft);
728 void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
729 void mul_s(FPURegister fd, FPURegister fs, FPURegister ft);
730 void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
731 void madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
732 void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
733 void msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
734 void msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
735 void maddf_s(FPURegister fd, FPURegister fs, FPURegister ft);
736 void maddf_d(FPURegister fd, FPURegister fs, FPURegister ft);
737 void msubf_s(FPURegister fd, FPURegister fs, FPURegister ft);
738 void msubf_d(FPURegister fd, FPURegister fs, FPURegister ft);
739 void div_s(FPURegister fd, FPURegister fs, FPURegister ft);
740 void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
741 void abs_s(FPURegister fd, FPURegister fs);
742 void abs_d(FPURegister fd, FPURegister fs);
743 void mov_d(FPURegister fd, FPURegister fs);
744 void mov_s(FPURegister fd, FPURegister fs);
745 void neg_s(FPURegister fd, FPURegister fs);
746 void neg_d(FPURegister fd, FPURegister fs);
747 void sqrt_s(FPURegister fd, FPURegister fs);
748 void sqrt_d(FPURegister fd, FPURegister fs);
749 void rsqrt_s(FPURegister fd, FPURegister fs);
750 void rsqrt_d(FPURegister fd, FPURegister fs);
751 void recip_d(FPURegister fd, FPURegister fs);
752 void recip_s(FPURegister fd, FPURegister fs);
753
754 // Conversion.
755 void cvt_w_s(FPURegister fd, FPURegister fs);
756 void cvt_w_d(FPURegister fd, FPURegister fs);
757 void trunc_w_s(FPURegister fd, FPURegister fs);
758 void trunc_w_d(FPURegister fd, FPURegister fs);
759 void round_w_s(FPURegister fd, FPURegister fs);
760 void round_w_d(FPURegister fd, FPURegister fs);
761 void floor_w_s(FPURegister fd, FPURegister fs);
762 void floor_w_d(FPURegister fd, FPURegister fs);
763 void ceil_w_s(FPURegister fd, FPURegister fs);
764 void ceil_w_d(FPURegister fd, FPURegister fs);
765 void rint_s(FPURegister fd, FPURegister fs);
766 void rint_d(FPURegister fd, FPURegister fs);
767 void rint(SecondaryField fmt, FPURegister fd, FPURegister fs);
768
769 void cvt_l_s(FPURegister fd, FPURegister fs);
770 void cvt_l_d(FPURegister fd, FPURegister fs);
771 void trunc_l_s(FPURegister fd, FPURegister fs);
772 void trunc_l_d(FPURegister fd, FPURegister fs);
773 void round_l_s(FPURegister fd, FPURegister fs);
774 void round_l_d(FPURegister fd, FPURegister fs);
775 void floor_l_s(FPURegister fd, FPURegister fs);
776 void floor_l_d(FPURegister fd, FPURegister fs);
777 void ceil_l_s(FPURegister fd, FPURegister fs);
778 void ceil_l_d(FPURegister fd, FPURegister fs);
779
780 void class_s(FPURegister fd, FPURegister fs);
781 void class_d(FPURegister fd, FPURegister fs);
782
783 void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
784 void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
785 void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
786 void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
787 void min_s(FPURegister fd, FPURegister fs, FPURegister ft);
788 void min_d(FPURegister fd, FPURegister fs, FPURegister ft);
789 void max_s(FPURegister fd, FPURegister fs, FPURegister ft);
790 void max_d(FPURegister fd, FPURegister fs, FPURegister ft);
791 void mina_s(FPURegister fd, FPURegister fs, FPURegister ft);
792 void mina_d(FPURegister fd, FPURegister fs, FPURegister ft);
793 void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft);
794 void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft);
795
796 void cvt_s_w(FPURegister fd, FPURegister fs);
797 void cvt_s_l(FPURegister fd, FPURegister fs);
798 void cvt_s_d(FPURegister fd, FPURegister fs);
799
800 void cvt_d_w(FPURegister fd, FPURegister fs);
801 void cvt_d_l(FPURegister fd, FPURegister fs);
802 void cvt_d_s(FPURegister fd, FPURegister fs);
803
804 // Conditions and branches for MIPSr6.
805 void cmp(FPUCondition cond, SecondaryField fmt, FPURegister fd,
806 FPURegister ft, FPURegister fs);
807 void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
808 void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
809
810 void bc1eqz(int16_t offset, FPURegister ft);
811 inline void bc1eqz(Label* L, FPURegister ft) {
812 bc1eqz(shifted_branch_offset(L), ft);
813 }
814 void bc1nez(int16_t offset, FPURegister ft);
815 inline void bc1nez(Label* L, FPURegister ft) {
816 bc1nez(shifted_branch_offset(L), ft);
817 }
818
819 // Conditions and branches for non MIPSr6.
820 void c(FPUCondition cond, SecondaryField fmt, FPURegister ft, FPURegister fs,
821 uint16_t cc = 0);
822 void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
823 void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
824
825 void bc1f(int16_t offset, uint16_t cc = 0);
826 inline void bc1f(Label* L, uint16_t cc = 0) {
827 bc1f(shifted_branch_offset(L), cc);
828 }
829 void bc1t(int16_t offset, uint16_t cc = 0);
830 inline void bc1t(Label* L, uint16_t cc = 0) {
831 bc1t(shifted_branch_offset(L), cc);
832 }
833 void fcmp(FPURegister src1, const double src2, FPUCondition cond);
834
835 // MSA instructions
836 void bz_v(MSARegister wt, int16_t offset);
837 inline void bz_v(MSARegister wt, Label* L) {
838 bz_v(wt, shifted_branch_offset(L));
839 }
840 void bz_b(MSARegister wt, int16_t offset);
841 inline void bz_b(MSARegister wt, Label* L) {
842 bz_b(wt, shifted_branch_offset(L));
843 }
844 void bz_h(MSARegister wt, int16_t offset);
845 inline void bz_h(MSARegister wt, Label* L) {
846 bz_h(wt, shifted_branch_offset(L));
847 }
848 void bz_w(MSARegister wt, int16_t offset);
849 inline void bz_w(MSARegister wt, Label* L) {
850 bz_w(wt, shifted_branch_offset(L));
851 }
852 void bz_d(MSARegister wt, int16_t offset);
853 inline void bz_d(MSARegister wt, Label* L) {
854 bz_d(wt, shifted_branch_offset(L));
855 }
856 void bnz_v(MSARegister wt, int16_t offset);
857 inline void bnz_v(MSARegister wt, Label* L) {
858 bnz_v(wt, shifted_branch_offset(L));
859 }
860 void bnz_b(MSARegister wt, int16_t offset);
861 inline void bnz_b(MSARegister wt, Label* L) {
862 bnz_b(wt, shifted_branch_offset(L));
863 }
864 void bnz_h(MSARegister wt, int16_t offset);
865 inline void bnz_h(MSARegister wt, Label* L) {
866 bnz_h(wt, shifted_branch_offset(L));
867 }
868 void bnz_w(MSARegister wt, int16_t offset);
869 inline void bnz_w(MSARegister wt, Label* L) {
870 bnz_w(wt, shifted_branch_offset(L));
871 }
872 void bnz_d(MSARegister wt, int16_t offset);
873 inline void bnz_d(MSARegister wt, Label* L) {
874 bnz_d(wt, shifted_branch_offset(L));
875 }
876
877 void ld_b(MSARegister wd, const MemOperand& rs);
878 void ld_h(MSARegister wd, const MemOperand& rs);
879 void ld_w(MSARegister wd, const MemOperand& rs);
880 void ld_d(MSARegister wd, const MemOperand& rs);
881 void st_b(MSARegister wd, const MemOperand& rs);
882 void st_h(MSARegister wd, const MemOperand& rs);
883 void st_w(MSARegister wd, const MemOperand& rs);
884 void st_d(MSARegister wd, const MemOperand& rs);
885
886 void ldi_b(MSARegister wd, int32_t imm10);
887 void ldi_h(MSARegister wd, int32_t imm10);
888 void ldi_w(MSARegister wd, int32_t imm10);
889 void ldi_d(MSARegister wd, int32_t imm10);
890
891 void addvi_b(MSARegister wd, MSARegister ws, uint32_t imm5);
892 void addvi_h(MSARegister wd, MSARegister ws, uint32_t imm5);
893 void addvi_w(MSARegister wd, MSARegister ws, uint32_t imm5);
894 void addvi_d(MSARegister wd, MSARegister ws, uint32_t imm5);
895 void subvi_b(MSARegister wd, MSARegister ws, uint32_t imm5);
896 void subvi_h(MSARegister wd, MSARegister ws, uint32_t imm5);
897 void subvi_w(MSARegister wd, MSARegister ws, uint32_t imm5);
898 void subvi_d(MSARegister wd, MSARegister ws, uint32_t imm5);
899 void maxi_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
900 void maxi_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
901 void maxi_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
902 void maxi_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
903 void maxi_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
904 void maxi_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
905 void maxi_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
906 void maxi_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
907 void mini_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
908 void mini_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
909 void mini_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
910 void mini_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
911 void mini_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
912 void mini_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
913 void mini_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
914 void mini_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
915 void ceqi_b(MSARegister wd, MSARegister ws, uint32_t imm5);
916 void ceqi_h(MSARegister wd, MSARegister ws, uint32_t imm5);
917 void ceqi_w(MSARegister wd, MSARegister ws, uint32_t imm5);
918 void ceqi_d(MSARegister wd, MSARegister ws, uint32_t imm5);
919 void clti_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
920 void clti_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
921 void clti_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
922 void clti_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
923 void clti_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
924 void clti_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
925 void clti_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
926 void clti_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
927 void clei_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
928 void clei_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
929 void clei_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
930 void clei_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
931 void clei_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
932 void clei_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
933 void clei_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
934 void clei_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
935
936 void andi_b(MSARegister wd, MSARegister ws, uint32_t imm8);
937 void ori_b(MSARegister wd, MSARegister ws, uint32_t imm8);
938 void nori_b(MSARegister wd, MSARegister ws, uint32_t imm8);
939 void xori_b(MSARegister wd, MSARegister ws, uint32_t imm8);
940 void bmnzi_b(MSARegister wd, MSARegister ws, uint32_t imm8);
941 void bmzi_b(MSARegister wd, MSARegister ws, uint32_t imm8);
942 void bseli_b(MSARegister wd, MSARegister ws, uint32_t imm8);
943 void shf_b(MSARegister wd, MSARegister ws, uint32_t imm8);
944 void shf_h(MSARegister wd, MSARegister ws, uint32_t imm8);
945 void shf_w(MSARegister wd, MSARegister ws, uint32_t imm8);
946
947 void and_v(MSARegister wd, MSARegister ws, MSARegister wt);
948 void or_v(MSARegister wd, MSARegister ws, MSARegister wt);
949 void nor_v(MSARegister wd, MSARegister ws, MSARegister wt);
950 void xor_v(MSARegister wd, MSARegister ws, MSARegister wt);
951 void bmnz_v(MSARegister wd, MSARegister ws, MSARegister wt);
952 void bmz_v(MSARegister wd, MSARegister ws, MSARegister wt);
953 void bsel_v(MSARegister wd, MSARegister ws, MSARegister wt);
954
955 void fill_b(MSARegister wd, Register rs);
956 void fill_h(MSARegister wd, Register rs);
957 void fill_w(MSARegister wd, Register rs);
958 void fill_d(MSARegister wd, Register rs);
959 void pcnt_b(MSARegister wd, MSARegister ws);
960 void pcnt_h(MSARegister wd, MSARegister ws);
961 void pcnt_w(MSARegister wd, MSARegister ws);
962 void pcnt_d(MSARegister wd, MSARegister ws);
963 void nloc_b(MSARegister wd, MSARegister ws);
964 void nloc_h(MSARegister wd, MSARegister ws);
965 void nloc_w(MSARegister wd, MSARegister ws);
966 void nloc_d(MSARegister wd, MSARegister ws);
967 void nlzc_b(MSARegister wd, MSARegister ws);
968 void nlzc_h(MSARegister wd, MSARegister ws);
969 void nlzc_w(MSARegister wd, MSARegister ws);
970 void nlzc_d(MSARegister wd, MSARegister ws);
971
972 void fclass_w(MSARegister wd, MSARegister ws);
973 void fclass_d(MSARegister wd, MSARegister ws);
974 void ftrunc_s_w(MSARegister wd, MSARegister ws);
975 void ftrunc_s_d(MSARegister wd, MSARegister ws);
976 void ftrunc_u_w(MSARegister wd, MSARegister ws);
977 void ftrunc_u_d(MSARegister wd, MSARegister ws);
978 void fsqrt_w(MSARegister wd, MSARegister ws);
979 void fsqrt_d(MSARegister wd, MSARegister ws);
980 void frsqrt_w(MSARegister wd, MSARegister ws);
981 void frsqrt_d(MSARegister wd, MSARegister ws);
982 void frcp_w(MSARegister wd, MSARegister ws);
983 void frcp_d(MSARegister wd, MSARegister ws);
984 void frint_w(MSARegister wd, MSARegister ws);
985 void frint_d(MSARegister wd, MSARegister ws);
986 void flog2_w(MSARegister wd, MSARegister ws);
987 void flog2_d(MSARegister wd, MSARegister ws);
988 void fexupl_w(MSARegister wd, MSARegister ws);
989 void fexupl_d(MSARegister wd, MSARegister ws);
990 void fexupr_w(MSARegister wd, MSARegister ws);
991 void fexupr_d(MSARegister wd, MSARegister ws);
992 void ffql_w(MSARegister wd, MSARegister ws);
993 void ffql_d(MSARegister wd, MSARegister ws);
994 void ffqr_w(MSARegister wd, MSARegister ws);
995 void ffqr_d(MSARegister wd, MSARegister ws);
996 void ftint_s_w(MSARegister wd, MSARegister ws);
997 void ftint_s_d(MSARegister wd, MSARegister ws);
998 void ftint_u_w(MSARegister wd, MSARegister ws);
999 void ftint_u_d(MSARegister wd, MSARegister ws);
1000 void ffint_s_w(MSARegister wd, MSARegister ws);
1001 void ffint_s_d(MSARegister wd, MSARegister ws);
1002 void ffint_u_w(MSARegister wd, MSARegister ws);
1003 void ffint_u_d(MSARegister wd, MSARegister ws);
1004
1005 void sll_b(MSARegister wd, MSARegister ws, MSARegister wt);
1006 void sll_h(MSARegister wd, MSARegister ws, MSARegister wt);
1007 void sll_w(MSARegister wd, MSARegister ws, MSARegister wt);
1008 void sll_d(MSARegister wd, MSARegister ws, MSARegister wt);
1009 void sra_b(MSARegister wd, MSARegister ws, MSARegister wt);
1010 void sra_h(MSARegister wd, MSARegister ws, MSARegister wt);
1011 void sra_w(MSARegister wd, MSARegister ws, MSARegister wt);
1012 void sra_d(MSARegister wd, MSARegister ws, MSARegister wt);
1013 void srl_b(MSARegister wd, MSARegister ws, MSARegister wt);
1014 void srl_h(MSARegister wd, MSARegister ws, MSARegister wt);
1015 void srl_w(MSARegister wd, MSARegister ws, MSARegister wt);
1016 void srl_d(MSARegister wd, MSARegister ws, MSARegister wt);
1017 void bclr_b(MSARegister wd, MSARegister ws, MSARegister wt);
1018 void bclr_h(MSARegister wd, MSARegister ws, MSARegister wt);
1019 void bclr_w(MSARegister wd, MSARegister ws, MSARegister wt);
1020 void bclr_d(MSARegister wd, MSARegister ws, MSARegister wt);
1021 void bset_b(MSARegister wd, MSARegister ws, MSARegister wt);
1022 void bset_h(MSARegister wd, MSARegister ws, MSARegister wt);
1023 void bset_w(MSARegister wd, MSARegister ws, MSARegister wt);
1024 void bset_d(MSARegister wd, MSARegister ws, MSARegister wt);
1025 void bneg_b(MSARegister wd, MSARegister ws, MSARegister wt);
1026 void bneg_h(MSARegister wd, MSARegister ws, MSARegister wt);
1027 void bneg_w(MSARegister wd, MSARegister ws, MSARegister wt);
1028 void bneg_d(MSARegister wd, MSARegister ws, MSARegister wt);
1029 void binsl_b(MSARegister wd, MSARegister ws, MSARegister wt);
1030 void binsl_h(MSARegister wd, MSARegister ws, MSARegister wt);
1031 void binsl_w(MSARegister wd, MSARegister ws, MSARegister wt);
1032 void binsl_d(MSARegister wd, MSARegister ws, MSARegister wt);
1033 void binsr_b(MSARegister wd, MSARegister ws, MSARegister wt);
1034 void binsr_h(MSARegister wd, MSARegister ws, MSARegister wt);
1035 void binsr_w(MSARegister wd, MSARegister ws, MSARegister wt);
1036 void binsr_d(MSARegister wd, MSARegister ws, MSARegister wt);
1037 void addv_b(MSARegister wd, MSARegister ws, MSARegister wt);
1038 void addv_h(MSARegister wd, MSARegister ws, MSARegister wt);
1039 void addv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1040 void addv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1041 void subv_b(MSARegister wd, MSARegister ws, MSARegister wt);
1042 void subv_h(MSARegister wd, MSARegister ws, MSARegister wt);
1043 void subv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1044 void subv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1045 void max_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1046 void max_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1047 void max_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1048 void max_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1049 void max_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1050 void max_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1051 void max_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1052 void max_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1053 void min_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1054 void min_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1055 void min_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1056 void min_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1057 void min_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1058 void min_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1059 void min_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1060 void min_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1061 void max_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
1062 void max_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
1063 void max_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1064 void max_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1065 void min_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
1066 void min_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
1067 void min_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1068 void min_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1069 void ceq_b(MSARegister wd, MSARegister ws, MSARegister wt);
1070 void ceq_h(MSARegister wd, MSARegister ws, MSARegister wt);
1071 void ceq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1072 void ceq_d(MSARegister wd, MSARegister ws, MSARegister wt);
1073 void clt_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1074 void clt_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1075 void clt_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1076 void clt_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1077 void clt_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1078 void clt_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1079 void clt_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1080 void clt_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1081 void cle_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1082 void cle_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1083 void cle_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1084 void cle_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1085 void cle_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1086 void cle_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1087 void cle_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1088 void cle_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1089 void add_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
1090 void add_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
1091 void add_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1092 void add_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1093 void adds_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
1094 void adds_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
1095 void adds_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1096 void adds_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1097 void adds_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1098 void adds_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1099 void adds_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1100 void adds_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1101 void adds_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1102 void adds_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1103 void adds_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1104 void adds_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1105 void ave_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1106 void ave_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1107 void ave_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1108 void ave_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1109 void ave_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1110 void ave_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1111 void ave_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1112 void ave_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1113 void aver_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1114 void aver_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1115 void aver_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1116 void aver_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1117 void aver_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1118 void aver_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1119 void aver_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1120 void aver_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1121 void subs_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1122 void subs_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1123 void subs_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1124 void subs_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1125 void subs_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1126 void subs_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1127 void subs_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1128 void subs_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1129 void subsus_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1130 void subsus_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1131 void subsus_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1132 void subsus_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1133 void subsus_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1134 void subsus_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1135 void subsus_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1136 void subsus_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1137 void subsuu_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1138 void subsuu_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1139 void subsuu_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1140 void subsuu_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1141 void subsuu_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1142 void subsuu_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1143 void subsuu_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1144 void subsuu_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1145 void asub_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1146 void asub_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1147 void asub_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1148 void asub_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1149 void asub_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1150 void asub_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1151 void asub_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1152 void asub_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1153 void mulv_b(MSARegister wd, MSARegister ws, MSARegister wt);
1154 void mulv_h(MSARegister wd, MSARegister ws, MSARegister wt);
1155 void mulv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1156 void mulv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1157 void maddv_b(MSARegister wd, MSARegister ws, MSARegister wt);
1158 void maddv_h(MSARegister wd, MSARegister ws, MSARegister wt);
1159 void maddv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1160 void maddv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1161 void msubv_b(MSARegister wd, MSARegister ws, MSARegister wt);
1162 void msubv_h(MSARegister wd, MSARegister ws, MSARegister wt);
1163 void msubv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1164 void msubv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1165 void div_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1166 void div_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1167 void div_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1168 void div_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1169 void div_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1170 void div_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1171 void div_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1172 void div_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1173 void mod_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1174 void mod_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1175 void mod_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1176 void mod_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1177 void mod_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1178 void mod_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1179 void mod_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1180 void mod_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1181 void dotp_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1182 void dotp_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1183 void dotp_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1184 void dotp_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1185 void dotp_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1186 void dotp_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1187 void dotp_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1188 void dotp_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1189 void dpadd_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1190 void dpadd_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1191 void dpadd_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1192 void dpadd_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1193 void dpadd_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1194 void dpadd_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1195 void dpadd_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1196 void dpadd_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1197 void dpsub_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1198 void dpsub_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1199 void dpsub_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1200 void dpsub_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1201 void dpsub_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1202 void dpsub_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1203 void dpsub_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1204 void dpsub_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1205 void sld_b(MSARegister wd, MSARegister ws, Register rt);
1206 void sld_h(MSARegister wd, MSARegister ws, Register rt);
1207 void sld_w(MSARegister wd, MSARegister ws, Register rt);
1208 void sld_d(MSARegister wd, MSARegister ws, Register rt);
1209 void splat_b(MSARegister wd, MSARegister ws, Register rt);
1210 void splat_h(MSARegister wd, MSARegister ws, Register rt);
1211 void splat_w(MSARegister wd, MSARegister ws, Register rt);
1212 void splat_d(MSARegister wd, MSARegister ws, Register rt);
1213 void pckev_b(MSARegister wd, MSARegister ws, MSARegister wt);
1214 void pckev_h(MSARegister wd, MSARegister ws, MSARegister wt);
1215 void pckev_w(MSARegister wd, MSARegister ws, MSARegister wt);
1216 void pckev_d(MSARegister wd, MSARegister ws, MSARegister wt);
1217 void pckod_b(MSARegister wd, MSARegister ws, MSARegister wt);
1218 void pckod_h(MSARegister wd, MSARegister ws, MSARegister wt);
1219 void pckod_w(MSARegister wd, MSARegister ws, MSARegister wt);
1220 void pckod_d(MSARegister wd, MSARegister ws, MSARegister wt);
1221 void ilvl_b(MSARegister wd, MSARegister ws, MSARegister wt);
1222 void ilvl_h(MSARegister wd, MSARegister ws, MSARegister wt);
1223 void ilvl_w(MSARegister wd, MSARegister ws, MSARegister wt);
1224 void ilvl_d(MSARegister wd, MSARegister ws, MSARegister wt);
1225 void ilvr_b(MSARegister wd, MSARegister ws, MSARegister wt);
1226 void ilvr_h(MSARegister wd, MSARegister ws, MSARegister wt);
1227 void ilvr_w(MSARegister wd, MSARegister ws, MSARegister wt);
1228 void ilvr_d(MSARegister wd, MSARegister ws, MSARegister wt);
1229 void ilvev_b(MSARegister wd, MSARegister ws, MSARegister wt);
1230 void ilvev_h(MSARegister wd, MSARegister ws, MSARegister wt);
1231 void ilvev_w(MSARegister wd, MSARegister ws, MSARegister wt);
1232 void ilvev_d(MSARegister wd, MSARegister ws, MSARegister wt);
1233 void ilvod_b(MSARegister wd, MSARegister ws, MSARegister wt);
1234 void ilvod_h(MSARegister wd, MSARegister ws, MSARegister wt);
1235 void ilvod_w(MSARegister wd, MSARegister ws, MSARegister wt);
1236 void ilvod_d(MSARegister wd, MSARegister ws, MSARegister wt);
1237 void vshf_b(MSARegister wd, MSARegister ws, MSARegister wt);
1238 void vshf_h(MSARegister wd, MSARegister ws, MSARegister wt);
1239 void vshf_w(MSARegister wd, MSARegister ws, MSARegister wt);
1240 void vshf_d(MSARegister wd, MSARegister ws, MSARegister wt);
1241 void srar_b(MSARegister wd, MSARegister ws, MSARegister wt);
1242 void srar_h(MSARegister wd, MSARegister ws, MSARegister wt);
1243 void srar_w(MSARegister wd, MSARegister ws, MSARegister wt);
1244 void srar_d(MSARegister wd, MSARegister ws, MSARegister wt);
1245 void srlr_b(MSARegister wd, MSARegister ws, MSARegister wt);
1246 void srlr_h(MSARegister wd, MSARegister ws, MSARegister wt);
1247 void srlr_w(MSARegister wd, MSARegister ws, MSARegister wt);
1248 void srlr_d(MSARegister wd, MSARegister ws, MSARegister wt);
1249 void hadd_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1250 void hadd_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1251 void hadd_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1252 void hadd_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1253 void hadd_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1254 void hadd_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1255 void hadd_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1256 void hadd_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1257 void hsub_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1258 void hsub_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1259 void hsub_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1260 void hsub_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1261 void hsub_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1262 void hsub_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1263 void hsub_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1264 void hsub_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1265
1266 void fcaf_w(MSARegister wd, MSARegister ws, MSARegister wt);
1267 void fcaf_d(MSARegister wd, MSARegister ws, MSARegister wt);
1268 void fcun_w(MSARegister wd, MSARegister ws, MSARegister wt);
1269 void fcun_d(MSARegister wd, MSARegister ws, MSARegister wt);
1270 void fceq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1271 void fceq_d(MSARegister wd, MSARegister ws, MSARegister wt);
1272 void fcueq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1273 void fcueq_d(MSARegister wd, MSARegister ws, MSARegister wt);
1274 void fclt_w(MSARegister wd, MSARegister ws, MSARegister wt);
1275 void fclt_d(MSARegister wd, MSARegister ws, MSARegister wt);
1276 void fcult_w(MSARegister wd, MSARegister ws, MSARegister wt);
1277 void fcult_d(MSARegister wd, MSARegister ws, MSARegister wt);
1278 void fcle_w(MSARegister wd, MSARegister ws, MSARegister wt);
1279 void fcle_d(MSARegister wd, MSARegister ws, MSARegister wt);
1280 void fcule_w(MSARegister wd, MSARegister ws, MSARegister wt);
1281 void fcule_d(MSARegister wd, MSARegister ws, MSARegister wt);
1282 void fsaf_w(MSARegister wd, MSARegister ws, MSARegister wt);
1283 void fsaf_d(MSARegister wd, MSARegister ws, MSARegister wt);
1284 void fsun_w(MSARegister wd, MSARegister ws, MSARegister wt);
1285 void fsun_d(MSARegister wd, MSARegister ws, MSARegister wt);
1286 void fseq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1287 void fseq_d(MSARegister wd, MSARegister ws, MSARegister wt);
1288 void fsueq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1289 void fsueq_d(MSARegister wd, MSARegister ws, MSARegister wt);
1290 void fslt_w(MSARegister wd, MSARegister ws, MSARegister wt);
1291 void fslt_d(MSARegister wd, MSARegister ws, MSARegister wt);
1292 void fsult_w(MSARegister wd, MSARegister ws, MSARegister wt);
1293 void fsult_d(MSARegister wd, MSARegister ws, MSARegister wt);
1294 void fsle_w(MSARegister wd, MSARegister ws, MSARegister wt);
1295 void fsle_d(MSARegister wd, MSARegister ws, MSARegister wt);
1296 void fsule_w(MSARegister wd, MSARegister ws, MSARegister wt);
1297 void fsule_d(MSARegister wd, MSARegister ws, MSARegister wt);
1298 void fadd_w(MSARegister wd, MSARegister ws, MSARegister wt);
1299 void fadd_d(MSARegister wd, MSARegister ws, MSARegister wt);
1300 void fsub_w(MSARegister wd, MSARegister ws, MSARegister wt);
1301 void fsub_d(MSARegister wd, MSARegister ws, MSARegister wt);
1302 void fmul_w(MSARegister wd, MSARegister ws, MSARegister wt);
1303 void fmul_d(MSARegister wd, MSARegister ws, MSARegister wt);
1304 void fdiv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1305 void fdiv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1306 void fmadd_w(MSARegister wd, MSARegister ws, MSARegister wt);
1307 void fmadd_d(MSARegister wd, MSARegister ws, MSARegister wt);
1308 void fmsub_w(MSARegister wd, MSARegister ws, MSARegister wt);
1309 void fmsub_d(MSARegister wd, MSARegister ws, MSARegister wt);
1310 void fexp2_w(MSARegister wd, MSARegister ws, MSARegister wt);
1311 void fexp2_d(MSARegister wd, MSARegister ws, MSARegister wt);
1312 void fexdo_h(MSARegister wd, MSARegister ws, MSARegister wt);
1313 void fexdo_w(MSARegister wd, MSARegister ws, MSARegister wt);
1314 void ftq_h(MSARegister wd, MSARegister ws, MSARegister wt);
1315 void ftq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1316 void fmin_w(MSARegister wd, MSARegister ws, MSARegister wt);
1317 void fmin_d(MSARegister wd, MSARegister ws, MSARegister wt);
1318 void fmin_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1319 void fmin_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1320 void fmax_w(MSARegister wd, MSARegister ws, MSARegister wt);
1321 void fmax_d(MSARegister wd, MSARegister ws, MSARegister wt);
1322 void fmax_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1323 void fmax_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1324 void fcor_w(MSARegister wd, MSARegister ws, MSARegister wt);
1325 void fcor_d(MSARegister wd, MSARegister ws, MSARegister wt);
1326 void fcune_w(MSARegister wd, MSARegister ws, MSARegister wt);
1327 void fcune_d(MSARegister wd, MSARegister ws, MSARegister wt);
1328 void fcne_w(MSARegister wd, MSARegister ws, MSARegister wt);
1329 void fcne_d(MSARegister wd, MSARegister ws, MSARegister wt);
1330 void mul_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1331 void mul_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1332 void madd_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1333 void madd_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1334 void msub_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1335 void msub_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1336 void fsor_w(MSARegister wd, MSARegister ws, MSARegister wt);
1337 void fsor_d(MSARegister wd, MSARegister ws, MSARegister wt);
1338 void fsune_w(MSARegister wd, MSARegister ws, MSARegister wt);
1339 void fsune_d(MSARegister wd, MSARegister ws, MSARegister wt);
1340 void fsne_w(MSARegister wd, MSARegister ws, MSARegister wt);
1341 void fsne_d(MSARegister wd, MSARegister ws, MSARegister wt);
1342 void mulr_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1343 void mulr_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1344 void maddr_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1345 void maddr_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1346 void msubr_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1347 void msubr_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1348
1349 void sldi_b(MSARegister wd, MSARegister ws, uint32_t n);
1350 void sldi_h(MSARegister wd, MSARegister ws, uint32_t n);
1351 void sldi_w(MSARegister wd, MSARegister ws, uint32_t n);
1352 void sldi_d(MSARegister wd, MSARegister ws, uint32_t n);
1353 void splati_b(MSARegister wd, MSARegister ws, uint32_t n);
1354 void splati_h(MSARegister wd, MSARegister ws, uint32_t n);
1355 void splati_w(MSARegister wd, MSARegister ws, uint32_t n);
1356 void splati_d(MSARegister wd, MSARegister ws, uint32_t n);
1357 void copy_s_b(Register rd, MSARegister ws, uint32_t n);
1358 void copy_s_h(Register rd, MSARegister ws, uint32_t n);
1359 void copy_s_w(Register rd, MSARegister ws, uint32_t n);
1360 void copy_s_d(Register rd, MSARegister ws, uint32_t n);
1361 void copy_u_b(Register rd, MSARegister ws, uint32_t n);
1362 void copy_u_h(Register rd, MSARegister ws, uint32_t n);
1363 void copy_u_w(Register rd, MSARegister ws, uint32_t n);
1364 void insert_b(MSARegister wd, uint32_t n, Register rs);
1365 void insert_h(MSARegister wd, uint32_t n, Register rs);
1366 void insert_w(MSARegister wd, uint32_t n, Register rs);
1367 void insert_d(MSARegister wd, uint32_t n, Register rs);
1368 void insve_b(MSARegister wd, uint32_t n, MSARegister ws);
1369 void insve_h(MSARegister wd, uint32_t n, MSARegister ws);
1370 void insve_w(MSARegister wd, uint32_t n, MSARegister ws);
1371 void insve_d(MSARegister wd, uint32_t n, MSARegister ws);
1372 void move_v(MSARegister wd, MSARegister ws);
1373 void ctcmsa(MSAControlRegister cd, Register rs);
1374 void cfcmsa(Register rd, MSAControlRegister cs);
1375
1376 void slli_b(MSARegister wd, MSARegister ws, uint32_t m);
1377 void slli_h(MSARegister wd, MSARegister ws, uint32_t m);
1378 void slli_w(MSARegister wd, MSARegister ws, uint32_t m);
1379 void slli_d(MSARegister wd, MSARegister ws, uint32_t m);
1380 void srai_b(MSARegister wd, MSARegister ws, uint32_t m);
1381 void srai_h(MSARegister wd, MSARegister ws, uint32_t m);
1382 void srai_w(MSARegister wd, MSARegister ws, uint32_t m);
1383 void srai_d(MSARegister wd, MSARegister ws, uint32_t m);
1384 void srli_b(MSARegister wd, MSARegister ws, uint32_t m);
1385 void srli_h(MSARegister wd, MSARegister ws, uint32_t m);
1386 void srli_w(MSARegister wd, MSARegister ws, uint32_t m);
1387 void srli_d(MSARegister wd, MSARegister ws, uint32_t m);
1388 void bclri_b(MSARegister wd, MSARegister ws, uint32_t m);
1389 void bclri_h(MSARegister wd, MSARegister ws, uint32_t m);
1390 void bclri_w(MSARegister wd, MSARegister ws, uint32_t m);
1391 void bclri_d(MSARegister wd, MSARegister ws, uint32_t m);
1392 void bseti_b(MSARegister wd, MSARegister ws, uint32_t m);
1393 void bseti_h(MSARegister wd, MSARegister ws, uint32_t m);
1394 void bseti_w(MSARegister wd, MSARegister ws, uint32_t m);
1395 void bseti_d(MSARegister wd, MSARegister ws, uint32_t m);
1396 void bnegi_b(MSARegister wd, MSARegister ws, uint32_t m);
1397 void bnegi_h(MSARegister wd, MSARegister ws, uint32_t m);
1398 void bnegi_w(MSARegister wd, MSARegister ws, uint32_t m);
1399 void bnegi_d(MSARegister wd, MSARegister ws, uint32_t m);
1400 void binsli_b(MSARegister wd, MSARegister ws, uint32_t m);
1401 void binsli_h(MSARegister wd, MSARegister ws, uint32_t m);
1402 void binsli_w(MSARegister wd, MSARegister ws, uint32_t m);
1403 void binsli_d(MSARegister wd, MSARegister ws, uint32_t m);
1404 void binsri_b(MSARegister wd, MSARegister ws, uint32_t m);
1405 void binsri_h(MSARegister wd, MSARegister ws, uint32_t m);
1406 void binsri_w(MSARegister wd, MSARegister ws, uint32_t m);
1407 void binsri_d(MSARegister wd, MSARegister ws, uint32_t m);
1408 void sat_s_b(MSARegister wd, MSARegister ws, uint32_t m);
1409 void sat_s_h(MSARegister wd, MSARegister ws, uint32_t m);
1410 void sat_s_w(MSARegister wd, MSARegister ws, uint32_t m);
1411 void sat_s_d(MSARegister wd, MSARegister ws, uint32_t m);
1412 void sat_u_b(MSARegister wd, MSARegister ws, uint32_t m);
1413 void sat_u_h(MSARegister wd, MSARegister ws, uint32_t m);
1414 void sat_u_w(MSARegister wd, MSARegister ws, uint32_t m);
1415 void sat_u_d(MSARegister wd, MSARegister ws, uint32_t m);
1416 void srari_b(MSARegister wd, MSARegister ws, uint32_t m);
1417 void srari_h(MSARegister wd, MSARegister ws, uint32_t m);
1418 void srari_w(MSARegister wd, MSARegister ws, uint32_t m);
1419 void srari_d(MSARegister wd, MSARegister ws, uint32_t m);
1420 void srlri_b(MSARegister wd, MSARegister ws, uint32_t m);
1421 void srlri_h(MSARegister wd, MSARegister ws, uint32_t m);
1422 void srlri_w(MSARegister wd, MSARegister ws, uint32_t m);
1423 void srlri_d(MSARegister wd, MSARegister ws, uint32_t m);
1424
1425 // Check the code size generated from label to here.
1426 int SizeOfCodeGeneratedSince(Label* label) {
1427 return pc_offset() - label->pos();
1428 }
1429
1430 // Check the number of instructions generated from label to here.
1431 int InstructionsGeneratedSince(Label* label) {
1432 return SizeOfCodeGeneratedSince(label) / kInstrSize;
1433 }
1434
1435 // Class for scoping postponing the trampoline pool generation.
1436 class BlockTrampolinePoolScope {
1437 public:
1438 explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
1439 assem_->StartBlockTrampolinePool();
1440 }
1441 ~BlockTrampolinePoolScope() { assem_->EndBlockTrampolinePool(); }
1442
1443 private:
1444 Assembler* assem_;
1445
1446 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
1447 };
1448
1449 // Class for postponing the assembly buffer growth. Typically used for
1450 // sequences of instructions that must be emitted as a unit, before
1451 // buffer growth (and relocation) can occur.
1452 // This blocking scope is not nestable.
1453 class BlockGrowBufferScope {
1454 public:
1455 explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
1456 assem_->StartBlockGrowBuffer();
1457 }
1458 ~BlockGrowBufferScope() { assem_->EndBlockGrowBuffer(); }
1459
1460 private:
1461 Assembler* assem_;
1462
1463 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
1464 };
1465
1466 // Record a deoptimization reason that can be used by a log or cpu profiler.
1467 // Use --trace-deopt to enable.
1468 void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
1469 int id);
1470
1471 static int RelocateInternalReference(RelocInfo::Mode rmode, Address pc,
1472 intptr_t pc_delta);
1473
1474 // Writes a single byte or word of data in the code stream. Used for
1475 // inline tables, e.g., jump-tables.
1476 void db(uint8_t data);
1477 void dd(uint32_t data);
1478 void dq(uint64_t data);
1479 void dp(uintptr_t data) { dq(data); }
1480 void dd(Label* label);
1481
1482 // Postpone the generation of the trampoline pool for the specified number of
1483 // instructions.
1484 void BlockTrampolinePoolFor(int instructions);
1485
1486 // Check if there is less than kGap bytes available in the buffer.
1487 // If this is the case, we need to grow the buffer before emitting
1488 // an instruction or relocation information.
1489 inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
1490
1491 // Get the number of bytes available in the buffer.
1492 inline intptr_t available_space() const {
1493 return reloc_info_writer.pos() - pc_;
1494 }
1495
1496 // Read/patch instructions.
1497 static Instr instr_at(Address pc) { return *reinterpret_cast<Instr*>(pc); }
1498 static void instr_at_put(Address pc, Instr instr) {
1499 *reinterpret_cast<Instr*>(pc) = instr;
1500 }
1501 Instr instr_at(int pos) {
1502 return *reinterpret_cast<Instr*>(buffer_start_ + pos);
1503 }
1504 void instr_at_put(int pos, Instr instr) {
1505 *reinterpret_cast<Instr*>(buffer_start_ + pos) = instr;
1506 }
1507
1508 // Check if an instruction is a branch of some kind.
1509 static bool IsBranch(Instr instr);
1510 static bool IsMsaBranch(Instr instr);
1511 static bool IsBc(Instr instr);
1512 static bool IsNal(Instr instr);
1513 static bool IsBzc(Instr instr);
1514
1515 static bool IsBeq(Instr instr);
1516 static bool IsBne(Instr instr);
1517 static bool IsBeqzc(Instr instr);
1518 static bool IsBnezc(Instr instr);
1519 static bool IsBeqc(Instr instr);
1520 static bool IsBnec(Instr instr);
1521
1522 static bool IsJump(Instr instr);
1523 static bool IsJ(Instr instr);
1524 static bool IsLui(Instr instr);
1525 static bool IsOri(Instr instr);
1526 static bool IsMov(Instr instr, Register rd, Register rs);
1527
1528 static bool IsJal(Instr instr);
1529 static bool IsJr(Instr instr);
1530 static bool IsJalr(Instr instr);
1531
1532 static bool IsNop(Instr instr, unsigned int type);
1533 static bool IsPop(Instr instr);
1534 static bool IsPush(Instr instr);
1535 static bool IsLwRegFpOffset(Instr instr);
1536 static bool IsSwRegFpOffset(Instr instr);
1537 static bool IsLwRegFpNegOffset(Instr instr);
1538 static bool IsSwRegFpNegOffset(Instr instr);
1539
1540 static Register GetRtReg(Instr instr);
1541 static Register GetRsReg(Instr instr);
1542 static Register GetRdReg(Instr instr);
1543
1544 static uint32_t GetRt(Instr instr);
1545 static uint32_t GetRtField(Instr instr);
1546 static uint32_t GetRs(Instr instr);
1547 static uint32_t GetRsField(Instr instr);
1548 static uint32_t GetRd(Instr instr);
1549 static uint32_t GetRdField(Instr instr);
1550 static uint32_t GetSa(Instr instr);
1551 static uint32_t GetSaField(Instr instr);
1552 static uint32_t GetOpcodeField(Instr instr);
1553 static uint32_t GetFunction(Instr instr);
1554 static uint32_t GetFunctionField(Instr instr);
1555 static uint32_t GetImmediate16(Instr instr);
1556 static uint32_t GetLabelConst(Instr instr);
1557
1558 static int32_t GetBranchOffset(Instr instr);
1559 static bool IsLw(Instr instr);
1560 static int16_t GetLwOffset(Instr instr);
1561 static Instr SetLwOffset(Instr instr, int16_t offset);
1562
1563 static bool IsSw(Instr instr);
1564 static Instr SetSwOffset(Instr instr, int16_t offset);
1565 static bool IsAddImmediate(Instr instr);
1566 static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1567
1568 static bool IsAndImmediate(Instr instr);
1569 static bool IsEmittedConstant(Instr instr);
1570
1571 void CheckTrampolinePool();
1572
1573 bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; }
1574 static bool IsCompactBranchSupported() { return kArchVariant == kMips64r6; }
1575
1576 inline int UnboundLabelsCount() { return unbound_labels_count_; }
1577
1578 protected:
1579 // Load Scaled Address instructions.
1580 void lsa(Register rd, Register rt, Register rs, uint8_t sa);
1581 void dlsa(Register rd, Register rt, Register rs, uint8_t sa);
1582
1583 // Readable constants for base and offset adjustment helper, these indicate if
1584 // aside from offset, another value like offset + 4 should fit into int16.
1585 enum class OffsetAccessType : bool {
1586 SINGLE_ACCESS = false,
1587 TWO_ACCESSES = true
1588 };
1589
1590 // Helper function for memory load/store using base register and offset.
1591 void AdjustBaseAndOffset(
1592 MemOperand* src,
1593 OffsetAccessType access_type = OffsetAccessType::SINGLE_ACCESS,
1594 int second_access_add_to_offset = 4);
1595
1596 inline static void set_target_internal_reference_encoded_at(Address pc,
1597 Address target);
1598
1599 int64_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1600
1601 // Decode branch instruction at pos and return branch target pos.
1602 int target_at(int pos, bool is_internal);
1603
1604 // Patch branch instruction at pos to branch to given branch target pos.
1605 void target_at_put(int pos, int target_pos, bool is_internal);
1606
1607 // Say if we need to relocate with this mode.
1608 bool MustUseReg(RelocInfo::Mode rmode);
1609
1610 // Record reloc info for current pc_.
1611 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1612
1613 // Block the emission of the trampoline pool before pc_offset.
1614 void BlockTrampolinePoolBefore(int pc_offset) {
1615 if (no_trampoline_pool_before_ < pc_offset)
1616 no_trampoline_pool_before_ = pc_offset;
1617 }
1618
1619 void StartBlockTrampolinePool() { trampoline_pool_blocked_nesting_++; }
1620
1621 void EndBlockTrampolinePool() {
1622 trampoline_pool_blocked_nesting_--;
1623 if (trampoline_pool_blocked_nesting_ == 0) {
1624 CheckTrampolinePoolQuick(1);
1625 }
1626 }
1627
1628 bool is_trampoline_pool_blocked() const {
1629 return trampoline_pool_blocked_nesting_ > 0;
1630 }
1631
1632 bool has_exception() const { return internal_trampoline_exception_; }
1633
1634 bool is_trampoline_emitted() const { return trampoline_emitted_; }
1635
1636 // Temporarily block automatic assembly buffer growth.
1637 void StartBlockGrowBuffer() {
1638 DCHECK(!block_buffer_growth_);
1639 block_buffer_growth_ = true;
1640 }
1641
1642 void EndBlockGrowBuffer() {
1643 DCHECK(block_buffer_growth_);
1644 block_buffer_growth_ = false;
1645 }
1646
1647 bool is_buffer_growth_blocked() const { return block_buffer_growth_; }
1648
1649 void EmitForbiddenSlotInstruction() {
1650 if (IsPrevInstrCompactBranch()) {
1651 nop();
1652 }
1653 }
1654
1655 void CheckTrampolinePoolQuick(int extra_instructions = 0) {
1656 if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) {
1657 CheckTrampolinePool();
1658 }
1659 }
1660
1661 void set_last_call_pc_(byte* pc) { last_call_pc_ = pc; }
1662
1663 private:
1664 // Avoid overflows for displacements etc.
1665 static const int kMaximalBufferSize = 512 * MB;
1666
1667 // Buffer size and constant pool distance are checked together at regular
1668 // intervals of kBufferCheckInterval emitted bytes.
1669 static constexpr int kBufferCheckInterval = 1 * KB / 2;
1670
1671 // Code generation.
1672 // The relocation writer's position is at least kGap bytes below the end of
1673 // the generated instructions. This is so that multi-instruction sequences do
1674 // not have to check for overflow. The same is true for writes of large
1675 // relocation info entries.
1676 static constexpr int kGap = 64;
1677 STATIC_ASSERT(AssemblerBase::kMinimalBufferSize >= 2 * kGap);
1678
1679 // Repeated checking whether the trampoline pool should be emitted is rather
1680 // expensive. By default we only check again once a number of instructions
1681 // has been generated.
1682 static constexpr int kCheckConstIntervalInst = 32;
1683 static constexpr int kCheckConstInterval =
1684 kCheckConstIntervalInst * kInstrSize;
1685
1686 int next_buffer_check_; // pc offset of next buffer check.
1687
1688 // Emission of the trampoline pool may be blocked in some code sequences.
1689 int trampoline_pool_blocked_nesting_; // Block emission if this is not zero.
1690 int no_trampoline_pool_before_; // Block emission before this pc offset.
1691
1692 // Keep track of the last emitted pool to guarantee a maximal distance.
1693 int last_trampoline_pool_end_; // pc offset of the end of the last pool.
1694
1695 // Automatic growth of the assembly buffer may be blocked for some sequences.
1696 bool block_buffer_growth_; // Block growth when true.
1697
1698 // Relocation information generation.
1699 // Each relocation is encoded as a variable size value.
1700 static constexpr int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1701 RelocInfoWriter reloc_info_writer;
1702
1703 // The bound position, before this we cannot do instruction elimination.
1704 int last_bound_pos_;
1705
1706 // Readable constants for compact branch handling in emit()
1707 enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true };
1708
1709 // Code emission.
1710 inline void CheckBuffer();
1711 void GrowBuffer();
1712 inline void emit(Instr x,
1713 CompactBranchType is_compact_branch = CompactBranchType::NO);
1714 inline void emit(uint64_t x);
1715 inline void CheckForEmitInForbiddenSlot();
1716 template <typename T>
1717 inline void EmitHelper(T x);
1718 inline void EmitHelper(Instr x, CompactBranchType is_compact_branch);
1719
1720 // Instruction generation.
1721 // We have 3 different kind of encoding layout on MIPS.
1722 // However due to many different types of objects encoded in the same fields
1723 // we have quite a few aliases for each mode.
1724 // Using the same structure to refer to Register and FPURegister would spare a
1725 // few aliases, but mixing both does not look clean to me.
1726 // Anyway we could surely implement this differently.
1727
1728 void GenInstrRegister(Opcode opcode, Register rs, Register rt, Register rd,
1729 uint16_t sa = 0, SecondaryField func = nullptrSF);
1730
1731 void GenInstrRegister(Opcode opcode, Register rs, Register rt, uint16_t msb,
1732 uint16_t lsb, SecondaryField func);
1733
1734 void GenInstrRegister(Opcode opcode, SecondaryField fmt, FPURegister ft,
1735 FPURegister fs, FPURegister fd,
1736 SecondaryField func = nullptrSF);
1737
1738 void GenInstrRegister(Opcode opcode, FPURegister fr, FPURegister ft,
1739 FPURegister fs, FPURegister fd,
1740 SecondaryField func = nullptrSF);
1741
1742 void GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1743 FPURegister fs, FPURegister fd,
1744 SecondaryField func = nullptrSF);
1745
1746 void GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1747 FPUControlRegister fs, SecondaryField func = nullptrSF);
1748
1749 void GenInstrImmediate(
1750 Opcode opcode, Register rs, Register rt, int32_t j,
1751 CompactBranchType is_compact_branch = CompactBranchType::NO);
1752 void GenInstrImmediate(
1753 Opcode opcode, Register rs, SecondaryField SF, int32_t j,
1754 CompactBranchType is_compact_branch = CompactBranchType::NO);
1755 void GenInstrImmediate(
1756 Opcode opcode, Register r1, FPURegister r2, int32_t j,
1757 CompactBranchType is_compact_branch = CompactBranchType::NO);
1758 void GenInstrImmediate(Opcode opcode, Register base, Register rt,
1759 int32_t offset9, int bit6, SecondaryField func);
1760 void GenInstrImmediate(
1761 Opcode opcode, Register rs, int32_t offset21,
1762 CompactBranchType is_compact_branch = CompactBranchType::NO);
1763 void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21);
1764 void GenInstrImmediate(
1765 Opcode opcode, int32_t offset26,
1766 CompactBranchType is_compact_branch = CompactBranchType::NO);
1767
1768 void GenInstrJump(Opcode opcode, uint32_t address);
1769
1770 // MSA
1771 void GenInstrMsaI8(SecondaryField operation, uint32_t imm8, MSARegister ws,
1772 MSARegister wd);
1773
1774 void GenInstrMsaI5(SecondaryField operation, SecondaryField df, int32_t imm5,
1775 MSARegister ws, MSARegister wd);
1776
1777 void GenInstrMsaBit(SecondaryField operation, SecondaryField df, uint32_t m,
1778 MSARegister ws, MSARegister wd);
1779
1780 void GenInstrMsaI10(SecondaryField operation, SecondaryField df,
1781 int32_t imm10, MSARegister wd);
1782
1783 template <typename RegType>
1784 void GenInstrMsa3R(SecondaryField operation, SecondaryField df, RegType t,
1785 MSARegister ws, MSARegister wd);
1786
1787 template <typename DstType, typename SrcType>
1788 void GenInstrMsaElm(SecondaryField operation, SecondaryField df, uint32_t n,
1789 SrcType src, DstType dst);
1790
1791 void GenInstrMsa3RF(SecondaryField operation, uint32_t df, MSARegister wt,
1792 MSARegister ws, MSARegister wd);
1793
1794 void GenInstrMsaVec(SecondaryField operation, MSARegister wt, MSARegister ws,
1795 MSARegister wd);
1796
1797 void GenInstrMsaMI10(SecondaryField operation, int32_t s10, Register rs,
1798 MSARegister wd);
1799
1800 void GenInstrMsa2R(SecondaryField operation, SecondaryField df,
1801 MSARegister ws, MSARegister wd);
1802
1803 void GenInstrMsa2RF(SecondaryField operation, SecondaryField df,
1804 MSARegister ws, MSARegister wd);
1805
1806 void GenInstrMsaBranch(SecondaryField operation, MSARegister wt,
1807 int32_t offset16);
1808
1809 inline bool is_valid_msa_df_m(SecondaryField bit_df, uint32_t m) {
1810 switch (bit_df) {
1811 case BIT_DF_b:
1812 return is_uint3(m);
1813 case BIT_DF_h:
1814 return is_uint4(m);
1815 case BIT_DF_w:
1816 return is_uint5(m);
1817 case BIT_DF_d:
1818 return is_uint6(m);
1819 default:
1820 return false;
1821 }
1822 }
1823
1824 inline bool is_valid_msa_df_n(SecondaryField elm_df, uint32_t n) {
1825 switch (elm_df) {
1826 case ELM_DF_B:
1827 return is_uint4(n);
1828 case ELM_DF_H:
1829 return is_uint3(n);
1830 case ELM_DF_W:
1831 return is_uint2(n);
1832 case ELM_DF_D:
1833 return is_uint1(n);
1834 default:
1835 return false;
1836 }
1837 }
1838
1839 // Labels.
1840 void print(const Label* L);
1841 void bind_to(Label* L, int pos);
1842 void next(Label* L, bool is_internal);
1843
1844 // One trampoline consists of:
1845 // - space for trampoline slots,
1846 // - space for labels.
1847 //
1848 // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1849 // Space for trampoline slots precedes space for labels. Each label is of one
1850 // instruction size, so total amount for labels is equal to
1851 // label_count * kInstrSize.
1852 class Trampoline {
1853 public:
1854 Trampoline() {
1855 start_ = 0;
1856 next_slot_ = 0;
1857 free_slot_count_ = 0;
1858 end_ = 0;
1859 }
1860 Trampoline(int start, int slot_count) {
1861 start_ = start;
1862 next_slot_ = start;
1863 free_slot_count_ = slot_count;
1864 end_ = start + slot_count * kTrampolineSlotsSize;
1865 }
1866 int start() { return start_; }
1867 int end() { return end_; }
1868 int take_slot() {
1869 int trampoline_slot = kInvalidSlotPos;
1870 if (free_slot_count_ <= 0) {
1871 // We have run out of space on trampolines.
1872 // Make sure we fail in debug mode, so we become aware of each case
1873 // when this happens.
1874 DCHECK(0);
1875 // Internal exception will be caught.
1876 } else {
1877 trampoline_slot = next_slot_;
1878 free_slot_count_--;
1879 next_slot_ += kTrampolineSlotsSize;
1880 }
1881 return trampoline_slot;
1882 }
1883
1884 private:
1885 int start_;
1886 int end_;
1887 int next_slot_;
1888 int free_slot_count_;
1889 };
1890
1891 int32_t get_trampoline_entry(int32_t pos);
1892 int unbound_labels_count_;
1893 // After trampoline is emitted, long branches are used in generated code for
1894 // the forward branches whose target offsets could be beyond reach of branch
1895 // instruction. We use this information to trigger different mode of
1896 // branch instruction generation, where we use jump instructions rather
1897 // than regular branch instructions.
1898 bool trampoline_emitted_;
1899 static constexpr int kInvalidSlotPos = -1;
1900
1901 // Internal reference positions, required for unbounded internal reference
1902 // labels.
1903 std::set<int64_t> internal_reference_positions_;
1904 bool is_internal_reference(Label* L) {
1905 return internal_reference_positions_.find(L->pos()) !=
1906 internal_reference_positions_.end();
1907 }
1908
1909 void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; }
1910 void ClearCompactBranchState() { prev_instr_compact_branch_ = false; }
1911 bool prev_instr_compact_branch_ = false;
1912
1913 Trampoline trampoline_;
1914 bool internal_trampoline_exception_;
1915
1916 // Keep track of the last Call's position to ensure that safepoint can get the
1917 // correct information even if there is a trampoline immediately after the
1918 // Call.
1919 byte* last_call_pc_;
1920
1921 RegList scratch_register_list_;
1922
1923 private:
1924 void AllocateAndInstallRequestedHeapObjects(Isolate* isolate);
1925
1926 int WriteCodeComments();
1927
1928 friend class RegExpMacroAssemblerMIPS;
1929 friend class RelocInfo;
1930 friend class BlockTrampolinePoolScope;
1931 friend class EnsureSpace;
1932};
1933
1934class EnsureSpace {
1935 public:
1936 explicit inline EnsureSpace(Assembler* assembler);
1937};
1938
1939class V8_EXPORT_PRIVATE UseScratchRegisterScope {
1940 public:
1941 explicit UseScratchRegisterScope(Assembler* assembler);
1942 ~UseScratchRegisterScope();
1943
1944 Register Acquire();
1945 bool hasAvailable() const;
1946
1947 private:
1948 RegList* available_;
1949 RegList old_available_;
1950};
1951
1952} // namespace internal
1953} // namespace v8
1954
1955#endif // V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_H_