blob: 2d5a57958336ef1ec4bb65b8ce63da1efc199a3e [file] [log] [blame]
Ben Murdoch014dc512016-03-22 12:00:34 +00001// Copyright 2011 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5// Features shared by parsing and pre-parsing scanners.
6
7#include "src/parsing/scanner.h"
8
9#include <stdint.h>
10
11#include <cmath>
12
13#include "src/ast/ast-value-factory.h"
14#include "src/char-predicates-inl.h"
15#include "src/conversions-inl.h"
16#include "src/list-inl.h"
17#include "src/parsing/parser.h"
18
19namespace v8 {
20namespace internal {
21
22
23Handle<String> LiteralBuffer::Internalize(Isolate* isolate) const {
24 if (is_one_byte()) {
25 return isolate->factory()->InternalizeOneByteString(one_byte_literal());
26 }
27 return isolate->factory()->InternalizeTwoByteString(two_byte_literal());
28}
29
30
31// Default implementation for streams that do not support bookmarks.
32bool Utf16CharacterStream::SetBookmark() { return false; }
33void Utf16CharacterStream::ResetToBookmark() { UNREACHABLE(); }
34
35
36// ----------------------------------------------------------------------------
37// Scanner
38
39Scanner::Scanner(UnicodeCache* unicode_cache)
40 : unicode_cache_(unicode_cache),
41 bookmark_c0_(kNoBookmark),
Ben Murdoch109988c2016-05-18 11:27:45 +010042 octal_pos_(Location::invalid()),
43 found_html_comment_(false) {
Ben Murdoch014dc512016-03-22 12:00:34 +000044 bookmark_current_.literal_chars = &bookmark_current_literal_;
45 bookmark_current_.raw_literal_chars = &bookmark_current_raw_literal_;
46 bookmark_next_.literal_chars = &bookmark_next_literal_;
47 bookmark_next_.raw_literal_chars = &bookmark_next_raw_literal_;
48}
49
50
51void Scanner::Initialize(Utf16CharacterStream* source) {
52 source_ = source;
53 // Need to capture identifiers in order to recognize "get" and "set"
54 // in object literals.
55 Init();
56 // Skip initial whitespace allowing HTML comment ends just like
57 // after a newline and scan first token.
58 has_line_terminator_before_next_ = true;
59 SkipWhiteSpace();
60 Scan();
61}
62
63
64template <bool capture_raw>
65uc32 Scanner::ScanHexNumber(int expected_length) {
66 DCHECK(expected_length <= 4); // prevent overflow
67
68 uc32 x = 0;
69 for (int i = 0; i < expected_length; i++) {
70 int d = HexValue(c0_);
71 if (d < 0) {
72 return -1;
73 }
74 x = x * 16 + d;
75 Advance<capture_raw>();
76 }
77
78 return x;
79}
80
81
82template <bool capture_raw>
83uc32 Scanner::ScanUnlimitedLengthHexNumber(int max_value) {
84 uc32 x = 0;
85 int d = HexValue(c0_);
86 if (d < 0) {
87 return -1;
88 }
89 while (d >= 0) {
90 x = x * 16 + d;
91 if (x > max_value) return -1;
92 Advance<capture_raw>();
93 d = HexValue(c0_);
94 }
95 return x;
96}
97
98
99// Ensure that tokens can be stored in a byte.
100STATIC_ASSERT(Token::NUM_TOKENS <= 0x100);
101
102// Table of one-character tokens, by character (0x00..0x7f only).
103static const byte one_char_tokens[] = {
104 Token::ILLEGAL,
105 Token::ILLEGAL,
106 Token::ILLEGAL,
107 Token::ILLEGAL,
108 Token::ILLEGAL,
109 Token::ILLEGAL,
110 Token::ILLEGAL,
111 Token::ILLEGAL,
112 Token::ILLEGAL,
113 Token::ILLEGAL,
114 Token::ILLEGAL,
115 Token::ILLEGAL,
116 Token::ILLEGAL,
117 Token::ILLEGAL,
118 Token::ILLEGAL,
119 Token::ILLEGAL,
120 Token::ILLEGAL,
121 Token::ILLEGAL,
122 Token::ILLEGAL,
123 Token::ILLEGAL,
124 Token::ILLEGAL,
125 Token::ILLEGAL,
126 Token::ILLEGAL,
127 Token::ILLEGAL,
128 Token::ILLEGAL,
129 Token::ILLEGAL,
130 Token::ILLEGAL,
131 Token::ILLEGAL,
132 Token::ILLEGAL,
133 Token::ILLEGAL,
134 Token::ILLEGAL,
135 Token::ILLEGAL,
136 Token::ILLEGAL,
137 Token::ILLEGAL,
138 Token::ILLEGAL,
139 Token::ILLEGAL,
140 Token::ILLEGAL,
141 Token::ILLEGAL,
142 Token::ILLEGAL,
143 Token::ILLEGAL,
144 Token::LPAREN, // 0x28
145 Token::RPAREN, // 0x29
146 Token::ILLEGAL,
147 Token::ILLEGAL,
148 Token::COMMA, // 0x2c
149 Token::ILLEGAL,
150 Token::ILLEGAL,
151 Token::ILLEGAL,
152 Token::ILLEGAL,
153 Token::ILLEGAL,
154 Token::ILLEGAL,
155 Token::ILLEGAL,
156 Token::ILLEGAL,
157 Token::ILLEGAL,
158 Token::ILLEGAL,
159 Token::ILLEGAL,
160 Token::ILLEGAL,
161 Token::ILLEGAL,
162 Token::COLON, // 0x3a
163 Token::SEMICOLON, // 0x3b
164 Token::ILLEGAL,
165 Token::ILLEGAL,
166 Token::ILLEGAL,
167 Token::CONDITIONAL, // 0x3f
168 Token::ILLEGAL,
169 Token::ILLEGAL,
170 Token::ILLEGAL,
171 Token::ILLEGAL,
172 Token::ILLEGAL,
173 Token::ILLEGAL,
174 Token::ILLEGAL,
175 Token::ILLEGAL,
176 Token::ILLEGAL,
177 Token::ILLEGAL,
178 Token::ILLEGAL,
179 Token::ILLEGAL,
180 Token::ILLEGAL,
181 Token::ILLEGAL,
182 Token::ILLEGAL,
183 Token::ILLEGAL,
184 Token::ILLEGAL,
185 Token::ILLEGAL,
186 Token::ILLEGAL,
187 Token::ILLEGAL,
188 Token::ILLEGAL,
189 Token::ILLEGAL,
190 Token::ILLEGAL,
191 Token::ILLEGAL,
192 Token::ILLEGAL,
193 Token::ILLEGAL,
194 Token::ILLEGAL,
195 Token::LBRACK, // 0x5b
196 Token::ILLEGAL,
197 Token::RBRACK, // 0x5d
198 Token::ILLEGAL,
199 Token::ILLEGAL,
200 Token::ILLEGAL,
201 Token::ILLEGAL,
202 Token::ILLEGAL,
203 Token::ILLEGAL,
204 Token::ILLEGAL,
205 Token::ILLEGAL,
206 Token::ILLEGAL,
207 Token::ILLEGAL,
208 Token::ILLEGAL,
209 Token::ILLEGAL,
210 Token::ILLEGAL,
211 Token::ILLEGAL,
212 Token::ILLEGAL,
213 Token::ILLEGAL,
214 Token::ILLEGAL,
215 Token::ILLEGAL,
216 Token::ILLEGAL,
217 Token::ILLEGAL,
218 Token::ILLEGAL,
219 Token::ILLEGAL,
220 Token::ILLEGAL,
221 Token::ILLEGAL,
222 Token::ILLEGAL,
223 Token::ILLEGAL,
224 Token::ILLEGAL,
225 Token::ILLEGAL,
226 Token::ILLEGAL,
227 Token::LBRACE, // 0x7b
228 Token::ILLEGAL,
229 Token::RBRACE, // 0x7d
230 Token::BIT_NOT, // 0x7e
231 Token::ILLEGAL
232};
233
234
235Token::Value Scanner::Next() {
236 if (next_.token == Token::EOS) {
237 next_.location.beg_pos = current_.location.beg_pos;
238 next_.location.end_pos = current_.location.end_pos;
239 }
240 current_ = next_;
241 if (V8_UNLIKELY(next_next_.token != Token::UNINITIALIZED)) {
242 next_ = next_next_;
243 next_next_.token = Token::UNINITIALIZED;
244 return current_.token;
245 }
246 has_line_terminator_before_next_ = false;
247 has_multiline_comment_before_next_ = false;
248 if (static_cast<unsigned>(c0_) <= 0x7f) {
249 Token::Value token = static_cast<Token::Value>(one_char_tokens[c0_]);
250 if (token != Token::ILLEGAL) {
251 int pos = source_pos();
252 next_.token = token;
253 next_.location.beg_pos = pos;
254 next_.location.end_pos = pos + 1;
255 Advance();
256 return current_.token;
257 }
258 }
259 Scan();
260 return current_.token;
261}
262
263
264Token::Value Scanner::PeekAhead() {
265 if (next_next_.token != Token::UNINITIALIZED) {
266 return next_next_.token;
267 }
268 TokenDesc prev = current_;
269 Next();
270 Token::Value ret = next_.token;
271 next_next_ = next_;
272 next_ = current_;
273 current_ = prev;
274 return ret;
275}
276
277
278// TODO(yangguo): check whether this is actually necessary.
279static inline bool IsLittleEndianByteOrderMark(uc32 c) {
280 // The Unicode value U+FFFE is guaranteed never to be assigned as a
281 // Unicode character; this implies that in a Unicode context the
282 // 0xFF, 0xFE byte pattern can only be interpreted as the U+FEFF
283 // character expressed in little-endian byte order (since it could
284 // not be a U+FFFE character expressed in big-endian byte
285 // order). Nevertheless, we check for it to be compatible with
286 // Spidermonkey.
287 return c == 0xFFFE;
288}
289
290
291bool Scanner::SkipWhiteSpace() {
292 int start_position = source_pos();
293
294 while (true) {
295 while (true) {
296 // The unicode cache accepts unsigned inputs.
297 if (c0_ < 0) break;
298 // Advance as long as character is a WhiteSpace or LineTerminator.
299 // Remember if the latter is the case.
300 if (unicode_cache_->IsLineTerminator(c0_)) {
301 has_line_terminator_before_next_ = true;
302 } else if (!unicode_cache_->IsWhiteSpace(c0_) &&
303 !IsLittleEndianByteOrderMark(c0_)) {
304 break;
305 }
306 Advance();
307 }
308
309 // If there is an HTML comment end '-->' at the beginning of a
310 // line (with only whitespace in front of it), we treat the rest
311 // of the line as a comment. This is in line with the way
312 // SpiderMonkey handles it.
313 if (c0_ == '-' && has_line_terminator_before_next_) {
314 Advance();
315 if (c0_ == '-') {
316 Advance();
317 if (c0_ == '>') {
318 // Treat the rest of the line as a comment.
319 SkipSingleLineComment();
320 // Continue skipping white space after the comment.
321 continue;
322 }
323 PushBack('-'); // undo Advance()
324 }
325 PushBack('-'); // undo Advance()
326 }
327 // Return whether or not we skipped any characters.
328 return source_pos() != start_position;
329 }
330}
331
332
333Token::Value Scanner::SkipSingleLineComment() {
334 Advance();
335
336 // The line terminator at the end of the line is not considered
337 // to be part of the single-line comment; it is recognized
338 // separately by the lexical grammar and becomes part of the
339 // stream of input elements for the syntactic grammar (see
340 // ECMA-262, section 7.4).
341 while (c0_ >= 0 && !unicode_cache_->IsLineTerminator(c0_)) {
342 Advance();
343 }
344
345 return Token::WHITESPACE;
346}
347
348
349Token::Value Scanner::SkipSourceURLComment() {
350 TryToParseSourceURLComment();
351 while (c0_ >= 0 && !unicode_cache_->IsLineTerminator(c0_)) {
352 Advance();
353 }
354
355 return Token::WHITESPACE;
356}
357
358
359void Scanner::TryToParseSourceURLComment() {
360 // Magic comments are of the form: //[#@]\s<name>=\s*<value>\s*.* and this
361 // function will just return if it cannot parse a magic comment.
362 if (c0_ < 0 || !unicode_cache_->IsWhiteSpace(c0_)) return;
363 Advance();
364 LiteralBuffer name;
365 while (c0_ >= 0 && !unicode_cache_->IsWhiteSpaceOrLineTerminator(c0_) &&
366 c0_ != '=') {
367 name.AddChar(c0_);
368 Advance();
369 }
370 if (!name.is_one_byte()) return;
371 Vector<const uint8_t> name_literal = name.one_byte_literal();
372 LiteralBuffer* value;
373 if (name_literal == STATIC_CHAR_VECTOR("sourceURL")) {
374 value = &source_url_;
375 } else if (name_literal == STATIC_CHAR_VECTOR("sourceMappingURL")) {
376 value = &source_mapping_url_;
377 } else {
378 return;
379 }
380 if (c0_ != '=')
381 return;
382 Advance();
383 value->Reset();
384 while (c0_ >= 0 && unicode_cache_->IsWhiteSpace(c0_)) {
385 Advance();
386 }
387 while (c0_ >= 0 && !unicode_cache_->IsLineTerminator(c0_)) {
388 // Disallowed characters.
389 if (c0_ == '"' || c0_ == '\'') {
390 value->Reset();
391 return;
392 }
393 if (unicode_cache_->IsWhiteSpace(c0_)) {
394 break;
395 }
396 value->AddChar(c0_);
397 Advance();
398 }
399 // Allow whitespace at the end.
400 while (c0_ >= 0 && !unicode_cache_->IsLineTerminator(c0_)) {
401 if (!unicode_cache_->IsWhiteSpace(c0_)) {
402 value->Reset();
403 break;
404 }
405 Advance();
406 }
407}
408
409
410Token::Value Scanner::SkipMultiLineComment() {
411 DCHECK(c0_ == '*');
412 Advance();
413
414 while (c0_ >= 0) {
415 uc32 ch = c0_;
416 Advance();
417 if (c0_ >= 0 && unicode_cache_->IsLineTerminator(ch)) {
418 // Following ECMA-262, section 7.4, a comment containing
419 // a newline will make the comment count as a line-terminator.
420 has_multiline_comment_before_next_ = true;
421 }
422 // If we have reached the end of the multi-line comment, we
423 // consume the '/' and insert a whitespace. This way all
424 // multi-line comments are treated as whitespace.
425 if (ch == '*' && c0_ == '/') {
426 c0_ = ' ';
427 return Token::WHITESPACE;
428 }
429 }
430
431 // Unterminated multi-line comment.
432 return Token::ILLEGAL;
433}
434
435
436Token::Value Scanner::ScanHtmlComment() {
437 // Check for <!-- comments.
438 DCHECK(c0_ == '!');
439 Advance();
440 if (c0_ == '-') {
441 Advance();
Ben Murdoch109988c2016-05-18 11:27:45 +0100442 if (c0_ == '-') {
443 found_html_comment_ = true;
444 return SkipSingleLineComment();
445 }
Ben Murdoch014dc512016-03-22 12:00:34 +0000446 PushBack('-'); // undo Advance()
447 }
448 PushBack('!'); // undo Advance()
449 DCHECK(c0_ == '!');
450 return Token::LT;
451}
452
453
454void Scanner::Scan() {
455 next_.literal_chars = NULL;
456 next_.raw_literal_chars = NULL;
457 Token::Value token;
458 do {
459 // Remember the position of the next token
460 next_.location.beg_pos = source_pos();
461
462 switch (c0_) {
463 case ' ':
464 case '\t':
465 Advance();
466 token = Token::WHITESPACE;
467 break;
468
469 case '\n':
470 Advance();
471 has_line_terminator_before_next_ = true;
472 token = Token::WHITESPACE;
473 break;
474
475 case '"': case '\'':
476 token = ScanString();
477 break;
478
479 case '<':
480 // < <= << <<= <!--
481 Advance();
482 if (c0_ == '=') {
483 token = Select(Token::LTE);
484 } else if (c0_ == '<') {
485 token = Select('=', Token::ASSIGN_SHL, Token::SHL);
486 } else if (c0_ == '!') {
487 token = ScanHtmlComment();
488 } else {
489 token = Token::LT;
490 }
491 break;
492
493 case '>':
494 // > >= >> >>= >>> >>>=
495 Advance();
496 if (c0_ == '=') {
497 token = Select(Token::GTE);
498 } else if (c0_ == '>') {
499 // >> >>= >>> >>>=
500 Advance();
501 if (c0_ == '=') {
502 token = Select(Token::ASSIGN_SAR);
503 } else if (c0_ == '>') {
504 token = Select('=', Token::ASSIGN_SHR, Token::SHR);
505 } else {
506 token = Token::SAR;
507 }
508 } else {
509 token = Token::GT;
510 }
511 break;
512
513 case '=':
514 // = == === =>
515 Advance();
516 if (c0_ == '=') {
517 token = Select('=', Token::EQ_STRICT, Token::EQ);
518 } else if (c0_ == '>') {
519 token = Select(Token::ARROW);
520 } else {
521 token = Token::ASSIGN;
522 }
523 break;
524
525 case '!':
526 // ! != !==
527 Advance();
528 if (c0_ == '=') {
529 token = Select('=', Token::NE_STRICT, Token::NE);
530 } else {
531 token = Token::NOT;
532 }
533 break;
534
535 case '+':
536 // + ++ +=
537 Advance();
538 if (c0_ == '+') {
539 token = Select(Token::INC);
540 } else if (c0_ == '=') {
541 token = Select(Token::ASSIGN_ADD);
542 } else {
543 token = Token::ADD;
544 }
545 break;
546
547 case '-':
548 // - -- --> -=
549 Advance();
550 if (c0_ == '-') {
551 Advance();
552 if (c0_ == '>' && has_line_terminator_before_next_) {
553 // For compatibility with SpiderMonkey, we skip lines that
554 // start with an HTML comment end '-->'.
555 token = SkipSingleLineComment();
556 } else {
557 token = Token::DEC;
558 }
559 } else if (c0_ == '=') {
560 token = Select(Token::ASSIGN_SUB);
561 } else {
562 token = Token::SUB;
563 }
564 break;
565
566 case '*':
567 // * *=
568 token = Select('=', Token::ASSIGN_MUL, Token::MUL);
569 break;
570
571 case '%':
572 // % %=
573 token = Select('=', Token::ASSIGN_MOD, Token::MOD);
574 break;
575
576 case '/':
577 // / // /* /=
578 Advance();
579 if (c0_ == '/') {
580 Advance();
581 if (c0_ == '#' || c0_ == '@') {
582 Advance();
583 token = SkipSourceURLComment();
584 } else {
585 PushBack(c0_);
586 token = SkipSingleLineComment();
587 }
588 } else if (c0_ == '*') {
589 token = SkipMultiLineComment();
590 } else if (c0_ == '=') {
591 token = Select(Token::ASSIGN_DIV);
592 } else {
593 token = Token::DIV;
594 }
595 break;
596
597 case '&':
598 // & && &=
599 Advance();
600 if (c0_ == '&') {
601 token = Select(Token::AND);
602 } else if (c0_ == '=') {
603 token = Select(Token::ASSIGN_BIT_AND);
604 } else {
605 token = Token::BIT_AND;
606 }
607 break;
608
609 case '|':
610 // | || |=
611 Advance();
612 if (c0_ == '|') {
613 token = Select(Token::OR);
614 } else if (c0_ == '=') {
615 token = Select(Token::ASSIGN_BIT_OR);
616 } else {
617 token = Token::BIT_OR;
618 }
619 break;
620
621 case '^':
622 // ^ ^=
623 token = Select('=', Token::ASSIGN_BIT_XOR, Token::BIT_XOR);
624 break;
625
626 case '.':
627 // . Number
628 Advance();
629 if (IsDecimalDigit(c0_)) {
630 token = ScanNumber(true);
631 } else {
632 token = Token::PERIOD;
633 if (c0_ == '.') {
634 Advance();
635 if (c0_ == '.') {
636 Advance();
637 token = Token::ELLIPSIS;
638 } else {
639 PushBack('.');
640 }
641 }
642 }
643 break;
644
645 case ':':
646 token = Select(Token::COLON);
647 break;
648
649 case ';':
650 token = Select(Token::SEMICOLON);
651 break;
652
653 case ',':
654 token = Select(Token::COMMA);
655 break;
656
657 case '(':
658 token = Select(Token::LPAREN);
659 break;
660
661 case ')':
662 token = Select(Token::RPAREN);
663 break;
664
665 case '[':
666 token = Select(Token::LBRACK);
667 break;
668
669 case ']':
670 token = Select(Token::RBRACK);
671 break;
672
673 case '{':
674 token = Select(Token::LBRACE);
675 break;
676
677 case '}':
678 token = Select(Token::RBRACE);
679 break;
680
681 case '?':
682 token = Select(Token::CONDITIONAL);
683 break;
684
685 case '~':
686 token = Select(Token::BIT_NOT);
687 break;
688
689 case '`':
690 token = ScanTemplateStart();
691 break;
692
693 default:
694 if (c0_ < 0) {
695 token = Token::EOS;
696 } else if (unicode_cache_->IsIdentifierStart(c0_)) {
697 token = ScanIdentifierOrKeyword();
698 } else if (IsDecimalDigit(c0_)) {
699 token = ScanNumber(false);
700 } else if (SkipWhiteSpace()) {
701 token = Token::WHITESPACE;
702 } else {
703 token = Select(Token::ILLEGAL);
704 }
705 break;
706 }
707
708 // Continue scanning for tokens as long as we're just skipping
709 // whitespace.
710 } while (token == Token::WHITESPACE);
711
712 next_.location.end_pos = source_pos();
713 next_.token = token;
714}
715
716
717void Scanner::SeekForward(int pos) {
718 // After this call, we will have the token at the given position as
719 // the "next" token. The "current" token will be invalid.
720 if (pos == next_.location.beg_pos) return;
721 int current_pos = source_pos();
722 DCHECK_EQ(next_.location.end_pos, current_pos);
723 // Positions inside the lookahead token aren't supported.
724 DCHECK(pos >= current_pos);
725 if (pos != current_pos) {
726 source_->SeekForward(pos - source_->pos());
727 Advance();
728 // This function is only called to seek to the location
729 // of the end of a function (at the "}" token). It doesn't matter
730 // whether there was a line terminator in the part we skip.
731 has_line_terminator_before_next_ = false;
732 has_multiline_comment_before_next_ = false;
733 }
734 Scan();
735}
736
737
738template <bool capture_raw, bool in_template_literal>
739bool Scanner::ScanEscape() {
740 uc32 c = c0_;
741 Advance<capture_raw>();
742
743 // Skip escaped newlines.
744 if (!in_template_literal && c0_ >= 0 && unicode_cache_->IsLineTerminator(c)) {
745 // Allow CR+LF newlines in multiline string literals.
746 if (IsCarriageReturn(c) && IsLineFeed(c0_)) Advance<capture_raw>();
747 // Allow LF+CR newlines in multiline string literals.
748 if (IsLineFeed(c) && IsCarriageReturn(c0_)) Advance<capture_raw>();
749 return true;
750 }
751
752 switch (c) {
753 case '\'': // fall through
754 case '"' : // fall through
755 case '\\': break;
756 case 'b' : c = '\b'; break;
757 case 'f' : c = '\f'; break;
758 case 'n' : c = '\n'; break;
759 case 'r' : c = '\r'; break;
760 case 't' : c = '\t'; break;
761 case 'u' : {
762 c = ScanUnicodeEscape<capture_raw>();
763 if (c < 0) return false;
764 break;
765 }
766 case 'v':
767 c = '\v';
768 break;
769 case 'x': {
770 c = ScanHexNumber<capture_raw>(2);
771 if (c < 0) return false;
772 break;
773 }
774 case '0': // Fall through.
775 case '1': // fall through
776 case '2': // fall through
777 case '3': // fall through
778 case '4': // fall through
779 case '5': // fall through
780 case '6': // fall through
781 case '7':
782 c = ScanOctalEscape<capture_raw>(c, 2);
783 break;
784 }
785
786 // According to ECMA-262, section 7.8.4, characters not covered by the
787 // above cases should be illegal, but they are commonly handled as
788 // non-escaped characters by JS VMs.
789 AddLiteralChar(c);
790 return true;
791}
792
793
794// Octal escapes of the forms '\0xx' and '\xxx' are not a part of
795// ECMA-262. Other JS VMs support them.
796template <bool capture_raw>
797uc32 Scanner::ScanOctalEscape(uc32 c, int length) {
798 uc32 x = c - '0';
799 int i = 0;
800 for (; i < length; i++) {
801 int d = c0_ - '0';
802 if (d < 0 || d > 7) break;
803 int nx = x * 8 + d;
804 if (nx >= 256) break;
805 x = nx;
806 Advance<capture_raw>();
807 }
808 // Anything except '\0' is an octal escape sequence, illegal in strict mode.
809 // Remember the position of octal escape sequences so that an error
810 // can be reported later (in strict mode).
811 // We don't report the error immediately, because the octal escape can
812 // occur before the "use strict" directive.
813 if (c != '0' || i > 0) {
814 octal_pos_ = Location(source_pos() - i - 1, source_pos() - 1);
815 }
816 return x;
817}
818
819
820const int kMaxAscii = 127;
821
822
823Token::Value Scanner::ScanString() {
824 uc32 quote = c0_;
825 Advance<false, false>(); // consume quote
826
827 LiteralScope literal(this);
828 while (true) {
829 if (c0_ > kMaxAscii) {
830 HandleLeadSurrogate();
831 break;
832 }
833 if (c0_ < 0 || c0_ == '\n' || c0_ == '\r') return Token::ILLEGAL;
834 if (c0_ == quote) {
835 literal.Complete();
836 Advance<false, false>();
837 return Token::STRING;
838 }
839 uc32 c = c0_;
840 if (c == '\\') break;
841 Advance<false, false>();
842 AddLiteralChar(c);
843 }
844
845 while (c0_ != quote && c0_ >= 0
846 && !unicode_cache_->IsLineTerminator(c0_)) {
847 uc32 c = c0_;
848 Advance();
849 if (c == '\\') {
850 if (c0_ < 0 || !ScanEscape<false, false>()) return Token::ILLEGAL;
851 } else {
852 AddLiteralChar(c);
853 }
854 }
855 if (c0_ != quote) return Token::ILLEGAL;
856 literal.Complete();
857
858 Advance(); // consume quote
859 return Token::STRING;
860}
861
862
863Token::Value Scanner::ScanTemplateSpan() {
864 // When scanning a TemplateSpan, we are looking for the following construct:
865 // TEMPLATE_SPAN ::
866 // ` LiteralChars* ${
867 // | } LiteralChars* ${
868 //
869 // TEMPLATE_TAIL ::
870 // ` LiteralChars* `
871 // | } LiteralChar* `
872 //
873 // A TEMPLATE_SPAN should always be followed by an Expression, while a
874 // TEMPLATE_TAIL terminates a TemplateLiteral and does not need to be
875 // followed by an Expression.
876
877 Token::Value result = Token::TEMPLATE_SPAN;
878 LiteralScope literal(this);
879 StartRawLiteral();
880 const bool capture_raw = true;
881 const bool in_template_literal = true;
882
883 while (true) {
884 uc32 c = c0_;
885 Advance<capture_raw>();
886 if (c == '`') {
887 result = Token::TEMPLATE_TAIL;
888 ReduceRawLiteralLength(1);
889 break;
890 } else if (c == '$' && c0_ == '{') {
891 Advance<capture_raw>(); // Consume '{'
892 ReduceRawLiteralLength(2);
893 break;
894 } else if (c == '\\') {
895 if (c0_ > 0 && unicode_cache_->IsLineTerminator(c0_)) {
896 // The TV of LineContinuation :: \ LineTerminatorSequence is the empty
897 // code unit sequence.
898 uc32 lastChar = c0_;
899 Advance<capture_raw>();
900 if (lastChar == '\r') {
901 ReduceRawLiteralLength(1); // Remove \r
902 if (c0_ == '\n') {
903 Advance<capture_raw>(); // Adds \n
904 } else {
905 AddRawLiteralChar('\n');
906 }
907 }
908 } else if (!ScanEscape<capture_raw, in_template_literal>()) {
909 return Token::ILLEGAL;
910 }
911 } else if (c < 0) {
912 // Unterminated template literal
913 PushBack(c);
914 break;
915 } else {
916 // The TRV of LineTerminatorSequence :: <CR> is the CV 0x000A.
917 // The TRV of LineTerminatorSequence :: <CR><LF> is the sequence
918 // consisting of the CV 0x000A.
919 if (c == '\r') {
920 ReduceRawLiteralLength(1); // Remove \r
921 if (c0_ == '\n') {
922 Advance<capture_raw>(); // Adds \n
923 } else {
924 AddRawLiteralChar('\n');
925 }
926 c = '\n';
927 }
928 AddLiteralChar(c);
929 }
930 }
931 literal.Complete();
932 next_.location.end_pos = source_pos();
933 next_.token = result;
934 return result;
935}
936
937
938Token::Value Scanner::ScanTemplateStart() {
939 DCHECK(c0_ == '`');
940 next_.location.beg_pos = source_pos();
941 Advance(); // Consume `
942 return ScanTemplateSpan();
943}
944
945
946Token::Value Scanner::ScanTemplateContinuation() {
947 DCHECK_EQ(next_.token, Token::RBRACE);
948 next_.location.beg_pos = source_pos() - 1; // We already consumed }
949 return ScanTemplateSpan();
950}
951
952
953void Scanner::ScanDecimalDigits() {
954 while (IsDecimalDigit(c0_))
955 AddLiteralCharAdvance();
956}
957
958
959Token::Value Scanner::ScanNumber(bool seen_period) {
960 DCHECK(IsDecimalDigit(c0_)); // the first digit of the number or the fraction
961
962 enum { DECIMAL, HEX, OCTAL, IMPLICIT_OCTAL, BINARY } kind = DECIMAL;
963
964 LiteralScope literal(this);
965 bool at_start = !seen_period;
966 if (seen_period) {
967 // we have already seen a decimal point of the float
968 AddLiteralChar('.');
969 ScanDecimalDigits(); // we know we have at least one digit
970
971 } else {
972 // if the first character is '0' we must check for octals and hex
973 if (c0_ == '0') {
974 int start_pos = source_pos(); // For reporting octal positions.
975 AddLiteralCharAdvance();
976
977 // either 0, 0exxx, 0Exxx, 0.xxx, a hex number, a binary number or
978 // an octal number.
979 if (c0_ == 'x' || c0_ == 'X') {
980 // hex number
981 kind = HEX;
982 AddLiteralCharAdvance();
983 if (!IsHexDigit(c0_)) {
984 // we must have at least one hex digit after 'x'/'X'
985 return Token::ILLEGAL;
986 }
987 while (IsHexDigit(c0_)) {
988 AddLiteralCharAdvance();
989 }
990 } else if (c0_ == 'o' || c0_ == 'O') {
991 kind = OCTAL;
992 AddLiteralCharAdvance();
993 if (!IsOctalDigit(c0_)) {
994 // we must have at least one octal digit after 'o'/'O'
995 return Token::ILLEGAL;
996 }
997 while (IsOctalDigit(c0_)) {
998 AddLiteralCharAdvance();
999 }
1000 } else if (c0_ == 'b' || c0_ == 'B') {
1001 kind = BINARY;
1002 AddLiteralCharAdvance();
1003 if (!IsBinaryDigit(c0_)) {
1004 // we must have at least one binary digit after 'b'/'B'
1005 return Token::ILLEGAL;
1006 }
1007 while (IsBinaryDigit(c0_)) {
1008 AddLiteralCharAdvance();
1009 }
1010 } else if ('0' <= c0_ && c0_ <= '7') {
1011 // (possible) octal number
1012 kind = IMPLICIT_OCTAL;
1013 while (true) {
1014 if (c0_ == '8' || c0_ == '9') {
1015 at_start = false;
1016 kind = DECIMAL;
1017 break;
1018 }
1019 if (c0_ < '0' || '7' < c0_) {
1020 // Octal literal finished.
1021 octal_pos_ = Location(start_pos, source_pos());
1022 break;
1023 }
1024 AddLiteralCharAdvance();
1025 }
1026 }
1027 }
1028
1029 // Parse decimal digits and allow trailing fractional part.
1030 if (kind == DECIMAL) {
1031 if (at_start) {
1032 uint64_t value = 0;
1033 while (IsDecimalDigit(c0_)) {
1034 value = 10 * value + (c0_ - '0');
1035
1036 uc32 first_char = c0_;
1037 Advance<false, false>();
1038 AddLiteralChar(first_char);
1039 }
1040
1041 if (next_.literal_chars->one_byte_literal().length() <= 10 &&
1042 value <= Smi::kMaxValue && c0_ != '.' && c0_ != 'e' && c0_ != 'E') {
1043 next_.smi_value_ = static_cast<int>(value);
1044 literal.Complete();
1045 HandleLeadSurrogate();
1046
1047 return Token::SMI;
1048 }
1049 HandleLeadSurrogate();
1050 }
1051
1052 ScanDecimalDigits(); // optional
1053 if (c0_ == '.') {
1054 AddLiteralCharAdvance();
1055 ScanDecimalDigits(); // optional
1056 }
1057 }
1058 }
1059
1060 // scan exponent, if any
1061 if (c0_ == 'e' || c0_ == 'E') {
1062 DCHECK(kind != HEX); // 'e'/'E' must be scanned as part of the hex number
1063 if (kind != DECIMAL) return Token::ILLEGAL;
1064 // scan exponent
1065 AddLiteralCharAdvance();
1066 if (c0_ == '+' || c0_ == '-')
1067 AddLiteralCharAdvance();
1068 if (!IsDecimalDigit(c0_)) {
1069 // we must have at least one decimal digit after 'e'/'E'
1070 return Token::ILLEGAL;
1071 }
1072 ScanDecimalDigits();
1073 }
1074
1075 // The source character immediately following a numeric literal must
1076 // not be an identifier start or a decimal digit; see ECMA-262
1077 // section 7.8.3, page 17 (note that we read only one decimal digit
1078 // if the value is 0).
1079 if (IsDecimalDigit(c0_) ||
1080 (c0_ >= 0 && unicode_cache_->IsIdentifierStart(c0_)))
1081 return Token::ILLEGAL;
1082
1083 literal.Complete();
1084
1085 return Token::NUMBER;
1086}
1087
1088
1089uc32 Scanner::ScanIdentifierUnicodeEscape() {
1090 Advance();
1091 if (c0_ != 'u') return -1;
1092 Advance();
1093 return ScanUnicodeEscape<false>();
1094}
1095
1096
1097template <bool capture_raw>
1098uc32 Scanner::ScanUnicodeEscape() {
1099 // Accept both \uxxxx and \u{xxxxxx}. In the latter case, the number of
1100 // hex digits between { } is arbitrary. \ and u have already been read.
1101 if (c0_ == '{') {
1102 Advance<capture_raw>();
1103 uc32 cp = ScanUnlimitedLengthHexNumber<capture_raw>(0x10ffff);
1104 if (cp < 0) {
1105 return -1;
1106 }
1107 if (c0_ != '}') {
1108 return -1;
1109 }
1110 Advance<capture_raw>();
1111 return cp;
1112 }
1113 return ScanHexNumber<capture_raw>(4);
1114}
1115
1116
1117// ----------------------------------------------------------------------------
1118// Keyword Matcher
1119
1120#define KEYWORDS(KEYWORD_GROUP, KEYWORD) \
1121 KEYWORD_GROUP('b') \
1122 KEYWORD("break", Token::BREAK) \
1123 KEYWORD_GROUP('c') \
1124 KEYWORD("case", Token::CASE) \
1125 KEYWORD("catch", Token::CATCH) \
1126 KEYWORD("class", Token::CLASS) \
1127 KEYWORD("const", Token::CONST) \
1128 KEYWORD("continue", Token::CONTINUE) \
1129 KEYWORD_GROUP('d') \
1130 KEYWORD("debugger", Token::DEBUGGER) \
1131 KEYWORD("default", Token::DEFAULT) \
1132 KEYWORD("delete", Token::DELETE) \
1133 KEYWORD("do", Token::DO) \
1134 KEYWORD_GROUP('e') \
1135 KEYWORD("else", Token::ELSE) \
1136 KEYWORD("enum", Token::FUTURE_RESERVED_WORD) \
1137 KEYWORD("export", Token::EXPORT) \
1138 KEYWORD("extends", Token::EXTENDS) \
1139 KEYWORD_GROUP('f') \
1140 KEYWORD("false", Token::FALSE_LITERAL) \
1141 KEYWORD("finally", Token::FINALLY) \
1142 KEYWORD("for", Token::FOR) \
1143 KEYWORD("function", Token::FUNCTION) \
1144 KEYWORD_GROUP('i') \
1145 KEYWORD("if", Token::IF) \
1146 KEYWORD("implements", Token::FUTURE_STRICT_RESERVED_WORD) \
1147 KEYWORD("import", Token::IMPORT) \
1148 KEYWORD("in", Token::IN) \
1149 KEYWORD("instanceof", Token::INSTANCEOF) \
1150 KEYWORD("interface", Token::FUTURE_STRICT_RESERVED_WORD) \
1151 KEYWORD_GROUP('l') \
1152 KEYWORD("let", Token::LET) \
1153 KEYWORD_GROUP('n') \
1154 KEYWORD("new", Token::NEW) \
1155 KEYWORD("null", Token::NULL_LITERAL) \
1156 KEYWORD_GROUP('p') \
1157 KEYWORD("package", Token::FUTURE_STRICT_RESERVED_WORD) \
1158 KEYWORD("private", Token::FUTURE_STRICT_RESERVED_WORD) \
1159 KEYWORD("protected", Token::FUTURE_STRICT_RESERVED_WORD) \
1160 KEYWORD("public", Token::FUTURE_STRICT_RESERVED_WORD) \
1161 KEYWORD_GROUP('r') \
1162 KEYWORD("return", Token::RETURN) \
1163 KEYWORD_GROUP('s') \
1164 KEYWORD("static", Token::STATIC) \
1165 KEYWORD("super", Token::SUPER) \
1166 KEYWORD("switch", Token::SWITCH) \
1167 KEYWORD_GROUP('t') \
1168 KEYWORD("this", Token::THIS) \
1169 KEYWORD("throw", Token::THROW) \
1170 KEYWORD("true", Token::TRUE_LITERAL) \
1171 KEYWORD("try", Token::TRY) \
1172 KEYWORD("typeof", Token::TYPEOF) \
1173 KEYWORD_GROUP('v') \
1174 KEYWORD("var", Token::VAR) \
1175 KEYWORD("void", Token::VOID) \
1176 KEYWORD_GROUP('w') \
1177 KEYWORD("while", Token::WHILE) \
1178 KEYWORD("with", Token::WITH) \
1179 KEYWORD_GROUP('y') \
1180 KEYWORD("yield", Token::YIELD)
1181
1182
1183static Token::Value KeywordOrIdentifierToken(const uint8_t* input,
1184 int input_length, bool escaped) {
1185 DCHECK(input_length >= 1);
1186 const int kMinLength = 2;
1187 const int kMaxLength = 10;
1188 if (input_length < kMinLength || input_length > kMaxLength) {
1189 return Token::IDENTIFIER;
1190 }
1191 switch (input[0]) {
1192 default:
1193#define KEYWORD_GROUP_CASE(ch) \
1194 break; \
1195 case ch:
1196#define KEYWORD(keyword, token) \
1197 { \
1198 /* 'keyword' is a char array, so sizeof(keyword) is */ \
1199 /* strlen(keyword) plus 1 for the NUL char. */ \
1200 const int keyword_length = sizeof(keyword) - 1; \
1201 STATIC_ASSERT(keyword_length >= kMinLength); \
1202 STATIC_ASSERT(keyword_length <= kMaxLength); \
1203 if (input_length == keyword_length && input[1] == keyword[1] && \
1204 (keyword_length <= 2 || input[2] == keyword[2]) && \
1205 (keyword_length <= 3 || input[3] == keyword[3]) && \
1206 (keyword_length <= 4 || input[4] == keyword[4]) && \
1207 (keyword_length <= 5 || input[5] == keyword[5]) && \
1208 (keyword_length <= 6 || input[6] == keyword[6]) && \
1209 (keyword_length <= 7 || input[7] == keyword[7]) && \
1210 (keyword_length <= 8 || input[8] == keyword[8]) && \
1211 (keyword_length <= 9 || input[9] == keyword[9])) { \
1212 if (escaped) { \
Ben Murdoch109988c2016-05-18 11:27:45 +01001213 /* TODO(adamk): YIELD should be handled specially. */ \
1214 return (token == Token::FUTURE_STRICT_RESERVED_WORD || \
1215 token == Token::LET || token == Token::STATIC) \
Ben Murdoch014dc512016-03-22 12:00:34 +00001216 ? Token::ESCAPED_STRICT_RESERVED_WORD \
1217 : Token::ESCAPED_KEYWORD; \
1218 } \
1219 return token; \
1220 } \
1221 }
1222 KEYWORDS(KEYWORD_GROUP_CASE, KEYWORD)
1223 }
1224 return Token::IDENTIFIER;
1225}
1226
1227
1228bool Scanner::IdentifierIsFutureStrictReserved(
1229 const AstRawString* string) const {
1230 // Keywords are always 1-byte strings.
1231 if (!string->is_one_byte()) return false;
1232 if (string->IsOneByteEqualTo("let") || string->IsOneByteEqualTo("static") ||
1233 string->IsOneByteEqualTo("yield")) {
1234 return true;
1235 }
1236 return Token::FUTURE_STRICT_RESERVED_WORD ==
1237 KeywordOrIdentifierToken(string->raw_data(), string->length(), false);
1238}
1239
1240
1241Token::Value Scanner::ScanIdentifierOrKeyword() {
1242 DCHECK(unicode_cache_->IsIdentifierStart(c0_));
1243 LiteralScope literal(this);
1244 if (IsInRange(c0_, 'a', 'z')) {
1245 do {
1246 uc32 first_char = c0_;
1247 Advance<false, false>();
1248 AddLiteralChar(first_char);
1249 } while (IsInRange(c0_, 'a', 'z'));
1250
1251 if (IsDecimalDigit(c0_) || IsInRange(c0_, 'A', 'Z') || c0_ == '_' ||
1252 c0_ == '$') {
1253 // Identifier starting with lowercase.
1254 uc32 first_char = c0_;
1255 Advance<false, false>();
1256 AddLiteralChar(first_char);
1257 while (IsAsciiIdentifier(c0_)) {
1258 uc32 first_char = c0_;
1259 Advance<false, false>();
1260 AddLiteralChar(first_char);
1261 }
1262 if (c0_ <= kMaxAscii && c0_ != '\\') {
1263 literal.Complete();
1264 return Token::IDENTIFIER;
1265 }
1266 } else if (c0_ <= kMaxAscii && c0_ != '\\') {
1267 // Only a-z+: could be a keyword or identifier.
1268 literal.Complete();
1269 Vector<const uint8_t> chars = next_.literal_chars->one_byte_literal();
1270 return KeywordOrIdentifierToken(chars.start(), chars.length(), false);
1271 }
1272
1273 HandleLeadSurrogate();
1274 } else if (IsInRange(c0_, 'A', 'Z') || c0_ == '_' || c0_ == '$') {
1275 do {
1276 uc32 first_char = c0_;
1277 Advance<false, false>();
1278 AddLiteralChar(first_char);
1279 } while (IsAsciiIdentifier(c0_));
1280
1281 if (c0_ <= kMaxAscii && c0_ != '\\') {
1282 literal.Complete();
1283 return Token::IDENTIFIER;
1284 }
1285
1286 HandleLeadSurrogate();
1287 } else if (c0_ == '\\') {
1288 // Scan identifier start character.
1289 uc32 c = ScanIdentifierUnicodeEscape();
1290 // Only allow legal identifier start characters.
1291 if (c < 0 ||
1292 c == '\\' || // No recursive escapes.
1293 !unicode_cache_->IsIdentifierStart(c)) {
1294 return Token::ILLEGAL;
1295 }
1296 AddLiteralChar(c);
1297 return ScanIdentifierSuffix(&literal, true);
1298 } else {
1299 uc32 first_char = c0_;
1300 Advance();
1301 AddLiteralChar(first_char);
1302 }
1303
1304 // Scan the rest of the identifier characters.
1305 while (c0_ >= 0 && unicode_cache_->IsIdentifierPart(c0_)) {
1306 if (c0_ != '\\') {
1307 uc32 next_char = c0_;
1308 Advance();
1309 AddLiteralChar(next_char);
1310 continue;
1311 }
1312 // Fallthrough if no longer able to complete keyword.
1313 return ScanIdentifierSuffix(&literal, false);
1314 }
1315
1316 literal.Complete();
1317
1318 if (next_.literal_chars->is_one_byte()) {
1319 Vector<const uint8_t> chars = next_.literal_chars->one_byte_literal();
1320 return KeywordOrIdentifierToken(chars.start(), chars.length(), false);
1321 }
1322 return Token::IDENTIFIER;
1323}
1324
1325
1326Token::Value Scanner::ScanIdentifierSuffix(LiteralScope* literal,
1327 bool escaped) {
1328 // Scan the rest of the identifier characters.
1329 while (c0_ >= 0 && unicode_cache_->IsIdentifierPart(c0_)) {
1330 if (c0_ == '\\') {
1331 uc32 c = ScanIdentifierUnicodeEscape();
1332 escaped = true;
1333 // Only allow legal identifier part characters.
1334 if (c < 0 ||
1335 c == '\\' ||
1336 !unicode_cache_->IsIdentifierPart(c)) {
1337 return Token::ILLEGAL;
1338 }
1339 AddLiteralChar(c);
1340 } else {
1341 AddLiteralChar(c0_);
1342 Advance();
1343 }
1344 }
1345 literal->Complete();
1346
1347 if (escaped && next_.literal_chars->is_one_byte()) {
1348 Vector<const uint8_t> chars = next_.literal_chars->one_byte_literal();
1349 return KeywordOrIdentifierToken(chars.start(), chars.length(), true);
1350 }
1351 return Token::IDENTIFIER;
1352}
1353
1354
1355bool Scanner::ScanRegExpPattern(bool seen_equal) {
1356 // Scan: ('/' | '/=') RegularExpressionBody '/' RegularExpressionFlags
1357 bool in_character_class = false;
1358
1359 // Previous token is either '/' or '/=', in the second case, the
1360 // pattern starts at =.
1361 next_.location.beg_pos = source_pos() - (seen_equal ? 2 : 1);
1362 next_.location.end_pos = source_pos() - (seen_equal ? 1 : 0);
1363
1364 // Scan regular expression body: According to ECMA-262, 3rd, 7.8.5,
1365 // the scanner should pass uninterpreted bodies to the RegExp
1366 // constructor.
1367 LiteralScope literal(this);
1368 if (seen_equal) {
1369 AddLiteralChar('=');
1370 }
1371
1372 while (c0_ != '/' || in_character_class) {
1373 if (c0_ < 0 || unicode_cache_->IsLineTerminator(c0_)) return false;
1374 if (c0_ == '\\') { // Escape sequence.
1375 AddLiteralCharAdvance();
1376 if (c0_ < 0 || unicode_cache_->IsLineTerminator(c0_)) return false;
1377 AddLiteralCharAdvance();
1378 // If the escape allows more characters, i.e., \x??, \u????, or \c?,
1379 // only "safe" characters are allowed (letters, digits, underscore),
1380 // otherwise the escape isn't valid and the invalid character has
1381 // its normal meaning. I.e., we can just continue scanning without
1382 // worrying whether the following characters are part of the escape
1383 // or not, since any '/', '\\' or '[' is guaranteed to not be part
1384 // of the escape sequence.
1385
1386 // TODO(896): At some point, parse RegExps more throughly to capture
1387 // octal esacpes in strict mode.
1388 } else { // Unescaped character.
1389 if (c0_ == '[') in_character_class = true;
1390 if (c0_ == ']') in_character_class = false;
1391 AddLiteralCharAdvance();
1392 }
1393 }
1394 Advance(); // consume '/'
1395
1396 literal.Complete();
1397
1398 return true;
1399}
1400
1401
1402Maybe<RegExp::Flags> Scanner::ScanRegExpFlags() {
1403 // Scan regular expression flags.
1404 LiteralScope literal(this);
1405 int flags = 0;
1406 while (c0_ >= 0 && unicode_cache_->IsIdentifierPart(c0_)) {
1407 RegExp::Flags flag = RegExp::kNone;
1408 switch (c0_) {
1409 case 'g':
1410 flag = RegExp::kGlobal;
1411 break;
1412 case 'i':
1413 flag = RegExp::kIgnoreCase;
1414 break;
1415 case 'm':
1416 flag = RegExp::kMultiline;
1417 break;
1418 case 'u':
1419 if (!FLAG_harmony_unicode_regexps) return Nothing<RegExp::Flags>();
1420 flag = RegExp::kUnicode;
1421 break;
1422 case 'y':
1423 if (!FLAG_harmony_regexps) return Nothing<RegExp::Flags>();
1424 flag = RegExp::kSticky;
1425 break;
1426 default:
1427 return Nothing<RegExp::Flags>();
1428 }
1429 if (flags & flag) return Nothing<RegExp::Flags>();
1430 AddLiteralCharAdvance();
1431 flags |= flag;
1432 }
1433 literal.Complete();
1434
1435 next_.location.end_pos = source_pos();
1436 return Just(RegExp::Flags(flags));
1437}
1438
1439
1440const AstRawString* Scanner::CurrentSymbol(AstValueFactory* ast_value_factory) {
1441 if (is_literal_one_byte()) {
1442 return ast_value_factory->GetOneByteString(literal_one_byte_string());
1443 }
1444 return ast_value_factory->GetTwoByteString(literal_two_byte_string());
1445}
1446
1447
1448const AstRawString* Scanner::NextSymbol(AstValueFactory* ast_value_factory) {
1449 if (is_next_literal_one_byte()) {
1450 return ast_value_factory->GetOneByteString(next_literal_one_byte_string());
1451 }
1452 return ast_value_factory->GetTwoByteString(next_literal_two_byte_string());
1453}
1454
1455
1456const AstRawString* Scanner::CurrentRawSymbol(
1457 AstValueFactory* ast_value_factory) {
1458 if (is_raw_literal_one_byte()) {
1459 return ast_value_factory->GetOneByteString(raw_literal_one_byte_string());
1460 }
1461 return ast_value_factory->GetTwoByteString(raw_literal_two_byte_string());
1462}
1463
1464
1465double Scanner::DoubleValue() {
1466 DCHECK(is_literal_one_byte());
1467 return StringToDouble(
1468 unicode_cache_,
1469 literal_one_byte_string(),
1470 ALLOW_HEX | ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL | ALLOW_BINARY);
1471}
1472
1473
1474bool Scanner::ContainsDot() {
1475 DCHECK(is_literal_one_byte());
1476 Vector<const uint8_t> str = literal_one_byte_string();
1477 return std::find(str.begin(), str.end(), '.') != str.end();
1478}
1479
1480
1481int Scanner::FindSymbol(DuplicateFinder* finder, int value) {
1482 if (is_literal_one_byte()) {
1483 return finder->AddOneByteSymbol(literal_one_byte_string(), value);
1484 }
1485 return finder->AddTwoByteSymbol(literal_two_byte_string(), value);
1486}
1487
1488
1489bool Scanner::SetBookmark() {
1490 if (c0_ != kNoBookmark && bookmark_c0_ == kNoBookmark &&
1491 next_next_.token == Token::UNINITIALIZED && source_->SetBookmark()) {
1492 bookmark_c0_ = c0_;
1493 CopyTokenDesc(&bookmark_current_, &current_);
1494 CopyTokenDesc(&bookmark_next_, &next_);
1495 return true;
1496 }
1497 return false;
1498}
1499
1500
1501void Scanner::ResetToBookmark() {
1502 DCHECK(BookmarkHasBeenSet()); // Caller hasn't called SetBookmark.
1503
1504 source_->ResetToBookmark();
1505 c0_ = bookmark_c0_;
1506 StartLiteral();
1507 StartRawLiteral();
1508 CopyTokenDesc(&next_, &bookmark_current_);
1509 current_ = next_;
1510 StartLiteral();
1511 StartRawLiteral();
1512 CopyTokenDesc(&next_, &bookmark_next_);
1513
1514 bookmark_c0_ = kBookmarkWasApplied;
1515}
1516
1517
1518bool Scanner::BookmarkHasBeenSet() { return bookmark_c0_ >= 0; }
1519
1520
1521bool Scanner::BookmarkHasBeenReset() {
1522 return bookmark_c0_ == kBookmarkWasApplied;
1523}
1524
1525
1526void Scanner::DropBookmark() { bookmark_c0_ = kNoBookmark; }
1527
1528
1529void Scanner::CopyTokenDesc(TokenDesc* to, TokenDesc* from) {
1530 DCHECK_NOT_NULL(to);
1531 DCHECK_NOT_NULL(from);
1532 to->token = from->token;
1533 to->location = from->location;
1534 to->literal_chars->CopyFrom(from->literal_chars);
1535 to->raw_literal_chars->CopyFrom(from->raw_literal_chars);
1536}
1537
1538
1539int DuplicateFinder::AddOneByteSymbol(Vector<const uint8_t> key, int value) {
1540 return AddSymbol(key, true, value);
1541}
1542
1543
1544int DuplicateFinder::AddTwoByteSymbol(Vector<const uint16_t> key, int value) {
1545 return AddSymbol(Vector<const uint8_t>::cast(key), false, value);
1546}
1547
1548
1549int DuplicateFinder::AddSymbol(Vector<const uint8_t> key,
1550 bool is_one_byte,
1551 int value) {
1552 uint32_t hash = Hash(key, is_one_byte);
1553 byte* encoding = BackupKey(key, is_one_byte);
1554 HashMap::Entry* entry = map_.LookupOrInsert(encoding, hash);
1555 int old_value = static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
1556 entry->value =
1557 reinterpret_cast<void*>(static_cast<intptr_t>(value | old_value));
1558 return old_value;
1559}
1560
1561
1562int DuplicateFinder::AddNumber(Vector<const uint8_t> key, int value) {
1563 DCHECK(key.length() > 0);
1564 // Quick check for already being in canonical form.
1565 if (IsNumberCanonical(key)) {
1566 return AddOneByteSymbol(key, value);
1567 }
1568
1569 int flags = ALLOW_HEX | ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL | ALLOW_BINARY;
1570 double double_value = StringToDouble(
1571 unicode_constants_, key, flags, 0.0);
1572 int length;
1573 const char* string;
1574 if (!std::isfinite(double_value)) {
1575 string = "Infinity";
1576 length = 8; // strlen("Infinity");
1577 } else {
1578 string = DoubleToCString(double_value,
1579 Vector<char>(number_buffer_, kBufferSize));
1580 length = StrLength(string);
1581 }
1582 return AddSymbol(Vector<const byte>(reinterpret_cast<const byte*>(string),
1583 length), true, value);
1584}
1585
1586
1587bool DuplicateFinder::IsNumberCanonical(Vector<const uint8_t> number) {
1588 // Test for a safe approximation of number literals that are already
1589 // in canonical form: max 15 digits, no leading zeroes, except an
1590 // integer part that is a single zero, and no trailing zeros below
1591 // the decimal point.
1592 int pos = 0;
1593 int length = number.length();
1594 if (number.length() > 15) return false;
1595 if (number[pos] == '0') {
1596 pos++;
1597 } else {
1598 while (pos < length &&
1599 static_cast<unsigned>(number[pos] - '0') <= ('9' - '0')) pos++;
1600 }
1601 if (length == pos) return true;
1602 if (number[pos] != '.') return false;
1603 pos++;
1604 bool invalid_last_digit = true;
1605 while (pos < length) {
1606 uint8_t digit = number[pos] - '0';
1607 if (digit > '9' - '0') return false;
1608 invalid_last_digit = (digit == 0);
1609 pos++;
1610 }
1611 return !invalid_last_digit;
1612}
1613
1614
1615uint32_t DuplicateFinder::Hash(Vector<const uint8_t> key, bool is_one_byte) {
1616 // Primitive hash function, almost identical to the one used
1617 // for strings (except that it's seeded by the length and representation).
1618 int length = key.length();
1619 uint32_t hash = (length << 1) | (is_one_byte ? 1 : 0);
1620 for (int i = 0; i < length; i++) {
1621 uint32_t c = key[i];
1622 hash = (hash + c) * 1025;
1623 hash ^= (hash >> 6);
1624 }
1625 return hash;
1626}
1627
1628
1629bool DuplicateFinder::Match(void* first, void* second) {
1630 // Decode lengths.
1631 // Length + representation is encoded as base 128, most significant heptet
1632 // first, with a 8th bit being non-zero while there are more heptets.
1633 // The value encodes the number of bytes following, and whether the original
1634 // was Latin1.
1635 byte* s1 = reinterpret_cast<byte*>(first);
1636 byte* s2 = reinterpret_cast<byte*>(second);
1637 uint32_t length_one_byte_field = 0;
1638 byte c1;
1639 do {
1640 c1 = *s1;
1641 if (c1 != *s2) return false;
1642 length_one_byte_field = (length_one_byte_field << 7) | (c1 & 0x7f);
1643 s1++;
1644 s2++;
1645 } while ((c1 & 0x80) != 0);
1646 int length = static_cast<int>(length_one_byte_field >> 1);
1647 return memcmp(s1, s2, length) == 0;
1648}
1649
1650
1651byte* DuplicateFinder::BackupKey(Vector<const uint8_t> bytes,
1652 bool is_one_byte) {
1653 uint32_t one_byte_length = (bytes.length() << 1) | (is_one_byte ? 1 : 0);
1654 backing_store_.StartSequence();
1655 // Emit one_byte_length as base-128 encoded number, with the 7th bit set
1656 // on the byte of every heptet except the last, least significant, one.
1657 if (one_byte_length >= (1 << 7)) {
1658 if (one_byte_length >= (1 << 14)) {
1659 if (one_byte_length >= (1 << 21)) {
1660 if (one_byte_length >= (1 << 28)) {
1661 backing_store_.Add(
1662 static_cast<uint8_t>((one_byte_length >> 28) | 0x80));
1663 }
1664 backing_store_.Add(
1665 static_cast<uint8_t>((one_byte_length >> 21) | 0x80u));
1666 }
1667 backing_store_.Add(
1668 static_cast<uint8_t>((one_byte_length >> 14) | 0x80u));
1669 }
1670 backing_store_.Add(static_cast<uint8_t>((one_byte_length >> 7) | 0x80u));
1671 }
1672 backing_store_.Add(static_cast<uint8_t>(one_byte_length & 0x7f));
1673
1674 backing_store_.AddBlock(bytes);
1675 return backing_store_.EndSequence().start();
1676}
1677
1678} // namespace internal
1679} // namespace v8