blob: bfcd8fba7237e1c28306e59664ce0c4d433932c4 [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2006-2008 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28// Platform specific code for Linux goes here. For the POSIX comaptible parts
29// the implementation is in platform-posix.cc.
30
31#include <pthread.h>
32#include <semaphore.h>
33#include <signal.h>
34#include <sys/time.h>
35#include <sys/resource.h>
36#include <sys/types.h>
37#include <stdlib.h>
38
39// Ubuntu Dapper requires memory pages to be marked as
40// executable. Otherwise, OS raises an exception when executing code
41// in that page.
42#include <sys/types.h> // mmap & munmap
43#include <sys/mman.h> // mmap & munmap
44#include <sys/stat.h> // open
45#include <fcntl.h> // open
46#include <unistd.h> // sysconf
47#ifdef __GLIBC__
48#include <execinfo.h> // backtrace, backtrace_symbols
49#endif // def __GLIBC__
50#include <strings.h> // index
51#include <errno.h>
52#include <stdarg.h>
53
54#undef MAP_TYPE
55
56#include "v8.h"
57
58#include "platform.h"
59#include "top.h"
60#include "v8threads.h"
61
62
63namespace v8 {
64namespace internal {
65
66// 0 is never a valid thread id on Linux since tids and pids share a
67// name space and pid 0 is reserved (see man 2 kill).
68static const pthread_t kNoThread = (pthread_t) 0;
69
70
71double ceiling(double x) {
72 return ceil(x);
73}
74
75
76void OS::Setup() {
77 // Seed the random number generator.
78 // Convert the current time to a 64-bit integer first, before converting it
79 // to an unsigned. Going directly can cause an overflow and the seed to be
80 // set to all ones. The seed will be identical for different instances that
81 // call this setup code within the same millisecond.
82 uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
83 srandom(static_cast<unsigned int>(seed));
84}
85
86
Steve Blockd0582a62009-12-15 09:54:21 +000087uint64_t OS::CpuFeaturesImpliedByPlatform() {
88#if (defined(__VFP_FP__) && !defined(__SOFTFP__))
89 // Here gcc is telling us that we are on an ARM and gcc is assuming that we
90 // have VFP3 instructions. If gcc can assume it then so can we.
91 return 1u << VFP3;
92#else
93 return 0; // Linux runs on anything.
94#endif
Steve Blocka7e24c12009-10-30 11:49:00 +000095}
96
97
Steve Blockd0582a62009-12-15 09:54:21 +000098#ifdef __arm__
99bool OS::ArmCpuHasFeature(CpuFeature feature) {
100 const char* search_string = NULL;
101 const char* file_name = "/proc/cpuinfo";
102 // Simple detection of VFP at runtime for Linux.
103 // It is based on /proc/cpuinfo, which reveals hardware configuration
104 // to user-space applications. According to ARM (mid 2009), no similar
105 // facility is universally available on the ARM architectures,
106 // so it's up to individual OSes to provide such.
107 //
108 // This is written as a straight shot one pass parser
109 // and not using STL string and ifstream because,
110 // on Linux, it's reading from a (non-mmap-able)
111 // character special device.
112 switch (feature) {
113 case VFP3:
114 search_string = "vfp";
115 break;
116 default:
117 UNREACHABLE();
118 }
119
120 FILE* f = NULL;
121 const char* what = search_string;
122
123 if (NULL == (f = fopen(file_name, "r")))
124 return false;
125
126 int k;
127 while (EOF != (k = fgetc(f))) {
128 if (k == *what) {
129 ++what;
130 while ((*what != '\0') && (*what == fgetc(f))) {
131 ++what;
132 }
133 if (*what == '\0') {
134 fclose(f);
135 return true;
136 } else {
137 what = search_string;
138 }
139 }
140 }
141 fclose(f);
142
143 // Did not find string in the proc file.
144 return false;
145}
146#endif // def __arm__
147
148
Steve Blocka7e24c12009-10-30 11:49:00 +0000149int OS::ActivationFrameAlignment() {
150#ifdef V8_TARGET_ARCH_ARM
151 // On EABI ARM targets this is required for fp correctness in the
152 // runtime system.
153 return 8;
154#else
155 // With gcc 4.4 the tree vectorization optimiser can generate code
156 // that requires 16 byte alignment such as movdqa on x86.
157 return 16;
158#endif
159}
160
161
162// We keep the lowest and highest addresses mapped as a quick way of
163// determining that pointers are outside the heap (used mostly in assertions
164// and verification). The estimate is conservative, ie, not all addresses in
165// 'allocated' space are actually allocated to our heap. The range is
166// [lowest, highest), inclusive on the low and and exclusive on the high end.
167static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
168static void* highest_ever_allocated = reinterpret_cast<void*>(0);
169
170
171static void UpdateAllocatedSpaceLimits(void* address, int size) {
172 lowest_ever_allocated = Min(lowest_ever_allocated, address);
173 highest_ever_allocated =
174 Max(highest_ever_allocated,
175 reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
176}
177
178
179bool OS::IsOutsideAllocatedSpace(void* address) {
180 return address < lowest_ever_allocated || address >= highest_ever_allocated;
181}
182
183
184size_t OS::AllocateAlignment() {
185 return sysconf(_SC_PAGESIZE);
186}
187
188
189void* OS::Allocate(const size_t requested,
190 size_t* allocated,
191 bool is_executable) {
192 const size_t msize = RoundUp(requested, sysconf(_SC_PAGESIZE));
193 int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
194 void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
195 if (mbase == MAP_FAILED) {
196 LOG(StringEvent("OS::Allocate", "mmap failed"));
197 return NULL;
198 }
199 *allocated = msize;
200 UpdateAllocatedSpaceLimits(mbase, msize);
201 return mbase;
202}
203
204
205void OS::Free(void* address, const size_t size) {
206 // TODO(1240712): munmap has a return value which is ignored here.
207 int result = munmap(address, size);
208 USE(result);
209 ASSERT(result == 0);
210}
211
212
213#ifdef ENABLE_HEAP_PROTECTION
214
215void OS::Protect(void* address, size_t size) {
216 // TODO(1240712): mprotect has a return value which is ignored here.
217 mprotect(address, size, PROT_READ);
218}
219
220
221void OS::Unprotect(void* address, size_t size, bool is_executable) {
222 // TODO(1240712): mprotect has a return value which is ignored here.
223 int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
224 mprotect(address, size, prot);
225}
226
227#endif
228
229
230void OS::Sleep(int milliseconds) {
231 unsigned int ms = static_cast<unsigned int>(milliseconds);
232 usleep(1000 * ms);
233}
234
235
236void OS::Abort() {
237 // Redirect to std abort to signal abnormal program termination.
238 abort();
239}
240
241
242void OS::DebugBreak() {
243// TODO(lrn): Introduce processor define for runtime system (!= V8_ARCH_x,
244// which is the architecture of generated code).
245#if defined(__arm__) || defined(__thumb__)
246 asm("bkpt 0");
247#else
248 asm("int $3");
249#endif
250}
251
252
253class PosixMemoryMappedFile : public OS::MemoryMappedFile {
254 public:
255 PosixMemoryMappedFile(FILE* file, void* memory, int size)
256 : file_(file), memory_(memory), size_(size) { }
257 virtual ~PosixMemoryMappedFile();
258 virtual void* memory() { return memory_; }
259 private:
260 FILE* file_;
261 void* memory_;
262 int size_;
263};
264
265
266OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
267 void* initial) {
268 FILE* file = fopen(name, "w+");
269 if (file == NULL) return NULL;
270 int result = fwrite(initial, size, 1, file);
271 if (result < 1) {
272 fclose(file);
273 return NULL;
274 }
275 void* memory =
276 mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
277 return new PosixMemoryMappedFile(file, memory, size);
278}
279
280
281PosixMemoryMappedFile::~PosixMemoryMappedFile() {
282 if (memory_) munmap(memory_, size_);
283 fclose(file_);
284}
285
286
287void OS::LogSharedLibraryAddresses() {
288#ifdef ENABLE_LOGGING_AND_PROFILING
289 // This function assumes that the layout of the file is as follows:
290 // hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name]
291 // If we encounter an unexpected situation we abort scanning further entries.
Steve Blockd0582a62009-12-15 09:54:21 +0000292 FILE* fp = fopen("/proc/self/maps", "r");
Steve Blocka7e24c12009-10-30 11:49:00 +0000293 if (fp == NULL) return;
294
295 // Allocate enough room to be able to store a full file name.
296 const int kLibNameLen = FILENAME_MAX + 1;
297 char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen));
298
299 // This loop will terminate once the scanning hits an EOF.
300 while (true) {
301 uintptr_t start, end;
302 char attr_r, attr_w, attr_x, attr_p;
303 // Parse the addresses and permission bits at the beginning of the line.
304 if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break;
305 if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break;
306
307 int c;
308 if (attr_r == 'r' && attr_x == 'x') {
309 // Found a readable and executable entry. Skip characters until we reach
310 // the beginning of the filename or the end of the line.
311 do {
312 c = getc(fp);
313 } while ((c != EOF) && (c != '\n') && (c != '/'));
314 if (c == EOF) break; // EOF: Was unexpected, just exit.
315
316 // Process the filename if found.
317 if (c == '/') {
318 ungetc(c, fp); // Push the '/' back into the stream to be read below.
319
320 // Read to the end of the line. Exit if the read fails.
321 if (fgets(lib_name, kLibNameLen, fp) == NULL) break;
322
323 // Drop the newline character read by fgets. We do not need to check
324 // for a zero-length string because we know that we at least read the
325 // '/' character.
326 lib_name[strlen(lib_name) - 1] = '\0';
327 } else {
328 // No library name found, just record the raw address range.
329 snprintf(lib_name, kLibNameLen,
330 "%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end);
331 }
332 LOG(SharedLibraryEvent(lib_name, start, end));
333 } else {
334 // Entry not describing executable data. Skip to end of line to setup
335 // reading the next entry.
336 do {
337 c = getc(fp);
338 } while ((c != EOF) && (c != '\n'));
339 if (c == EOF) break;
340 }
341 }
342 free(lib_name);
343 fclose(fp);
344#endif
345}
346
347
348int OS::StackWalk(Vector<OS::StackFrame> frames) {
349 // backtrace is a glibc extension.
350#ifdef __GLIBC__
351 int frames_size = frames.length();
352 void** addresses = NewArray<void*>(frames_size);
353
354 int frames_count = backtrace(addresses, frames_size);
355
356 char** symbols;
357 symbols = backtrace_symbols(addresses, frames_count);
358 if (symbols == NULL) {
359 DeleteArray(addresses);
360 return kStackWalkError;
361 }
362
363 for (int i = 0; i < frames_count; i++) {
364 frames[i].address = addresses[i];
365 // Format a text representation of the frame based on the information
366 // available.
367 SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen),
368 "%s",
369 symbols[i]);
370 // Make sure line termination is in place.
371 frames[i].text[kStackWalkMaxTextLen - 1] = '\0';
372 }
373
374 DeleteArray(addresses);
375 free(symbols);
376
377 return frames_count;
378#else // ndef __GLIBC__
379 return 0;
380#endif // ndef __GLIBC__
381}
382
383
384// Constants used for mmap.
385static const int kMmapFd = -1;
386static const int kMmapFdOffset = 0;
387
388
389VirtualMemory::VirtualMemory(size_t size) {
390 address_ = mmap(NULL, size, PROT_NONE,
391 MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
392 kMmapFd, kMmapFdOffset);
393 size_ = size;
394}
395
396
397VirtualMemory::~VirtualMemory() {
398 if (IsReserved()) {
399 if (0 == munmap(address(), size())) address_ = MAP_FAILED;
400 }
401}
402
403
404bool VirtualMemory::IsReserved() {
405 return address_ != MAP_FAILED;
406}
407
408
409bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
410 int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
411 if (MAP_FAILED == mmap(address, size, prot,
412 MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED,
413 kMmapFd, kMmapFdOffset)) {
414 return false;
415 }
416
417 UpdateAllocatedSpaceLimits(address, size);
418 return true;
419}
420
421
422bool VirtualMemory::Uncommit(void* address, size_t size) {
423 return mmap(address, size, PROT_NONE,
424 MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED,
425 kMmapFd, kMmapFdOffset) != MAP_FAILED;
426}
427
428
429class ThreadHandle::PlatformData : public Malloced {
430 public:
431 explicit PlatformData(ThreadHandle::Kind kind) {
432 Initialize(kind);
433 }
434
435 void Initialize(ThreadHandle::Kind kind) {
436 switch (kind) {
437 case ThreadHandle::SELF: thread_ = pthread_self(); break;
438 case ThreadHandle::INVALID: thread_ = kNoThread; break;
439 }
440 }
441
442 pthread_t thread_; // Thread handle for pthread.
443};
444
445
446ThreadHandle::ThreadHandle(Kind kind) {
447 data_ = new PlatformData(kind);
448}
449
450
451void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
452 data_->Initialize(kind);
453}
454
455
456ThreadHandle::~ThreadHandle() {
457 delete data_;
458}
459
460
461bool ThreadHandle::IsSelf() const {
462 return pthread_equal(data_->thread_, pthread_self());
463}
464
465
466bool ThreadHandle::IsValid() const {
467 return data_->thread_ != kNoThread;
468}
469
470
471Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
472}
473
474
475Thread::~Thread() {
476}
477
478
479static void* ThreadEntry(void* arg) {
480 Thread* thread = reinterpret_cast<Thread*>(arg);
481 // This is also initialized by the first argument to pthread_create() but we
482 // don't know which thread will run first (the original thread or the new
483 // one) so we initialize it here too.
484 thread->thread_handle_data()->thread_ = pthread_self();
485 ASSERT(thread->IsValid());
486 thread->Run();
487 return NULL;
488}
489
490
491void Thread::Start() {
492 pthread_create(&thread_handle_data()->thread_, NULL, ThreadEntry, this);
493 ASSERT(IsValid());
494}
495
496
497void Thread::Join() {
498 pthread_join(thread_handle_data()->thread_, NULL);
499}
500
501
502Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
503 pthread_key_t key;
504 int result = pthread_key_create(&key, NULL);
505 USE(result);
506 ASSERT(result == 0);
507 return static_cast<LocalStorageKey>(key);
508}
509
510
511void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
512 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
513 int result = pthread_key_delete(pthread_key);
514 USE(result);
515 ASSERT(result == 0);
516}
517
518
519void* Thread::GetThreadLocal(LocalStorageKey key) {
520 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
521 return pthread_getspecific(pthread_key);
522}
523
524
525void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
526 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
527 pthread_setspecific(pthread_key, value);
528}
529
530
531void Thread::YieldCPU() {
532 sched_yield();
533}
534
535
536class LinuxMutex : public Mutex {
537 public:
538
539 LinuxMutex() {
540 pthread_mutexattr_t attrs;
541 int result = pthread_mutexattr_init(&attrs);
542 ASSERT(result == 0);
543 result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE);
544 ASSERT(result == 0);
545 result = pthread_mutex_init(&mutex_, &attrs);
546 ASSERT(result == 0);
547 }
548
549 virtual ~LinuxMutex() { pthread_mutex_destroy(&mutex_); }
550
551 virtual int Lock() {
552 int result = pthread_mutex_lock(&mutex_);
553 return result;
554 }
555
556 virtual int Unlock() {
557 int result = pthread_mutex_unlock(&mutex_);
558 return result;
559 }
560
561 private:
562 pthread_mutex_t mutex_; // Pthread mutex for POSIX platforms.
563};
564
565
566Mutex* OS::CreateMutex() {
567 return new LinuxMutex();
568}
569
570
571class LinuxSemaphore : public Semaphore {
572 public:
573 explicit LinuxSemaphore(int count) { sem_init(&sem_, 0, count); }
574 virtual ~LinuxSemaphore() { sem_destroy(&sem_); }
575
576 virtual void Wait();
577 virtual bool Wait(int timeout);
578 virtual void Signal() { sem_post(&sem_); }
579 private:
580 sem_t sem_;
581};
582
583
584void LinuxSemaphore::Wait() {
585 while (true) {
586 int result = sem_wait(&sem_);
587 if (result == 0) return; // Successfully got semaphore.
588 CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
589 }
590}
591
592
593#ifndef TIMEVAL_TO_TIMESPEC
594#define TIMEVAL_TO_TIMESPEC(tv, ts) do { \
595 (ts)->tv_sec = (tv)->tv_sec; \
596 (ts)->tv_nsec = (tv)->tv_usec * 1000; \
597} while (false)
598#endif
599
600
601bool LinuxSemaphore::Wait(int timeout) {
602 const long kOneSecondMicros = 1000000; // NOLINT
603
604 // Split timeout into second and nanosecond parts.
605 struct timeval delta;
606 delta.tv_usec = timeout % kOneSecondMicros;
607 delta.tv_sec = timeout / kOneSecondMicros;
608
609 struct timeval current_time;
610 // Get the current time.
611 if (gettimeofday(&current_time, NULL) == -1) {
612 return false;
613 }
614
615 // Calculate time for end of timeout.
616 struct timeval end_time;
617 timeradd(&current_time, &delta, &end_time);
618
619 struct timespec ts;
620 TIMEVAL_TO_TIMESPEC(&end_time, &ts);
621 // Wait for semaphore signalled or timeout.
622 while (true) {
623 int result = sem_timedwait(&sem_, &ts);
624 if (result == 0) return true; // Successfully got semaphore.
625 if (result > 0) {
626 // For glibc prior to 2.3.4 sem_timedwait returns the error instead of -1.
627 errno = result;
628 result = -1;
629 }
630 if (result == -1 && errno == ETIMEDOUT) return false; // Timeout.
631 CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
632 }
633}
634
635
636Semaphore* OS::CreateSemaphore(int count) {
637 return new LinuxSemaphore(count);
638}
639
640
641#ifdef ENABLE_LOGGING_AND_PROFILING
642
643static Sampler* active_sampler_ = NULL;
644static pthread_t vm_thread_ = 0;
645
646
647#if !defined(__GLIBC__) && (defined(__arm__) || defined(__thumb__))
648// Android runs a fairly new Linux kernel, so signal info is there,
649// but the C library doesn't have the structs defined.
650
651struct sigcontext {
652 uint32_t trap_no;
653 uint32_t error_code;
654 uint32_t oldmask;
655 uint32_t gregs[16];
656 uint32_t arm_cpsr;
657 uint32_t fault_address;
658};
659typedef uint32_t __sigset_t;
660typedef struct sigcontext mcontext_t;
661typedef struct ucontext {
662 uint32_t uc_flags;
Steve Blockd0582a62009-12-15 09:54:21 +0000663 struct ucontext* uc_link;
Steve Blocka7e24c12009-10-30 11:49:00 +0000664 stack_t uc_stack;
665 mcontext_t uc_mcontext;
666 __sigset_t uc_sigmask;
667} ucontext_t;
668enum ArmRegisters {R15 = 15, R13 = 13, R11 = 11};
669
670#endif
671
672
673// A function that determines if a signal handler is called in the context
674// of a VM thread.
675//
676// The problem is that SIGPROF signal can be delivered to an arbitrary thread
677// (see http://code.google.com/p/google-perftools/issues/detail?id=106#c2)
678// So, if the signal is being handled in the context of a non-VM thread,
679// it means that the VM thread is running, and trying to sample its stack can
680// cause a crash.
681static inline bool IsVmThread() {
682 // In the case of a single VM thread, this check is enough.
683 if (pthread_equal(pthread_self(), vm_thread_)) return true;
684 // If there are multiple threads that use VM, they must have a thread id
685 // stored in TLS. To verify that the thread is really executing VM,
686 // we check Top's data. Having that ThreadManager::RestoreThread first
687 // restores ThreadLocalTop from TLS, and only then erases the TLS value,
688 // reading Top::thread_id() should not be affected by races.
689 if (ThreadManager::HasId() && !ThreadManager::IsArchived() &&
690 ThreadManager::CurrentId() == Top::thread_id()) {
691 return true;
692 }
693 return false;
694}
695
696
697static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
698 USE(info);
699 if (signal != SIGPROF) return;
700 if (active_sampler_ == NULL) return;
701
702 TickSample sample;
703
704 // If profiling, we extract the current pc and sp.
705 if (active_sampler_->IsProfiling()) {
706 // Extracting the sample from the context is extremely machine dependent.
707 ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
708 mcontext_t& mcontext = ucontext->uc_mcontext;
709#if V8_HOST_ARCH_IA32
710 sample.pc = mcontext.gregs[REG_EIP];
711 sample.sp = mcontext.gregs[REG_ESP];
712 sample.fp = mcontext.gregs[REG_EBP];
713#elif V8_HOST_ARCH_X64
714 sample.pc = mcontext.gregs[REG_RIP];
715 sample.sp = mcontext.gregs[REG_RSP];
716 sample.fp = mcontext.gregs[REG_RBP];
717#elif V8_HOST_ARCH_ARM
718// An undefined macro evaluates to 0, so this applies to Android's Bionic also.
719#if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
720 sample.pc = mcontext.gregs[R15];
721 sample.sp = mcontext.gregs[R13];
722 sample.fp = mcontext.gregs[R11];
723#else
724 sample.pc = mcontext.arm_pc;
725 sample.sp = mcontext.arm_sp;
726 sample.fp = mcontext.arm_fp;
727#endif
728#endif
729 if (IsVmThread())
730 active_sampler_->SampleStack(&sample);
731 }
732
733 // We always sample the VM state.
734 sample.state = Logger::state();
735
736 active_sampler_->Tick(&sample);
737}
738
739
740class Sampler::PlatformData : public Malloced {
741 public:
742 PlatformData() {
743 signal_handler_installed_ = false;
744 }
745
746 bool signal_handler_installed_;
747 struct sigaction old_signal_handler_;
748 struct itimerval old_timer_value_;
749};
750
751
752Sampler::Sampler(int interval, bool profiling)
753 : interval_(interval), profiling_(profiling), active_(false) {
754 data_ = new PlatformData();
755}
756
757
758Sampler::~Sampler() {
759 delete data_;
760}
761
762
763void Sampler::Start() {
764 // There can only be one active sampler at the time on POSIX
765 // platforms.
766 if (active_sampler_ != NULL) return;
767
768 vm_thread_ = pthread_self();
769
770 // Request profiling signals.
771 struct sigaction sa;
772 sa.sa_sigaction = ProfilerSignalHandler;
773 sigemptyset(&sa.sa_mask);
774 sa.sa_flags = SA_SIGINFO;
775 if (sigaction(SIGPROF, &sa, &data_->old_signal_handler_) != 0) return;
776 data_->signal_handler_installed_ = true;
777
778 // Set the itimer to generate a tick for each interval.
779 itimerval itimer;
780 itimer.it_interval.tv_sec = interval_ / 1000;
781 itimer.it_interval.tv_usec = (interval_ % 1000) * 1000;
782 itimer.it_value.tv_sec = itimer.it_interval.tv_sec;
783 itimer.it_value.tv_usec = itimer.it_interval.tv_usec;
784 setitimer(ITIMER_PROF, &itimer, &data_->old_timer_value_);
785
786 // Set this sampler as the active sampler.
787 active_sampler_ = this;
788 active_ = true;
789}
790
791
792void Sampler::Stop() {
793 // Restore old signal handler
794 if (data_->signal_handler_installed_) {
795 setitimer(ITIMER_PROF, &data_->old_timer_value_, NULL);
796 sigaction(SIGPROF, &data_->old_signal_handler_, 0);
797 data_->signal_handler_installed_ = false;
798 }
799
800 // This sampler is no longer the active sampler.
801 active_sampler_ = NULL;
802 active_ = false;
803}
804
805
806#endif // ENABLE_LOGGING_AND_PROFILING
807
808} } // namespace v8::internal