blob: f77569d5994af9b45d0dbd70e3f0a31f136d30b6 [file] [log] [blame]
/* -*- mode: C; c-basic-offset: 3; -*- */
/*--------------------------------------------------------------------*/
/*--- Client-space code for DRD. drd_pthread_intercepts.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of DRD, a thread error detector.
Copyright (C) 2006-2009 Bart Van Assche <bart.vanassche@gmail.com>.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
/* ---------------------------------------------------------------------
ALL THE CODE IN THIS FILE RUNS ON THE SIMULATED CPU.
These functions are not called directly - they're the targets of code
redirection or load notifications (see pub_core_redir.h for info).
They're named weirdly so that the intercept code can find them when the
shared object is initially loaded.
Note that this filename has the "drd_" prefix because it can appear
in stack traces, and the "drd_" makes it a little clearer that it
originates from Valgrind.
------------------------------------------------------------------ */
/*
* Define _GNU_SOURCE to make sure that pthread_spinlock_t is available when
* compiling with older glibc versions (2.3 or before).
*/
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <assert.h> /* assert() */
#include <pthread.h> /* pthread_mutex_t */
#include <semaphore.h> /* sem_t */
#include <stdio.h> /* fprintf() */
#include <stdlib.h> /* malloc(), free() */
#include <unistd.h> /* confstr() */
#include "config.h" /* HAVE_PTHREAD_MUTEX_ADAPTIVE_NP etc. */
#include "drd_basics.h" /* DRD_() */
#include "drd_clientreq.h"
#include "pub_tool_redir.h" /* VG_WRAP_FUNCTION_ZZ() */
/* Defines. */
/*
* Do not undefine the two macro's below, or the following two subtle race
* conditions will be introduced in the data race detection algorithm:
* - sg_init() runs on the context of the created thread and copies the
* vector clock of the creator thread. This only works reliably if
* the creator thread waits until this copy has been performed.
* - Since DRD_(thread_compute_minimum_vc)() does not take the vector
* clocks into account that are involved in thread creation but
* for which the corresponding thread has not yet been created, by
* undefining the macro below it becomes possible that segments get
* discarded that should not yet be discarded. Or: some data races
* are not detected.
*/
#define WAIT_UNTIL_CREATED_THREAD_STARTED
#define ALLOCATE_THREAD_ARGS_ON_THE_STACK
#define PTH_FUNC(ret_ty, f, args...) \
ret_ty VG_WRAP_FUNCTION_ZZ(VG_Z_LIBPTHREAD_SONAME,f)(args); \
ret_ty VG_WRAP_FUNCTION_ZZ(VG_Z_LIBPTHREAD_SONAME,f)(args)
/* Local data structures. */
typedef struct
{
void* (*start)(void*);
void* arg;
int detachstate;
#if defined(WAIT_UNTIL_CREATED_THREAD_STARTED)
int wrapper_started;
#endif
} DrdPosixThreadArgs;
/* Local function declarations. */
static void DRD_(init)(void) __attribute__((constructor));
static void DRD_(check_threading_library)(void);
static void DRD_(set_main_thread_state)(void);
/* Function definitions. */
/**
* Shared library initialization function. The function init() is called after
* dlopen() has loaded the shared library with DRD client intercepts because
* the constructor attribute was specified in the declaration of this function.
* Note: do specify the -nostdlib option to gcc when linking this code into a
* shared library because doing so would cancel the effect of the constructor
* attribute ! Using the gcc option -nodefaultlibs is fine because this last
* option preserves the shared library initialization code that calls
* constructor and destructor functions.
*/
static void DRD_(init)(void)
{
DRD_(check_threading_library)();
DRD_(set_main_thread_state)();
}
/**
* POSIX threads and DRD each have their own mutex type identification.
* Convert POSIX threads' mutex type to DRD's mutex type. In the code below
* if-statements are used to test the value of 'kind' instead of a switch
* statement because some of the PTHREAD_MUTEX_ macro's may have the same
* value.
*/
static MutexT DRD_(pthread_to_drd_mutex_type)(const int kind)
{
if (kind == PTHREAD_MUTEX_RECURSIVE)
return mutex_type_recursive_mutex;
else if (kind == PTHREAD_MUTEX_ERRORCHECK)
return mutex_type_errorcheck_mutex;
else if (kind == PTHREAD_MUTEX_NORMAL)
return mutex_type_default_mutex;
else if (kind == PTHREAD_MUTEX_DEFAULT)
return mutex_type_default_mutex;
#if defined(HAVE_PTHREAD_MUTEX_ADAPTIVE_NP)
else if (kind == PTHREAD_MUTEX_ADAPTIVE_NP)
return mutex_type_default_mutex;
#endif
else
{
return mutex_type_invalid_mutex;
}
}
/**
* Read the mutex type stored in the client memory used for the mutex
* implementation.
*
* @note This function depends on the implementation of the POSIX threads
* library -- the POSIX standard does not define the name of the member in
* which the mutex type is stored.
* @note The function mutex_type() has been declared inline in order
* to avoid that it shows up in call stacks (drd/tests/...exp* files).
* @note glibc stores the mutex type in the lowest two bits, and uses the
* higher bits for flags like PTHREAD_MUTEXATTR_FLAG_ROBUST and
* PTHREAD_MUTEXATTR_FLAG_PSHARED.
*/
static __inline__ MutexT DRD_(mutex_type)(pthread_mutex_t* mutex)
{
#if defined(HAVE_PTHREAD_MUTEX_T__M_KIND)
/* glibc + LinuxThreads. */
const int kind = mutex->__m_kind & 3;
#elif defined(HAVE_PTHREAD_MUTEX_T__DATA__KIND)
/* glibc + NPTL. */
const int kind = mutex->__data.__kind & 3;
#else
/* Another POSIX threads implementation. Regression tests will fail. */
const int kind = PTHREAD_MUTEX_DEFAULT;
fprintf(stderr,
"Did not recognize your POSIX threads implementation. Giving up.\n");
assert(0);
#endif
return DRD_(pthread_to_drd_mutex_type)(kind);
}
/**
* Tell DRD whether 'tid' is a joinable thread or a detached thread.
*/
static void DRD_(set_joinable)(const pthread_t tid, const int joinable)
{
int res;
assert(joinable == 0 || joinable == 1);
VALGRIND_DO_CLIENT_REQUEST(res, 0, VG_USERREQ__SET_JOINABLE,
tid, joinable, 0, 0, 0);
}
/**
* The function called from the thread created by pthread_create().
*/
static void* DRD_(thread_wrapper)(void* arg)
{
int res;
DrdPosixThreadArgs* arg_ptr;
DrdPosixThreadArgs arg_copy;
VALGRIND_DO_CLIENT_REQUEST(res, 0, VG_USERREQ__DRD_SUPPRESS_CURRENT_STACK,
0, 0, 0, 0, 0);
arg_ptr = (DrdPosixThreadArgs*)arg;
arg_copy = *arg_ptr;
#if defined(WAIT_UNTIL_CREATED_THREAD_STARTED)
arg_ptr->wrapper_started = 1;
#else
#if defined(ALLOCATE_THREAD_ARGS_ON_THE_STACK)
#error Defining ALLOCATE_THREAD_ARGS_ON_THE_STACK but not \
WAIT_UNTIL_CREATED_THREAD_STARTED is not supported.
#else
free(arg_ptr);
#endif
#endif
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__SET_PTHREADID,
pthread_self(), 0, 0, 0, 0);
DRD_(set_joinable)(pthread_self(),
arg_copy.detachstate == PTHREAD_CREATE_JOINABLE);
return (arg_copy.start)(arg_copy.arg);
}
/**
* Return 1 if the LinuxThreads implementation of POSIX Threads has been
* detected, and 0 otherwise.
*
* @see For more information about the confstr() function, see also
* http://www.opengroup.org/onlinepubs/009695399/functions/confstr.html
*/
static int DRD_(detected_linuxthreads)(void)
{
#if defined(linux)
#if defined(_CS_GNU_LIBPTHREAD_VERSION)
/* Linux with a recent glibc. */
char buffer[256];
unsigned len;
len = confstr(_CS_GNU_LIBPTHREAD_VERSION, buffer, sizeof(buffer));
assert(len <= sizeof(buffer));
return len > 0 && buffer[0] == 'l';
#else
/* Linux without _CS_GNU_LIBPTHREAD_VERSION: most likely LinuxThreads. */
return 1;
#endif
#else
/* Another OS than Linux, hence no LinuxThreads. */
return 0;
#endif
}
/**
* Stop and print an error message in case a non-supported threading
* library implementation (LinuxThreads) has been detected.
*/
static void DRD_(check_threading_library)(void)
{
if (DRD_(detected_linuxthreads)())
{
if (getenv("LD_ASSUME_KERNEL"))
{
fprintf(stderr,
"Detected the LinuxThreads threading library. Sorry, but DRD only supports\n"
"the newer NPTL (Native POSIX Threads Library). Please try to rerun DRD\n"
"after having unset the environment variable LD_ASSUME_KERNEL. Giving up.\n"
);
}
else
{
fprintf(stderr,
"Detected the LinuxThreads threading library. Sorry, but DRD only supports\n"
"the newer NPTL (Native POSIX Threads Library). Please try to rerun DRD\n"
"after having upgraded to a newer version of your Linux distribution.\n"
"Giving up.\n"
);
}
abort();
}
}
/**
* The main thread is the only thread not created by pthread_create().
* Update DRD's state information about the main thread.
*/
static void DRD_(set_main_thread_state)(void)
{
int res;
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__DRD_SUPPRESS_CURRENT_STACK,
0, 0, 0, 0, 0);
// Make sure that DRD knows about the main thread's POSIX thread ID.
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__SET_PTHREADID,
pthread_self(), 0, 0, 0, 0);
}
/*
* Note: as of today there exist three different versions of pthread_create:
* - pthread_create@GLIBC_2.0
* - pthread_create@@GLIBC_2.1
* - pthread_create@@GLIBC_2.2.5
* As an example, in libpthread-2.3.4 both pthread_create@GLIBC_2.0 and
* pthread_create@@GLIBC_2.1 are defined, while in libpthread-2.9 all three
* versions have been implemented. In any glibc version where more than one
* pthread_create function has been implemented, older versions call the
* newer versions. Or: the pthread_create* wrapper defined below can be
* called recursively. Any code in this wrapper should take this in account.
* As an example, it is not safe to invoke the DRD_STOP_RECORDING
* / DRD_START_RECORDING client requests from the pthread_create wrapper.
* See also the implementation of pthread_create@GLIBC_2.0 in
* glibc-2.9/nptl/pthread_create.c.
*/
// pthread_create
PTH_FUNC(int, pthreadZucreateZa, // pthread_create*
pthread_t *thread, const pthread_attr_t *attr,
void *(*start) (void *), void *arg)
{
int res;
int ret;
OrigFn fn;
#if defined(ALLOCATE_THREAD_ARGS_ON_THE_STACK)
DrdPosixThreadArgs thread_args;
#endif
DrdPosixThreadArgs* thread_args_p;
VALGRIND_GET_ORIG_FN(fn);
#if defined(ALLOCATE_THREAD_ARGS_ON_THE_STACK)
thread_args_p = &thread_args;
#else
thread_args_p = malloc(sizeof(*thread_args_p));
#endif
assert(thread_args_p);
thread_args_p->start = start;
thread_args_p->arg = arg;
#if defined(WAIT_UNTIL_CREATED_THREAD_STARTED)
DRD_IGNORE_VAR(thread_args_p->wrapper_started);
thread_args_p->wrapper_started = 0;
#endif
/*
* Find out whether the thread will be started as a joinable thread
* or as a detached thread. If no thread attributes have been specified,
* this means that the new thread will be started as a joinable thread.
*/
thread_args_p->detachstate = PTHREAD_CREATE_JOINABLE;
if (attr)
{
if (pthread_attr_getdetachstate(attr, &thread_args_p->detachstate) != 0)
{
assert(0);
}
}
assert(thread_args_p->detachstate == PTHREAD_CREATE_JOINABLE
|| thread_args_p->detachstate == PTHREAD_CREATE_DETACHED);
CALL_FN_W_WWWW(ret, fn, thread, attr, DRD_(thread_wrapper), thread_args_p);
#if defined(WAIT_UNTIL_CREATED_THREAD_STARTED)
if (ret == 0)
{
/*
* Wait until the thread wrapper started.
* @todo Find out why some regression tests fail if thread arguments are
* passed via dynamically allocated memory and if the loop below is
* removed.
*/
while (! thread_args_p->wrapper_started)
{
sched_yield();
}
}
#if defined(ALLOCATE_THREAD_ARGS_DYNAMICALLY)
free(thread_args_p);
#endif
#endif
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__DRD_START_NEW_SEGMENT,
pthread_self(), 0, 0, 0, 0);
return ret;
}
// pthread_join
PTH_FUNC(int, pthreadZujoin, // pthread_join
pthread_t pt_joinee, void **thread_return)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
CALL_FN_W_WW(ret, fn, pt_joinee, thread_return);
if (ret == 0)
{
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_THREAD_JOIN,
pt_joinee, 0, 0, 0, 0);
}
return ret;
}
// pthread_detach
PTH_FUNC(int, pthreadZudetach, pthread_t pt_thread)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
{
CALL_FN_W_W(ret, fn, pt_thread);
if (ret == 0)
{
DRD_(set_joinable)(pt_thread, 0);
}
}
return ret;
}
// pthread_cancel
PTH_FUNC(int, pthreadZucancel, pthread_t pt_thread)
{
int res;
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_THREAD_CANCEL,
pt_thread, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, pt_thread);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_THREAD_CANCEL,
pt_thread, ret==0, 0, 0, 0);
return ret;
}
// pthread_mutex_init
PTH_FUNC(int, pthreadZumutexZuinit,
pthread_mutex_t *mutex,
const pthread_mutexattr_t* attr)
{
int ret;
int res;
OrigFn fn;
int mt;
VALGRIND_GET_ORIG_FN(fn);
mt = PTHREAD_MUTEX_DEFAULT;
if (attr)
pthread_mutexattr_gettype(attr, &mt);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_MUTEX_INIT,
mutex, DRD_(pthread_to_drd_mutex_type)(mt),
0, 0, 0);
CALL_FN_W_WW(ret, fn, mutex, attr);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_MUTEX_INIT,
mutex, 0, 0, 0, 0);
return ret;
}
// pthread_mutex_destroy
PTH_FUNC(int, pthreadZumutexZudestroy,
pthread_mutex_t *mutex)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_MUTEX_DESTROY,
mutex, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, mutex);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_MUTEX_DESTROY,
mutex, DRD_(mutex_type)(mutex), 0, 0, 0);
return ret;
}
// pthread_mutex_lock
PTH_FUNC(int, pthreadZumutexZulock, // pthread_mutex_lock
pthread_mutex_t *mutex)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, 0, VG_USERREQ__PRE_MUTEX_LOCK,
mutex, DRD_(mutex_type)(mutex), 0, 0, 0);
CALL_FN_W_W(ret, fn, mutex);
VALGRIND_DO_CLIENT_REQUEST(res, 0, VG_USERREQ__POST_MUTEX_LOCK,
mutex, ret == 0, 0, 0, 0);
return ret;
}
// pthread_mutex_trylock
PTH_FUNC(int, pthreadZumutexZutrylock, // pthread_mutex_trylock
pthread_mutex_t *mutex)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, 0, VG_USERREQ__PRE_MUTEX_LOCK,
mutex, DRD_(mutex_type)(mutex), 1, 0, 0);
CALL_FN_W_W(ret, fn, mutex);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_MUTEX_LOCK,
mutex, ret == 0, 0, 0, 0);
return ret;
}
// pthread_mutex_timedlock
PTH_FUNC(int, pthreadZumutexZutimedlock, // pthread_mutex_timedlock
pthread_mutex_t *mutex,
const struct timespec *abs_timeout)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, 0, VG_USERREQ__PRE_MUTEX_LOCK,
mutex, DRD_(mutex_type)(mutex), 0, 0, 0);
CALL_FN_W_WW(ret, fn, mutex, abs_timeout);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_MUTEX_LOCK,
mutex, ret == 0, 0, 0, 0);
return ret;
}
// pthread_mutex_unlock
PTH_FUNC(int, pthreadZumutexZuunlock, // pthread_mutex_unlock
pthread_mutex_t *mutex)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1,
VG_USERREQ__PRE_MUTEX_UNLOCK,
mutex, DRD_(mutex_type)(mutex), 0, 0, 0);
CALL_FN_W_W(ret, fn, mutex);
VALGRIND_DO_CLIENT_REQUEST(res, -1,
VG_USERREQ__POST_MUTEX_UNLOCK,
mutex, 0, 0, 0, 0);
return ret;
}
// pthread_cond_init
PTH_FUNC(int, pthreadZucondZuinitZa, // pthread_cond_init*
pthread_cond_t* cond,
const pthread_condattr_t* attr)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_COND_INIT,
cond, 0, 0, 0, 0);
CALL_FN_W_WW(ret, fn, cond, attr);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_COND_INIT,
cond, 0, 0, 0, 0);
return ret;
}
// pthread_cond_destroy
PTH_FUNC(int, pthreadZucondZudestroyZa, // pthread_cond_destroy*
pthread_cond_t* cond)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_COND_DESTROY,
cond, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, cond);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_COND_DESTROY,
cond, 0, 0, 0, 0);
return ret;
}
// pthread_cond_wait
PTH_FUNC(int, pthreadZucondZuwaitZa, // pthread_cond_wait*
pthread_cond_t *cond,
pthread_mutex_t *mutex)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_COND_WAIT,
cond, mutex, DRD_(mutex_type)(mutex), 0, 0);
CALL_FN_W_WW(ret, fn, cond, mutex);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_COND_WAIT,
cond, mutex, 1, 0, 0);
return ret;
}
// pthread_cond_timedwait
PTH_FUNC(int, pthreadZucondZutimedwaitZa, // pthread_cond_timedwait*
pthread_cond_t *cond,
pthread_mutex_t *mutex,
const struct timespec* abstime)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_COND_WAIT,
cond, mutex, DRD_(mutex_type)(mutex), 0, 0);
CALL_FN_W_WWW(ret, fn, cond, mutex, abstime);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_COND_WAIT,
cond, mutex, 1, 0, 0);
return ret;
}
// pthread_cond_signal
PTH_FUNC(int, pthreadZucondZusignalZa, // pthread_cond_signal*
pthread_cond_t* cond)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_COND_SIGNAL,
cond, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, cond);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_COND_SIGNAL,
cond, 0, 0, 0, 0);
return ret;
}
// pthread_cond_broadcast
PTH_FUNC(int, pthreadZucondZubroadcastZa, // pthread_cond_broadcast*
pthread_cond_t* cond)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_COND_BROADCAST,
cond, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, cond);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_COND_BROADCAST,
cond, 0, 0, 0, 0);
return ret;
}
// pthread_spin_init
PTH_FUNC(int, pthreadZuspinZuinit, // pthread_spin_init
pthread_spinlock_t *spinlock,
int pshared)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_SPIN_INIT_OR_UNLOCK,
spinlock, 0, 0, 0, 0);
CALL_FN_W_WW(ret, fn, spinlock, pshared);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_SPIN_INIT_OR_UNLOCK,
spinlock, 0, 0, 0, 0);
return ret;
}
// pthread_spin_destroy
PTH_FUNC(int, pthreadZuspinZudestroy, // pthread_spin_destroy
pthread_spinlock_t *spinlock)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_MUTEX_DESTROY,
spinlock, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, spinlock);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_MUTEX_DESTROY,
spinlock, mutex_type_spinlock, 0, 0, 0);
return ret;
}
// pthread_spin_lock
PTH_FUNC(int, pthreadZuspinZulock, // pthread_spin_lock
pthread_spinlock_t *spinlock)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, 0, VG_USERREQ__PRE_MUTEX_LOCK,
spinlock, mutex_type_spinlock, 0, 0, 0);
CALL_FN_W_W(ret, fn, spinlock);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_MUTEX_LOCK,
spinlock, ret == 0, 0, 0, 0);
return ret;
}
// pthread_spin_trylock
PTH_FUNC(int, pthreadZuspinZutrylock, // pthread_spin_trylock
pthread_spinlock_t *spinlock)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, 0, VG_USERREQ__PRE_MUTEX_LOCK,
spinlock, mutex_type_spinlock, 0, 0, 0);
CALL_FN_W_W(ret, fn, spinlock);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_MUTEX_LOCK,
spinlock, ret == 0, 0, 0, 0);
return ret;
}
// pthread_spin_unlock
PTH_FUNC(int, pthreadZuspinZuunlock, // pthread_spin_unlock
pthread_spinlock_t *spinlock)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_SPIN_INIT_OR_UNLOCK,
spinlock, mutex_type_spinlock, 0, 0, 0);
CALL_FN_W_W(ret, fn, spinlock);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_SPIN_INIT_OR_UNLOCK,
spinlock, 0, 0, 0, 0);
return ret;
}
// pthread_barrier_init
PTH_FUNC(int, pthreadZubarrierZuinit, // pthread_barrier_init
pthread_barrier_t* barrier,
const pthread_barrierattr_t* attr,
unsigned count)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_BARRIER_INIT,
barrier, pthread_barrier, count, 0, 0);
CALL_FN_W_WWW(ret, fn, barrier, attr, count);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_BARRIER_INIT,
barrier, pthread_barrier, 0, 0, 0);
return ret;
}
// pthread_barrier_destroy
PTH_FUNC(int, pthreadZubarrierZudestroy, // pthread_barrier_destroy
pthread_barrier_t* barrier)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_BARRIER_DESTROY,
barrier, pthread_barrier, 0, 0, 0);
CALL_FN_W_W(ret, fn, barrier);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_BARRIER_DESTROY,
barrier, pthread_barrier, 0, 0, 0);
return ret;
}
// pthread_barrier_wait
PTH_FUNC(int, pthreadZubarrierZuwait, // pthread_barrier_wait
pthread_barrier_t* barrier)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_BARRIER_WAIT,
barrier, pthread_barrier, 0, 0, 0);
CALL_FN_W_W(ret, fn, barrier);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_BARRIER_WAIT,
barrier, pthread_barrier,
ret == 0 || ret == PTHREAD_BARRIER_SERIAL_THREAD,
ret == PTHREAD_BARRIER_SERIAL_THREAD, 0);
return ret;
}
// sem_init
PTH_FUNC(int, semZuinitZa, // sem_init*
sem_t *sem,
int pshared,
unsigned int value)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_SEM_INIT,
sem, pshared, value, 0, 0);
CALL_FN_W_WWW(ret, fn, sem, pshared, value);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_SEM_INIT,
sem, 0, 0, 0, 0);
return ret;
}
// sem_destroy
PTH_FUNC(int, semZudestroyZa, // sem_destroy*
sem_t *sem)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_SEM_DESTROY,
sem, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, sem);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_SEM_DESTROY,
sem, 0, 0, 0, 0);
return ret;
}
// sem_wait
PTH_FUNC(int, semZuwaitZa, // sem_wait*
sem_t *sem)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_SEM_WAIT,
sem, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, sem);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_SEM_WAIT,
sem, ret == 0, 0, 0, 0);
return ret;
}
// sem_trywait
PTH_FUNC(int, semZutrywaitZa, // sem_trywait*
sem_t *sem)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_SEM_WAIT,
sem, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, sem);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_SEM_WAIT,
sem, ret == 0, 0, 0, 0);
return ret;
}
// sem_timedwait
PTH_FUNC(int, semZutimedwait, // sem_timedwait
sem_t *sem, const struct timespec *abs_timeout)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_SEM_WAIT,
sem, 0, 0, 0, 0);
CALL_FN_W_WW(ret, fn, sem, abs_timeout);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_SEM_WAIT,
sem, ret == 0, 0, 0, 0);
return ret;
}
// sem_post
PTH_FUNC(int, semZupostZa, // sem_post*
sem_t *sem)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_SEM_POST,
sem, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, sem);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_SEM_POST,
sem, ret == 0, 0, 0, 0);
return ret;
}
// pthread_rwlock_init
PTH_FUNC(int,
pthreadZurwlockZuinitZa, // pthread_rwlock_init*
pthread_rwlock_t* rwlock,
const pthread_rwlockattr_t* attr)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_RWLOCK_INIT,
rwlock, 0, 0, 0, 0);
CALL_FN_W_WW(ret, fn, rwlock, attr);
return ret;
}
// pthread_rwlock_destroy
PTH_FUNC(int,
pthreadZurwlockZudestroyZa, // pthread_rwlock_destroy*
pthread_rwlock_t* rwlock)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
CALL_FN_W_W(ret, fn, rwlock);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_RWLOCK_DESTROY,
rwlock, 0, 0, 0, 0);
return ret;
}
// pthread_rwlock_rdlock
PTH_FUNC(int,
pthreadZurwlockZurdlockZa, // pthread_rwlock_rdlock*
pthread_rwlock_t* rwlock)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_RWLOCK_RDLOCK,
rwlock, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, rwlock);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_RWLOCK_RDLOCK,
rwlock, ret == 0, 0, 0, 0);
return ret;
}
// pthread_rwlock_wrlock
PTH_FUNC(int,
pthreadZurwlockZuwrlockZa, // pthread_rwlock_wrlock*
pthread_rwlock_t* rwlock)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_RWLOCK_WRLOCK,
rwlock, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, rwlock);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_RWLOCK_WRLOCK,
rwlock, ret == 0, 0, 0, 0);
return ret;
}
// pthread_rwlock_timedrdlock
PTH_FUNC(int,
pthreadZurwlockZutimedrdlockZa, // pthread_rwlock_timedrdlock*
pthread_rwlock_t* rwlock)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_RWLOCK_RDLOCK,
rwlock, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, rwlock);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_RWLOCK_RDLOCK,
rwlock, ret == 0, 0, 0, 0);
return ret;
}
// pthread_rwlock_timedwrlock
PTH_FUNC(int,
pthreadZurwlockZutimedwrlockZa, // pthread_rwlock_timedwrlock*
pthread_rwlock_t* rwlock)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_RWLOCK_WRLOCK,
rwlock, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, rwlock);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_RWLOCK_WRLOCK,
rwlock, ret == 0, 0, 0, 0);
return ret;
}
// pthread_rwlock_tryrdlock
PTH_FUNC(int,
pthreadZurwlockZutryrdlockZa, // pthread_rwlock_tryrdlock*
pthread_rwlock_t* rwlock)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_RWLOCK_RDLOCK,
rwlock, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, rwlock);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_RWLOCK_RDLOCK,
rwlock, ret == 0, 0, 0, 0);
return ret;
}
// pthread_rwlock_trywrlock
PTH_FUNC(int,
pthreadZurwlockZutrywrlockZa, // pthread_rwlock_trywrlock*
pthread_rwlock_t* rwlock)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_RWLOCK_WRLOCK,
rwlock, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, rwlock);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_RWLOCK_WRLOCK,
rwlock, ret == 0, 0, 0, 0);
return ret;
}
// pthread_rwlock_unlock
PTH_FUNC(int,
pthreadZurwlockZuunlockZa, // pthread_rwlock_unlock*
pthread_rwlock_t* rwlock)
{
int ret;
int res;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__PRE_RWLOCK_UNLOCK,
rwlock, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, rwlock);
VALGRIND_DO_CLIENT_REQUEST(res, -1, VG_USERREQ__POST_RWLOCK_UNLOCK,
rwlock, ret == 0, 0, 0, 0);
return ret;
}