| |
| /*--------------------------------------------------------------------*/ |
| /*--- Instrument IR to perform memory checking operations. ---*/ |
| /*--- mc_translate.c ---*/ |
| /*--------------------------------------------------------------------*/ |
| |
| /* |
| This file is part of MemCheck, a heavyweight Valgrind tool for |
| detecting memory errors. |
| |
| Copyright (C) 2000-2009 Julian Seward |
| jseward@acm.org |
| |
| This program is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public License as |
| published by the Free Software Foundation; either version 2 of the |
| License, or (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
| 02111-1307, USA. |
| |
| The GNU General Public License is contained in the file COPYING. |
| */ |
| |
| #include "pub_tool_basics.h" |
| #include "pub_tool_hashtable.h" // For mc_include.h |
| #include "pub_tool_libcassert.h" |
| #include "pub_tool_libcprint.h" |
| #include "pub_tool_tooliface.h" |
| #include "pub_tool_machine.h" // VG_(fnptr_to_fnentry) |
| #include "pub_tool_xarray.h" |
| #include "pub_tool_mallocfree.h" |
| #include "pub_tool_libcbase.h" |
| |
| #include "mc_include.h" |
| |
| |
| /* This file implements the Memcheck instrumentation, and in |
| particular contains the core of its undefined value detection |
| machinery. For a comprehensive background of the terminology, |
| algorithms and rationale used herein, read: |
| |
| Using Valgrind to detect undefined value errors with |
| bit-precision |
| |
| Julian Seward and Nicholas Nethercote |
| |
| 2005 USENIX Annual Technical Conference (General Track), |
| Anaheim, CA, USA, April 10-15, 2005. |
| |
| ---- |
| |
| Here is as good a place as any to record exactly when V bits are and |
| should be checked, why, and what function is responsible. |
| |
| |
| Memcheck complains when an undefined value is used: |
| |
| 1. In the condition of a conditional branch. Because it could cause |
| incorrect control flow, and thus cause incorrect externally-visible |
| behaviour. [mc_translate.c:complainIfUndefined] |
| |
| 2. As an argument to a system call, or as the value that specifies |
| the system call number. Because it could cause an incorrect |
| externally-visible side effect. [mc_translate.c:mc_pre_reg_read] |
| |
| 3. As the address in a load or store. Because it could cause an |
| incorrect value to be used later, which could cause externally-visible |
| behaviour (eg. via incorrect control flow or an incorrect system call |
| argument) [complainIfUndefined] |
| |
| 4. As the target address of a branch. Because it could cause incorrect |
| control flow. [complainIfUndefined] |
| |
| 5. As an argument to setenv, unsetenv, or putenv. Because it could put |
| an incorrect value into the external environment. |
| [mc_replace_strmem.c:VG_WRAP_FUNCTION_ZU(*, *env)] |
| |
| 6. As the index in a GETI or PUTI operation. I'm not sure why... (njn). |
| [complainIfUndefined] |
| |
| 7. As an argument to the VALGRIND_CHECK_MEM_IS_DEFINED and |
| VALGRIND_CHECK_VALUE_IS_DEFINED client requests. Because the user |
| requested it. [in memcheck.h] |
| |
| |
| Memcheck also complains, but should not, when an undefined value is used: |
| |
| 8. As the shift value in certain SIMD shift operations (but not in the |
| standard integer shift operations). This inconsistency is due to |
| historical reasons.) [complainIfUndefined] |
| |
| |
| Memcheck does not complain, but should, when an undefined value is used: |
| |
| 9. As an input to a client request. Because the client request may |
| affect the visible behaviour -- see bug #144362 for an example |
| involving the malloc replacements in vg_replace_malloc.c and |
| VALGRIND_NON_SIMD_CALL* requests, where an uninitialised argument |
| isn't identified. That bug report also has some info on how to solve |
| the problem. [valgrind.h:VALGRIND_DO_CLIENT_REQUEST] |
| |
| |
| In practice, 1 and 2 account for the vast majority of cases. |
| */ |
| |
| /*------------------------------------------------------------*/ |
| /*--- Forward decls ---*/ |
| /*------------------------------------------------------------*/ |
| |
| struct _MCEnv; |
| |
| static IRType shadowTypeV ( IRType ty ); |
| static IRExpr* expr2vbits ( struct _MCEnv* mce, IRExpr* e ); |
| static IRTemp findShadowTmpB ( struct _MCEnv* mce, IRTemp orig ); |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Memcheck running state, and tmp management. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Carries around state during memcheck instrumentation. */ |
| typedef |
| struct _MCEnv { |
| /* MODIFIED: the superblock being constructed. IRStmts are |
| added. */ |
| IRSB* bb; |
| Bool trace; |
| |
| /* MODIFIED: a table [0 .. #temps_in_original_bb-1] which maps |
| original temps to their current their current shadow temp. |
| Initially all entries are IRTemp_INVALID. Entries are added |
| lazily since many original temps are not used due to |
| optimisation prior to instrumentation. Note that floating |
| point original tmps are shadowed by integer tmps of the same |
| size, and Bit-typed original tmps are shadowed by the type |
| Ity_I8. See comment below. */ |
| IRTemp* tmpMapV; /* V-bit tmp shadows */ |
| IRTemp* tmpMapB; /* origin tracking tmp shadows */ |
| Int n_originalTmps; /* for range checking */ |
| |
| /* MODIFIED: indicates whether "bogus" literals have so far been |
| found. Starts off False, and may change to True. */ |
| Bool bogusLiterals; |
| |
| /* READONLY: the guest layout. This indicates which parts of |
| the guest state should be regarded as 'always defined'. */ |
| VexGuestLayout* layout; |
| |
| /* READONLY: the host word type. Needed for constructing |
| arguments of type 'HWord' to be passed to helper functions. |
| Ity_I32 or Ity_I64 only. */ |
| IRType hWordTy; |
| } |
| MCEnv; |
| |
| /* SHADOW TMP MANAGEMENT. Shadow tmps are allocated lazily (on |
| demand), as they are encountered. This is for two reasons. |
| |
| (1) (less important reason): Many original tmps are unused due to |
| initial IR optimisation, and we do not want to spaces in tables |
| tracking them. |
| |
| Shadow IRTemps are therefore allocated on demand. mce.tmpMap is a |
| table indexed [0 .. n_types-1], which gives the current shadow for |
| each original tmp, or INVALID_IRTEMP if none is so far assigned. |
| It is necessary to support making multiple assignments to a shadow |
| -- specifically, after testing a shadow for definedness, it needs |
| to be made defined. But IR's SSA property disallows this. |
| |
| (2) (more important reason): Therefore, when a shadow needs to get |
| a new value, a new temporary is created, the value is assigned to |
| that, and the tmpMap is updated to reflect the new binding. |
| |
| A corollary is that if the tmpMap maps a given tmp to |
| IRTemp_INVALID and we are hoping to read that shadow tmp, it means |
| there's a read-before-write error in the original tmps. The IR |
| sanity checker should catch all such anomalies, however. |
| */ |
| |
| /* Find the tmp currently shadowing the given original tmp. If none |
| so far exists, allocate one. */ |
| static IRTemp findShadowTmpV ( MCEnv* mce, IRTemp orig ) |
| { |
| tl_assert(orig < mce->n_originalTmps); |
| if (mce->tmpMapV[orig] == IRTemp_INVALID) { |
| mce->tmpMapV[orig] |
| = newIRTemp(mce->bb->tyenv, |
| shadowTypeV(mce->bb->tyenv->types[orig])); |
| } |
| return mce->tmpMapV[orig]; |
| } |
| |
| /* Allocate a new shadow for the given original tmp. This means any |
| previous shadow is abandoned. This is needed because it is |
| necessary to give a new value to a shadow once it has been tested |
| for undefinedness, but unfortunately IR's SSA property disallows |
| this. Instead we must abandon the old shadow, allocate a new one |
| and use that instead. */ |
| static void newShadowTmpV ( MCEnv* mce, IRTemp orig ) |
| { |
| tl_assert(orig < mce->n_originalTmps); |
| mce->tmpMapV[orig] |
| = newIRTemp(mce->bb->tyenv, |
| shadowTypeV(mce->bb->tyenv->types[orig])); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- IRAtoms -- a subset of IRExprs ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* An atom is either an IRExpr_Const or an IRExpr_Tmp, as defined by |
| isIRAtom() in libvex_ir.h. Because this instrumenter expects flat |
| input, most of this code deals in atoms. Usefully, a value atom |
| always has a V-value which is also an atom: constants are shadowed |
| by constants, and temps are shadowed by the corresponding shadow |
| temporary. */ |
| |
| typedef IRExpr IRAtom; |
| |
| /* (used for sanity checks only): is this an atom which looks |
| like it's from original code? */ |
| static Bool isOriginalAtom ( MCEnv* mce, IRAtom* a1 ) |
| { |
| if (a1->tag == Iex_Const) |
| return True; |
| if (a1->tag == Iex_RdTmp && a1->Iex.RdTmp.tmp < mce->n_originalTmps) |
| return True; |
| return False; |
| } |
| |
| /* (used for sanity checks only): is this an atom which looks |
| like it's from shadow code? */ |
| static Bool isShadowAtom ( MCEnv* mce, IRAtom* a1 ) |
| { |
| if (a1->tag == Iex_Const) |
| return True; |
| if (a1->tag == Iex_RdTmp && a1->Iex.RdTmp.tmp >= mce->n_originalTmps) |
| return True; |
| return False; |
| } |
| |
| /* (used for sanity checks only): check that both args are atoms and |
| are identically-kinded. */ |
| static Bool sameKindedAtoms ( IRAtom* a1, IRAtom* a2 ) |
| { |
| if (a1->tag == Iex_RdTmp && a2->tag == Iex_RdTmp) |
| return True; |
| if (a1->tag == Iex_Const && a2->tag == Iex_Const) |
| return True; |
| return False; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Type management ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Shadow state is always accessed using integer types. This returns |
| an integer type with the same size (as per sizeofIRType) as the |
| given type. The only valid shadow types are Bit, I8, I16, I32, |
| I64, V128. */ |
| |
| static IRType shadowTypeV ( IRType ty ) |
| { |
| switch (ty) { |
| case Ity_I1: |
| case Ity_I8: |
| case Ity_I16: |
| case Ity_I32: |
| case Ity_I64: |
| case Ity_I128: return ty; |
| case Ity_F32: return Ity_I32; |
| case Ity_F64: return Ity_I64; |
| case Ity_V128: return Ity_V128; |
| default: ppIRType(ty); |
| VG_(tool_panic)("memcheck:shadowTypeV"); |
| } |
| } |
| |
| /* Produce a 'defined' value of the given shadow type. Should only be |
| supplied shadow types (Bit/I8/I16/I32/UI64). */ |
| static IRExpr* definedOfType ( IRType ty ) { |
| switch (ty) { |
| case Ity_I1: return IRExpr_Const(IRConst_U1(False)); |
| case Ity_I8: return IRExpr_Const(IRConst_U8(0)); |
| case Ity_I16: return IRExpr_Const(IRConst_U16(0)); |
| case Ity_I32: return IRExpr_Const(IRConst_U32(0)); |
| case Ity_I64: return IRExpr_Const(IRConst_U64(0)); |
| case Ity_V128: return IRExpr_Const(IRConst_V128(0x0000)); |
| default: VG_(tool_panic)("memcheck:definedOfType"); |
| } |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Constructing IR fragments ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* add stmt to a bb */ |
| static inline void stmt ( HChar cat, MCEnv* mce, IRStmt* st ) { |
| if (mce->trace) { |
| VG_(printf)(" %c: ", cat); |
| ppIRStmt(st); |
| VG_(printf)("\n"); |
| } |
| addStmtToIRSB(mce->bb, st); |
| } |
| |
| /* assign value to tmp */ |
| static inline |
| void assign ( HChar cat, MCEnv* mce, IRTemp tmp, IRExpr* expr ) { |
| stmt(cat, mce, IRStmt_WrTmp(tmp,expr)); |
| } |
| |
| /* build various kinds of expressions */ |
| #define binop(_op, _arg1, _arg2) IRExpr_Binop((_op),(_arg1),(_arg2)) |
| #define unop(_op, _arg) IRExpr_Unop((_op),(_arg)) |
| #define mkU8(_n) IRExpr_Const(IRConst_U8(_n)) |
| #define mkU16(_n) IRExpr_Const(IRConst_U16(_n)) |
| #define mkU32(_n) IRExpr_Const(IRConst_U32(_n)) |
| #define mkU64(_n) IRExpr_Const(IRConst_U64(_n)) |
| #define mkV128(_n) IRExpr_Const(IRConst_V128(_n)) |
| #define mkexpr(_tmp) IRExpr_RdTmp((_tmp)) |
| |
| /* Bind the given expression to a new temporary, and return the |
| temporary. This effectively converts an arbitrary expression into |
| an atom. |
| |
| 'ty' is the type of 'e' and hence the type that the new temporary |
| needs to be. But passing it is redundant, since we can deduce the |
| type merely by inspecting 'e'. So at least that fact to assert |
| that the two types agree. */ |
| static IRAtom* assignNew ( HChar cat, MCEnv* mce, IRType ty, IRExpr* e ) { |
| IRTemp t; |
| IRType tyE = typeOfIRExpr(mce->bb->tyenv, e); |
| tl_assert(tyE == ty); /* so 'ty' is redundant (!) */ |
| t = newIRTemp(mce->bb->tyenv, ty); |
| assign(cat, mce, t, e); |
| return mkexpr(t); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Constructing definedness primitive ops ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* --------- Defined-if-either-defined --------- */ |
| |
| static IRAtom* mkDifD8 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_I8, binop(Iop_And8, a1, a2)); |
| } |
| |
| static IRAtom* mkDifD16 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_I16, binop(Iop_And16, a1, a2)); |
| } |
| |
| static IRAtom* mkDifD32 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_I32, binop(Iop_And32, a1, a2)); |
| } |
| |
| static IRAtom* mkDifD64 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_I64, binop(Iop_And64, a1, a2)); |
| } |
| |
| static IRAtom* mkDifDV128 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_V128, binop(Iop_AndV128, a1, a2)); |
| } |
| |
| /* --------- Undefined-if-either-undefined --------- */ |
| |
| static IRAtom* mkUifU8 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_I8, binop(Iop_Or8, a1, a2)); |
| } |
| |
| static IRAtom* mkUifU16 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_I16, binop(Iop_Or16, a1, a2)); |
| } |
| |
| static IRAtom* mkUifU32 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_I32, binop(Iop_Or32, a1, a2)); |
| } |
| |
| static IRAtom* mkUifU64 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_I64, binop(Iop_Or64, a1, a2)); |
| } |
| |
| static IRAtom* mkUifUV128 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_V128, binop(Iop_OrV128, a1, a2)); |
| } |
| |
| static IRAtom* mkUifU ( MCEnv* mce, IRType vty, IRAtom* a1, IRAtom* a2 ) { |
| switch (vty) { |
| case Ity_I8: return mkUifU8(mce, a1, a2); |
| case Ity_I16: return mkUifU16(mce, a1, a2); |
| case Ity_I32: return mkUifU32(mce, a1, a2); |
| case Ity_I64: return mkUifU64(mce, a1, a2); |
| case Ity_V128: return mkUifUV128(mce, a1, a2); |
| default: |
| VG_(printf)("\n"); ppIRType(vty); VG_(printf)("\n"); |
| VG_(tool_panic)("memcheck:mkUifU"); |
| } |
| } |
| |
| /* --------- The Left-family of operations. --------- */ |
| |
| static IRAtom* mkLeft8 ( MCEnv* mce, IRAtom* a1 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| return assignNew('V', mce, Ity_I8, unop(Iop_Left8, a1)); |
| } |
| |
| static IRAtom* mkLeft16 ( MCEnv* mce, IRAtom* a1 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| return assignNew('V', mce, Ity_I16, unop(Iop_Left16, a1)); |
| } |
| |
| static IRAtom* mkLeft32 ( MCEnv* mce, IRAtom* a1 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| return assignNew('V', mce, Ity_I32, unop(Iop_Left32, a1)); |
| } |
| |
| static IRAtom* mkLeft64 ( MCEnv* mce, IRAtom* a1 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| return assignNew('V', mce, Ity_I64, unop(Iop_Left64, a1)); |
| } |
| |
| /* --------- 'Improvement' functions for AND/OR. --------- */ |
| |
| /* ImproveAND(data, vbits) = data OR vbits. Defined (0) data 0s give |
| defined (0); all other -> undefined (1). |
| */ |
| static IRAtom* mkImproveAND8 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew('V', mce, Ity_I8, binop(Iop_Or8, data, vbits)); |
| } |
| |
| static IRAtom* mkImproveAND16 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew('V', mce, Ity_I16, binop(Iop_Or16, data, vbits)); |
| } |
| |
| static IRAtom* mkImproveAND32 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew('V', mce, Ity_I32, binop(Iop_Or32, data, vbits)); |
| } |
| |
| static IRAtom* mkImproveAND64 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew('V', mce, Ity_I64, binop(Iop_Or64, data, vbits)); |
| } |
| |
| static IRAtom* mkImproveANDV128 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew('V', mce, Ity_V128, binop(Iop_OrV128, data, vbits)); |
| } |
| |
| /* ImproveOR(data, vbits) = ~data OR vbits. Defined (0) data 1s give |
| defined (0); all other -> undefined (1). |
| */ |
| static IRAtom* mkImproveOR8 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew( |
| 'V', mce, Ity_I8, |
| binop(Iop_Or8, |
| assignNew('V', mce, Ity_I8, unop(Iop_Not8, data)), |
| vbits) ); |
| } |
| |
| static IRAtom* mkImproveOR16 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew( |
| 'V', mce, Ity_I16, |
| binop(Iop_Or16, |
| assignNew('V', mce, Ity_I16, unop(Iop_Not16, data)), |
| vbits) ); |
| } |
| |
| static IRAtom* mkImproveOR32 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew( |
| 'V', mce, Ity_I32, |
| binop(Iop_Or32, |
| assignNew('V', mce, Ity_I32, unop(Iop_Not32, data)), |
| vbits) ); |
| } |
| |
| static IRAtom* mkImproveOR64 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew( |
| 'V', mce, Ity_I64, |
| binop(Iop_Or64, |
| assignNew('V', mce, Ity_I64, unop(Iop_Not64, data)), |
| vbits) ); |
| } |
| |
| static IRAtom* mkImproveORV128 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew( |
| 'V', mce, Ity_V128, |
| binop(Iop_OrV128, |
| assignNew('V', mce, Ity_V128, unop(Iop_NotV128, data)), |
| vbits) ); |
| } |
| |
| /* --------- Pessimising casts. --------- */ |
| |
| static IRAtom* mkPCastTo( MCEnv* mce, IRType dst_ty, IRAtom* vbits ) |
| { |
| IRType src_ty; |
| IRAtom* tmp1; |
| /* Note, dst_ty is a shadow type, not an original type. */ |
| /* First of all, collapse vbits down to a single bit. */ |
| tl_assert(isShadowAtom(mce,vbits)); |
| src_ty = typeOfIRExpr(mce->bb->tyenv, vbits); |
| |
| /* Fast-track some common cases */ |
| if (src_ty == Ity_I32 && dst_ty == Ity_I32) |
| return assignNew('V', mce, Ity_I32, unop(Iop_CmpwNEZ32, vbits)); |
| |
| if (src_ty == Ity_I64 && dst_ty == Ity_I64) |
| return assignNew('V', mce, Ity_I64, unop(Iop_CmpwNEZ64, vbits)); |
| |
| if (src_ty == Ity_I32 && dst_ty == Ity_I64) { |
| IRAtom* tmp = assignNew('V', mce, Ity_I32, unop(Iop_CmpwNEZ32, vbits)); |
| return assignNew('V', mce, Ity_I64, binop(Iop_32HLto64, tmp, tmp)); |
| } |
| |
| /* Else do it the slow way .. */ |
| tmp1 = NULL; |
| switch (src_ty) { |
| case Ity_I1: |
| tmp1 = vbits; |
| break; |
| case Ity_I8: |
| tmp1 = assignNew('V', mce, Ity_I1, unop(Iop_CmpNEZ8, vbits)); |
| break; |
| case Ity_I16: |
| tmp1 = assignNew('V', mce, Ity_I1, unop(Iop_CmpNEZ16, vbits)); |
| break; |
| case Ity_I32: |
| tmp1 = assignNew('V', mce, Ity_I1, unop(Iop_CmpNEZ32, vbits)); |
| break; |
| case Ity_I64: |
| tmp1 = assignNew('V', mce, Ity_I1, unop(Iop_CmpNEZ64, vbits)); |
| break; |
| case Ity_I128: { |
| /* Gah. Chop it in half, OR the halves together, and compare |
| that with zero. */ |
| IRAtom* tmp2 = assignNew('V', mce, Ity_I64, unop(Iop_128HIto64, vbits)); |
| IRAtom* tmp3 = assignNew('V', mce, Ity_I64, unop(Iop_128to64, vbits)); |
| IRAtom* tmp4 = assignNew('V', mce, Ity_I64, binop(Iop_Or64, tmp2, tmp3)); |
| tmp1 = assignNew('V', mce, Ity_I1, |
| unop(Iop_CmpNEZ64, tmp4)); |
| break; |
| } |
| default: |
| ppIRType(src_ty); |
| VG_(tool_panic)("mkPCastTo(1)"); |
| } |
| tl_assert(tmp1); |
| /* Now widen up to the dst type. */ |
| switch (dst_ty) { |
| case Ity_I1: |
| return tmp1; |
| case Ity_I8: |
| return assignNew('V', mce, Ity_I8, unop(Iop_1Sto8, tmp1)); |
| case Ity_I16: |
| return assignNew('V', mce, Ity_I16, unop(Iop_1Sto16, tmp1)); |
| case Ity_I32: |
| return assignNew('V', mce, Ity_I32, unop(Iop_1Sto32, tmp1)); |
| case Ity_I64: |
| return assignNew('V', mce, Ity_I64, unop(Iop_1Sto64, tmp1)); |
| case Ity_V128: |
| tmp1 = assignNew('V', mce, Ity_I64, unop(Iop_1Sto64, tmp1)); |
| tmp1 = assignNew('V', mce, Ity_V128, binop(Iop_64HLtoV128, tmp1, tmp1)); |
| return tmp1; |
| case Ity_I128: |
| tmp1 = assignNew('V', mce, Ity_I64, unop(Iop_1Sto64, tmp1)); |
| tmp1 = assignNew('V', mce, Ity_I128, binop(Iop_64HLto128, tmp1, tmp1)); |
| return tmp1; |
| default: |
| ppIRType(dst_ty); |
| VG_(tool_panic)("mkPCastTo(2)"); |
| } |
| } |
| |
| /* --------- Accurate interpretation of CmpEQ/CmpNE. --------- */ |
| /* |
| Normally, we can do CmpEQ/CmpNE by doing UifU on the arguments, and |
| PCasting to Ity_U1. However, sometimes it is necessary to be more |
| accurate. The insight is that the result is defined if two |
| corresponding bits can be found, one from each argument, so that |
| both bits are defined but are different -- that makes EQ say "No" |
| and NE say "Yes". Hence, we compute an improvement term and DifD |
| it onto the "normal" (UifU) result. |
| |
| The result is: |
| |
| PCastTo<1> ( |
| -- naive version |
| PCastTo<sz>( UifU<sz>(vxx, vyy) ) |
| |
| `DifD<sz>` |
| |
| -- improvement term |
| PCastTo<sz>( PCast<sz>( CmpEQ<sz> ( vec, 1...1 ) ) ) |
| ) |
| |
| where |
| vec contains 0 (defined) bits where the corresponding arg bits |
| are defined but different, and 1 bits otherwise. |
| |
| vec = Or<sz>( vxx, // 0 iff bit defined |
| vyy, // 0 iff bit defined |
| Not<sz>(Xor<sz>( xx, yy )) // 0 iff bits different |
| ) |
| |
| If any bit of vec is 0, the result is defined and so the |
| improvement term should produce 0...0, else it should produce |
| 1...1. |
| |
| Hence require for the improvement term: |
| |
| if vec == 1...1 then 1...1 else 0...0 |
| -> |
| PCast<sz>( CmpEQ<sz> ( vec, 1...1 ) ) |
| |
| This was extensively re-analysed and checked on 6 July 05. |
| */ |
| static IRAtom* expensiveCmpEQorNE ( MCEnv* mce, |
| IRType ty, |
| IRAtom* vxx, IRAtom* vyy, |
| IRAtom* xx, IRAtom* yy ) |
| { |
| IRAtom *naive, *vec, *improvement_term; |
| IRAtom *improved, *final_cast, *top; |
| IROp opDIFD, opUIFU, opXOR, opNOT, opCMP, opOR; |
| |
| tl_assert(isShadowAtom(mce,vxx)); |
| tl_assert(isShadowAtom(mce,vyy)); |
| tl_assert(isOriginalAtom(mce,xx)); |
| tl_assert(isOriginalAtom(mce,yy)); |
| tl_assert(sameKindedAtoms(vxx,xx)); |
| tl_assert(sameKindedAtoms(vyy,yy)); |
| |
| switch (ty) { |
| case Ity_I32: |
| opOR = Iop_Or32; |
| opDIFD = Iop_And32; |
| opUIFU = Iop_Or32; |
| opNOT = Iop_Not32; |
| opXOR = Iop_Xor32; |
| opCMP = Iop_CmpEQ32; |
| top = mkU32(0xFFFFFFFF); |
| break; |
| case Ity_I64: |
| opOR = Iop_Or64; |
| opDIFD = Iop_And64; |
| opUIFU = Iop_Or64; |
| opNOT = Iop_Not64; |
| opXOR = Iop_Xor64; |
| opCMP = Iop_CmpEQ64; |
| top = mkU64(0xFFFFFFFFFFFFFFFFULL); |
| break; |
| default: |
| VG_(tool_panic)("expensiveCmpEQorNE"); |
| } |
| |
| naive |
| = mkPCastTo(mce,ty, |
| assignNew('V', mce, ty, binop(opUIFU, vxx, vyy))); |
| |
| vec |
| = assignNew( |
| 'V', mce,ty, |
| binop( opOR, |
| assignNew('V', mce,ty, binop(opOR, vxx, vyy)), |
| assignNew( |
| 'V', mce,ty, |
| unop( opNOT, |
| assignNew('V', mce,ty, binop(opXOR, xx, yy)))))); |
| |
| improvement_term |
| = mkPCastTo( mce,ty, |
| assignNew('V', mce,Ity_I1, binop(opCMP, vec, top))); |
| |
| improved |
| = assignNew( 'V', mce,ty, binop(opDIFD, naive, improvement_term) ); |
| |
| final_cast |
| = mkPCastTo( mce, Ity_I1, improved ); |
| |
| return final_cast; |
| } |
| |
| |
| /* --------- Semi-accurate interpretation of CmpORD. --------- */ |
| |
| /* CmpORD32{S,U} does PowerPC-style 3-way comparisons: |
| |
| CmpORD32S(x,y) = 1<<3 if x <s y |
| = 1<<2 if x >s y |
| = 1<<1 if x == y |
| |
| and similarly the unsigned variant. The default interpretation is: |
| |
| CmpORD32{S,U}#(x,y,x#,y#) = PCast(x# `UifU` y#) |
| & (7<<1) |
| |
| The "& (7<<1)" reflects the fact that all result bits except 3,2,1 |
| are zero and therefore defined (viz, zero). |
| |
| Also deal with a special case better: |
| |
| CmpORD32S(x,0) |
| |
| Here, bit 3 (LT) of the result is a copy of the top bit of x and |
| will be defined even if the rest of x isn't. In which case we do: |
| |
| CmpORD32S#(x,x#,0,{impliedly 0}#) |
| = PCast(x#) & (3<<1) -- standard interp for GT#,EQ# |
| | (x# >>u 31) << 3 -- LT# = x#[31] |
| |
| Analogous handling for CmpORD64{S,U}. |
| */ |
| static Bool isZeroU32 ( IRAtom* e ) |
| { |
| return |
| toBool( e->tag == Iex_Const |
| && e->Iex.Const.con->tag == Ico_U32 |
| && e->Iex.Const.con->Ico.U32 == 0 ); |
| } |
| |
| static Bool isZeroU64 ( IRAtom* e ) |
| { |
| return |
| toBool( e->tag == Iex_Const |
| && e->Iex.Const.con->tag == Ico_U64 |
| && e->Iex.Const.con->Ico.U64 == 0 ); |
| } |
| |
| static IRAtom* doCmpORD ( MCEnv* mce, |
| IROp cmp_op, |
| IRAtom* xxhash, IRAtom* yyhash, |
| IRAtom* xx, IRAtom* yy ) |
| { |
| Bool m64 = cmp_op == Iop_CmpORD64S || cmp_op == Iop_CmpORD64U; |
| Bool syned = cmp_op == Iop_CmpORD64S || cmp_op == Iop_CmpORD32S; |
| IROp opOR = m64 ? Iop_Or64 : Iop_Or32; |
| IROp opAND = m64 ? Iop_And64 : Iop_And32; |
| IROp opSHL = m64 ? Iop_Shl64 : Iop_Shl32; |
| IROp opSHR = m64 ? Iop_Shr64 : Iop_Shr32; |
| IRType ty = m64 ? Ity_I64 : Ity_I32; |
| Int width = m64 ? 64 : 32; |
| |
| Bool (*isZero)(IRAtom*) = m64 ? isZeroU64 : isZeroU32; |
| |
| IRAtom* threeLeft1 = NULL; |
| IRAtom* sevenLeft1 = NULL; |
| |
| tl_assert(isShadowAtom(mce,xxhash)); |
| tl_assert(isShadowAtom(mce,yyhash)); |
| tl_assert(isOriginalAtom(mce,xx)); |
| tl_assert(isOriginalAtom(mce,yy)); |
| tl_assert(sameKindedAtoms(xxhash,xx)); |
| tl_assert(sameKindedAtoms(yyhash,yy)); |
| tl_assert(cmp_op == Iop_CmpORD32S || cmp_op == Iop_CmpORD32U |
| || cmp_op == Iop_CmpORD64S || cmp_op == Iop_CmpORD64U); |
| |
| if (0) { |
| ppIROp(cmp_op); VG_(printf)(" "); |
| ppIRExpr(xx); VG_(printf)(" "); ppIRExpr( yy ); VG_(printf)("\n"); |
| } |
| |
| if (syned && isZero(yy)) { |
| /* fancy interpretation */ |
| /* if yy is zero, then it must be fully defined (zero#). */ |
| tl_assert(isZero(yyhash)); |
| threeLeft1 = m64 ? mkU64(3<<1) : mkU32(3<<1); |
| return |
| binop( |
| opOR, |
| assignNew( |
| 'V', mce,ty, |
| binop( |
| opAND, |
| mkPCastTo(mce,ty, xxhash), |
| threeLeft1 |
| )), |
| assignNew( |
| 'V', mce,ty, |
| binop( |
| opSHL, |
| assignNew( |
| 'V', mce,ty, |
| binop(opSHR, xxhash, mkU8(width-1))), |
| mkU8(3) |
| )) |
| ); |
| } else { |
| /* standard interpretation */ |
| sevenLeft1 = m64 ? mkU64(7<<1) : mkU32(7<<1); |
| return |
| binop( |
| opAND, |
| mkPCastTo( mce,ty, |
| mkUifU(mce,ty, xxhash,yyhash)), |
| sevenLeft1 |
| ); |
| } |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Emit a test and complaint if something is undefined. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static IRAtom* schemeE ( MCEnv* mce, IRExpr* e ); /* fwds */ |
| |
| |
| /* Set the annotations on a dirty helper to indicate that the stack |
| pointer and instruction pointers might be read. This is the |
| behaviour of all 'emit-a-complaint' style functions we might |
| call. */ |
| |
| static void setHelperAnns ( MCEnv* mce, IRDirty* di ) { |
| di->nFxState = 2; |
| di->fxState[0].fx = Ifx_Read; |
| di->fxState[0].offset = mce->layout->offset_SP; |
| di->fxState[0].size = mce->layout->sizeof_SP; |
| di->fxState[1].fx = Ifx_Read; |
| di->fxState[1].offset = mce->layout->offset_IP; |
| di->fxState[1].size = mce->layout->sizeof_IP; |
| } |
| |
| |
| /* Check the supplied **original** atom for undefinedness, and emit a |
| complaint if so. Once that happens, mark it as defined. This is |
| possible because the atom is either a tmp or literal. If it's a |
| tmp, it will be shadowed by a tmp, and so we can set the shadow to |
| be defined. In fact as mentioned above, we will have to allocate a |
| new tmp to carry the new 'defined' shadow value, and update the |
| original->tmp mapping accordingly; we cannot simply assign a new |
| value to an existing shadow tmp as this breaks SSAness -- resulting |
| in the post-instrumentation sanity checker spluttering in disapproval. |
| */ |
| static void complainIfUndefined ( MCEnv* mce, IRAtom* atom ) |
| { |
| IRAtom* vatom; |
| IRType ty; |
| Int sz; |
| IRDirty* di; |
| IRAtom* cond; |
| IRAtom* origin; |
| void* fn; |
| HChar* nm; |
| IRExpr** args; |
| Int nargs; |
| |
| // Don't do V bit tests if we're not reporting undefined value errors. |
| if (MC_(clo_mc_level) == 1) |
| return; |
| |
| /* Since the original expression is atomic, there's no duplicated |
| work generated by making multiple V-expressions for it. So we |
| don't really care about the possibility that someone else may |
| also create a V-interpretion for it. */ |
| tl_assert(isOriginalAtom(mce, atom)); |
| vatom = expr2vbits( mce, atom ); |
| tl_assert(isShadowAtom(mce, vatom)); |
| tl_assert(sameKindedAtoms(atom, vatom)); |
| |
| ty = typeOfIRExpr(mce->bb->tyenv, vatom); |
| |
| /* sz is only used for constructing the error message */ |
| sz = ty==Ity_I1 ? 0 : sizeofIRType(ty); |
| |
| cond = mkPCastTo( mce, Ity_I1, vatom ); |
| /* cond will be 0 if all defined, and 1 if any not defined. */ |
| |
| /* Get the origin info for the value we are about to check. At |
| least, if we are doing origin tracking. If not, use a dummy |
| zero origin. */ |
| if (MC_(clo_mc_level) == 3) { |
| origin = schemeE( mce, atom ); |
| if (mce->hWordTy == Ity_I64) { |
| origin = assignNew( 'B', mce, Ity_I64, unop(Iop_32Uto64, origin) ); |
| } |
| } else { |
| origin = NULL; |
| } |
| |
| fn = NULL; |
| nm = NULL; |
| args = NULL; |
| nargs = -1; |
| |
| switch (sz) { |
| case 0: |
| if (origin) { |
| fn = &MC_(helperc_value_check0_fail_w_o); |
| nm = "MC_(helperc_value_check0_fail_w_o)"; |
| args = mkIRExprVec_1(origin); |
| nargs = 1; |
| } else { |
| fn = &MC_(helperc_value_check0_fail_no_o); |
| nm = "MC_(helperc_value_check0_fail_no_o)"; |
| args = mkIRExprVec_0(); |
| nargs = 0; |
| } |
| break; |
| case 1: |
| if (origin) { |
| fn = &MC_(helperc_value_check1_fail_w_o); |
| nm = "MC_(helperc_value_check1_fail_w_o)"; |
| args = mkIRExprVec_1(origin); |
| nargs = 1; |
| } else { |
| fn = &MC_(helperc_value_check1_fail_no_o); |
| nm = "MC_(helperc_value_check1_fail_no_o)"; |
| args = mkIRExprVec_0(); |
| nargs = 0; |
| } |
| break; |
| case 4: |
| if (origin) { |
| fn = &MC_(helperc_value_check4_fail_w_o); |
| nm = "MC_(helperc_value_check4_fail_w_o)"; |
| args = mkIRExprVec_1(origin); |
| nargs = 1; |
| } else { |
| fn = &MC_(helperc_value_check4_fail_no_o); |
| nm = "MC_(helperc_value_check4_fail_no_o)"; |
| args = mkIRExprVec_0(); |
| nargs = 0; |
| } |
| break; |
| case 8: |
| if (origin) { |
| fn = &MC_(helperc_value_check8_fail_w_o); |
| nm = "MC_(helperc_value_check8_fail_w_o)"; |
| args = mkIRExprVec_1(origin); |
| nargs = 1; |
| } else { |
| fn = &MC_(helperc_value_check8_fail_no_o); |
| nm = "MC_(helperc_value_check8_fail_no_o)"; |
| args = mkIRExprVec_0(); |
| nargs = 0; |
| } |
| break; |
| case 2: |
| case 16: |
| if (origin) { |
| fn = &MC_(helperc_value_checkN_fail_w_o); |
| nm = "MC_(helperc_value_checkN_fail_w_o)"; |
| args = mkIRExprVec_2( mkIRExpr_HWord( sz ), origin); |
| nargs = 2; |
| } else { |
| fn = &MC_(helperc_value_checkN_fail_no_o); |
| nm = "MC_(helperc_value_checkN_fail_no_o)"; |
| args = mkIRExprVec_1( mkIRExpr_HWord( sz ) ); |
| nargs = 1; |
| } |
| break; |
| default: |
| VG_(tool_panic)("unexpected szB"); |
| } |
| |
| tl_assert(fn); |
| tl_assert(nm); |
| tl_assert(args); |
| tl_assert(nargs >= 0 && nargs <= 2); |
| tl_assert( (MC_(clo_mc_level) == 3 && origin != NULL) |
| || (MC_(clo_mc_level) == 2 && origin == NULL) ); |
| |
| di = unsafeIRDirty_0_N( nargs/*regparms*/, nm, |
| VG_(fnptr_to_fnentry)( fn ), args ); |
| di->guard = cond; |
| setHelperAnns( mce, di ); |
| stmt( 'V', mce, IRStmt_Dirty(di)); |
| |
| /* Set the shadow tmp to be defined. First, update the |
| orig->shadow tmp mapping to reflect the fact that this shadow is |
| getting a new value. */ |
| tl_assert(isIRAtom(vatom)); |
| /* sameKindedAtoms ... */ |
| if (vatom->tag == Iex_RdTmp) { |
| tl_assert(atom->tag == Iex_RdTmp); |
| newShadowTmpV(mce, atom->Iex.RdTmp.tmp); |
| assign('V', mce, findShadowTmpV(mce, atom->Iex.RdTmp.tmp), |
| definedOfType(ty)); |
| } |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Shadowing PUTs/GETs, and indexed variants thereof ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Examine the always-defined sections declared in layout to see if |
| the (offset,size) section is within one. Note, is is an error to |
| partially fall into such a region: (offset,size) should either be |
| completely in such a region or completely not-in such a region. |
| */ |
| static Bool isAlwaysDefd ( MCEnv* mce, Int offset, Int size ) |
| { |
| Int minoffD, maxoffD, i; |
| Int minoff = offset; |
| Int maxoff = minoff + size - 1; |
| tl_assert((minoff & ~0xFFFF) == 0); |
| tl_assert((maxoff & ~0xFFFF) == 0); |
| |
| for (i = 0; i < mce->layout->n_alwaysDefd; i++) { |
| minoffD = mce->layout->alwaysDefd[i].offset; |
| maxoffD = minoffD + mce->layout->alwaysDefd[i].size - 1; |
| tl_assert((minoffD & ~0xFFFF) == 0); |
| tl_assert((maxoffD & ~0xFFFF) == 0); |
| |
| if (maxoff < minoffD || maxoffD < minoff) |
| continue; /* no overlap */ |
| if (minoff >= minoffD && maxoff <= maxoffD) |
| return True; /* completely contained in an always-defd section */ |
| |
| VG_(tool_panic)("memcheck:isAlwaysDefd:partial overlap"); |
| } |
| return False; /* could not find any containing section */ |
| } |
| |
| |
| /* Generate into bb suitable actions to shadow this Put. If the state |
| slice is marked 'always defined', do nothing. Otherwise, write the |
| supplied V bits to the shadow state. We can pass in either an |
| original atom or a V-atom, but not both. In the former case the |
| relevant V-bits are then generated from the original. |
| */ |
| static |
| void do_shadow_PUT ( MCEnv* mce, Int offset, |
| IRAtom* atom, IRAtom* vatom ) |
| { |
| IRType ty; |
| |
| // Don't do shadow PUTs if we're not doing undefined value checking. |
| // Their absence lets Vex's optimiser remove all the shadow computation |
| // that they depend on, which includes GETs of the shadow registers. |
| if (MC_(clo_mc_level) == 1) |
| return; |
| |
| if (atom) { |
| tl_assert(!vatom); |
| tl_assert(isOriginalAtom(mce, atom)); |
| vatom = expr2vbits( mce, atom ); |
| } else { |
| tl_assert(vatom); |
| tl_assert(isShadowAtom(mce, vatom)); |
| } |
| |
| ty = typeOfIRExpr(mce->bb->tyenv, vatom); |
| tl_assert(ty != Ity_I1); |
| if (isAlwaysDefd(mce, offset, sizeofIRType(ty))) { |
| /* later: no ... */ |
| /* emit code to emit a complaint if any of the vbits are 1. */ |
| /* complainIfUndefined(mce, atom); */ |
| } else { |
| /* Do a plain shadow Put. */ |
| stmt( 'V', mce, IRStmt_Put( offset + mce->layout->total_sizeB, vatom ) ); |
| } |
| } |
| |
| |
| /* Return an expression which contains the V bits corresponding to the |
| given GETI (passed in in pieces). |
| */ |
| static |
| void do_shadow_PUTI ( MCEnv* mce, |
| IRRegArray* descr, |
| IRAtom* ix, Int bias, IRAtom* atom ) |
| { |
| IRAtom* vatom; |
| IRType ty, tyS; |
| Int arrSize;; |
| |
| // Don't do shadow PUTIs if we're not doing undefined value checking. |
| // Their absence lets Vex's optimiser remove all the shadow computation |
| // that they depend on, which includes GETIs of the shadow registers. |
| if (MC_(clo_mc_level) == 1) |
| return; |
| |
| tl_assert(isOriginalAtom(mce,atom)); |
| vatom = expr2vbits( mce, atom ); |
| tl_assert(sameKindedAtoms(atom, vatom)); |
| ty = descr->elemTy; |
| tyS = shadowTypeV(ty); |
| arrSize = descr->nElems * sizeofIRType(ty); |
| tl_assert(ty != Ity_I1); |
| tl_assert(isOriginalAtom(mce,ix)); |
| complainIfUndefined(mce,ix); |
| if (isAlwaysDefd(mce, descr->base, arrSize)) { |
| /* later: no ... */ |
| /* emit code to emit a complaint if any of the vbits are 1. */ |
| /* complainIfUndefined(mce, atom); */ |
| } else { |
| /* Do a cloned version of the Put that refers to the shadow |
| area. */ |
| IRRegArray* new_descr |
| = mkIRRegArray( descr->base + mce->layout->total_sizeB, |
| tyS, descr->nElems); |
| stmt( 'V', mce, IRStmt_PutI( new_descr, ix, bias, vatom )); |
| } |
| } |
| |
| |
| /* Return an expression which contains the V bits corresponding to the |
| given GET (passed in in pieces). |
| */ |
| static |
| IRExpr* shadow_GET ( MCEnv* mce, Int offset, IRType ty ) |
| { |
| IRType tyS = shadowTypeV(ty); |
| tl_assert(ty != Ity_I1); |
| if (isAlwaysDefd(mce, offset, sizeofIRType(ty))) { |
| /* Always defined, return all zeroes of the relevant type */ |
| return definedOfType(tyS); |
| } else { |
| /* return a cloned version of the Get that refers to the shadow |
| area. */ |
| /* FIXME: this isn't an atom! */ |
| return IRExpr_Get( offset + mce->layout->total_sizeB, tyS ); |
| } |
| } |
| |
| |
| /* Return an expression which contains the V bits corresponding to the |
| given GETI (passed in in pieces). |
| */ |
| static |
| IRExpr* shadow_GETI ( MCEnv* mce, |
| IRRegArray* descr, IRAtom* ix, Int bias ) |
| { |
| IRType ty = descr->elemTy; |
| IRType tyS = shadowTypeV(ty); |
| Int arrSize = descr->nElems * sizeofIRType(ty); |
| tl_assert(ty != Ity_I1); |
| tl_assert(isOriginalAtom(mce,ix)); |
| complainIfUndefined(mce,ix); |
| if (isAlwaysDefd(mce, descr->base, arrSize)) { |
| /* Always defined, return all zeroes of the relevant type */ |
| return definedOfType(tyS); |
| } else { |
| /* return a cloned version of the Get that refers to the shadow |
| area. */ |
| IRRegArray* new_descr |
| = mkIRRegArray( descr->base + mce->layout->total_sizeB, |
| tyS, descr->nElems); |
| return IRExpr_GetI( new_descr, ix, bias ); |
| } |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Generating approximations for unknown operations, ---*/ |
| /*--- using lazy-propagate semantics ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Lazy propagation of undefinedness from two values, resulting in the |
| specified shadow type. |
| */ |
| static |
| IRAtom* mkLazy2 ( MCEnv* mce, IRType finalVty, IRAtom* va1, IRAtom* va2 ) |
| { |
| IRAtom* at; |
| IRType t1 = typeOfIRExpr(mce->bb->tyenv, va1); |
| IRType t2 = typeOfIRExpr(mce->bb->tyenv, va2); |
| tl_assert(isShadowAtom(mce,va1)); |
| tl_assert(isShadowAtom(mce,va2)); |
| |
| /* The general case is inefficient because PCast is an expensive |
| operation. Here are some special cases which use PCast only |
| once rather than twice. */ |
| |
| /* I64 x I64 -> I64 */ |
| if (t1 == Ity_I64 && t2 == Ity_I64 && finalVty == Ity_I64) { |
| if (0) VG_(printf)("mkLazy2: I64 x I64 -> I64\n"); |
| at = mkUifU(mce, Ity_I64, va1, va2); |
| at = mkPCastTo(mce, Ity_I64, at); |
| return at; |
| } |
| |
| /* I64 x I64 -> I32 */ |
| if (t1 == Ity_I64 && t2 == Ity_I64 && finalVty == Ity_I32) { |
| if (0) VG_(printf)("mkLazy2: I64 x I64 -> I32\n"); |
| at = mkUifU(mce, Ity_I64, va1, va2); |
| at = mkPCastTo(mce, Ity_I32, at); |
| return at; |
| } |
| |
| if (0) { |
| VG_(printf)("mkLazy2 "); |
| ppIRType(t1); |
| VG_(printf)("_"); |
| ppIRType(t2); |
| VG_(printf)("_"); |
| ppIRType(finalVty); |
| VG_(printf)("\n"); |
| } |
| |
| /* General case: force everything via 32-bit intermediaries. */ |
| at = mkPCastTo(mce, Ity_I32, va1); |
| at = mkUifU(mce, Ity_I32, at, mkPCastTo(mce, Ity_I32, va2)); |
| at = mkPCastTo(mce, finalVty, at); |
| return at; |
| } |
| |
| |
| /* 3-arg version of the above. */ |
| static |
| IRAtom* mkLazy3 ( MCEnv* mce, IRType finalVty, |
| IRAtom* va1, IRAtom* va2, IRAtom* va3 ) |
| { |
| IRAtom* at; |
| IRType t1 = typeOfIRExpr(mce->bb->tyenv, va1); |
| IRType t2 = typeOfIRExpr(mce->bb->tyenv, va2); |
| IRType t3 = typeOfIRExpr(mce->bb->tyenv, va3); |
| tl_assert(isShadowAtom(mce,va1)); |
| tl_assert(isShadowAtom(mce,va2)); |
| tl_assert(isShadowAtom(mce,va3)); |
| |
| /* The general case is inefficient because PCast is an expensive |
| operation. Here are some special cases which use PCast only |
| twice rather than three times. */ |
| |
| /* I32 x I64 x I64 -> I64 */ |
| /* Standard FP idiom: rm x FParg1 x FParg2 -> FPresult */ |
| if (t1 == Ity_I32 && t2 == Ity_I64 && t3 == Ity_I64 |
| && finalVty == Ity_I64) { |
| if (0) VG_(printf)("mkLazy3: I32 x I64 x I64 -> I64\n"); |
| /* Widen 1st arg to I64. Since 1st arg is typically a rounding |
| mode indication which is fully defined, this should get |
| folded out later. */ |
| at = mkPCastTo(mce, Ity_I64, va1); |
| /* Now fold in 2nd and 3rd args. */ |
| at = mkUifU(mce, Ity_I64, at, va2); |
| at = mkUifU(mce, Ity_I64, at, va3); |
| /* and PCast once again. */ |
| at = mkPCastTo(mce, Ity_I64, at); |
| return at; |
| } |
| |
| /* I32 x I64 x I64 -> I32 */ |
| if (t1 == Ity_I32 && t2 == Ity_I64 && t3 == Ity_I64 |
| && finalVty == Ity_I32) { |
| if (0) VG_(printf)("mkLazy3: I32 x I64 x I64 -> I64\n"); |
| at = mkPCastTo(mce, Ity_I64, va1); |
| at = mkUifU(mce, Ity_I64, at, va2); |
| at = mkUifU(mce, Ity_I64, at, va3); |
| at = mkPCastTo(mce, Ity_I32, at); |
| return at; |
| } |
| |
| if (1) { |
| VG_(printf)("mkLazy3: "); |
| ppIRType(t1); |
| VG_(printf)(" x "); |
| ppIRType(t2); |
| VG_(printf)(" x "); |
| ppIRType(t3); |
| VG_(printf)(" -> "); |
| ppIRType(finalVty); |
| VG_(printf)("\n"); |
| } |
| |
| tl_assert(0); |
| /* General case: force everything via 32-bit intermediaries. */ |
| /* |
| at = mkPCastTo(mce, Ity_I32, va1); |
| at = mkUifU(mce, Ity_I32, at, mkPCastTo(mce, Ity_I32, va2)); |
| at = mkUifU(mce, Ity_I32, at, mkPCastTo(mce, Ity_I32, va3)); |
| at = mkPCastTo(mce, finalVty, at); |
| return at; |
| */ |
| } |
| |
| |
| /* 4-arg version of the above. */ |
| static |
| IRAtom* mkLazy4 ( MCEnv* mce, IRType finalVty, |
| IRAtom* va1, IRAtom* va2, IRAtom* va3, IRAtom* va4 ) |
| { |
| IRAtom* at; |
| IRType t1 = typeOfIRExpr(mce->bb->tyenv, va1); |
| IRType t2 = typeOfIRExpr(mce->bb->tyenv, va2); |
| IRType t3 = typeOfIRExpr(mce->bb->tyenv, va3); |
| IRType t4 = typeOfIRExpr(mce->bb->tyenv, va4); |
| tl_assert(isShadowAtom(mce,va1)); |
| tl_assert(isShadowAtom(mce,va2)); |
| tl_assert(isShadowAtom(mce,va3)); |
| tl_assert(isShadowAtom(mce,va4)); |
| |
| /* The general case is inefficient because PCast is an expensive |
| operation. Here are some special cases which use PCast only |
| twice rather than three times. */ |
| |
| /* I32 x I64 x I64 x I64 -> I64 */ |
| /* Standard FP idiom: rm x FParg1 x FParg2 x FParg3 -> FPresult */ |
| if (t1 == Ity_I32 && t2 == Ity_I64 && t3 == Ity_I64 && t4 == Ity_I64 |
| && finalVty == Ity_I64) { |
| if (0) VG_(printf)("mkLazy4: I32 x I64 x I64 x I64 -> I64\n"); |
| /* Widen 1st arg to I64. Since 1st arg is typically a rounding |
| mode indication which is fully defined, this should get |
| folded out later. */ |
| at = mkPCastTo(mce, Ity_I64, va1); |
| /* Now fold in 2nd, 3rd, 4th args. */ |
| at = mkUifU(mce, Ity_I64, at, va2); |
| at = mkUifU(mce, Ity_I64, at, va3); |
| at = mkUifU(mce, Ity_I64, at, va4); |
| /* and PCast once again. */ |
| at = mkPCastTo(mce, Ity_I64, at); |
| return at; |
| } |
| |
| if (1) { |
| VG_(printf)("mkLazy4: "); |
| ppIRType(t1); |
| VG_(printf)(" x "); |
| ppIRType(t2); |
| VG_(printf)(" x "); |
| ppIRType(t3); |
| VG_(printf)(" x "); |
| ppIRType(t4); |
| VG_(printf)(" -> "); |
| ppIRType(finalVty); |
| VG_(printf)("\n"); |
| } |
| |
| tl_assert(0); |
| } |
| |
| |
| /* Do the lazy propagation game from a null-terminated vector of |
| atoms. This is presumably the arguments to a helper call, so the |
| IRCallee info is also supplied in order that we can know which |
| arguments should be ignored (via the .mcx_mask field). |
| */ |
| static |
| IRAtom* mkLazyN ( MCEnv* mce, |
| IRAtom** exprvec, IRType finalVtype, IRCallee* cee ) |
| { |
| Int i; |
| IRAtom* here; |
| IRAtom* curr; |
| IRType mergeTy; |
| IRType mergeTy64 = True; |
| |
| /* Decide on the type of the merge intermediary. If all relevant |
| args are I64, then it's I64. In all other circumstances, use |
| I32. */ |
| for (i = 0; exprvec[i]; i++) { |
| tl_assert(i < 32); |
| tl_assert(isOriginalAtom(mce, exprvec[i])); |
| if (cee->mcx_mask & (1<<i)) |
| continue; |
| if (typeOfIRExpr(mce->bb->tyenv, exprvec[i]) != Ity_I64) |
| mergeTy64 = False; |
| } |
| |
| mergeTy = mergeTy64 ? Ity_I64 : Ity_I32; |
| curr = definedOfType(mergeTy); |
| |
| for (i = 0; exprvec[i]; i++) { |
| tl_assert(i < 32); |
| tl_assert(isOriginalAtom(mce, exprvec[i])); |
| /* Only take notice of this arg if the callee's mc-exclusion |
| mask does not say it is to be excluded. */ |
| if (cee->mcx_mask & (1<<i)) { |
| /* the arg is to be excluded from definedness checking. Do |
| nothing. */ |
| if (0) VG_(printf)("excluding %s(%d)\n", cee->name, i); |
| } else { |
| /* calculate the arg's definedness, and pessimistically merge |
| it in. */ |
| here = mkPCastTo( mce, mergeTy, expr2vbits(mce, exprvec[i]) ); |
| curr = mergeTy64 |
| ? mkUifU64(mce, here, curr) |
| : mkUifU32(mce, here, curr); |
| } |
| } |
| return mkPCastTo(mce, finalVtype, curr ); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Generating expensive sequences for exact carry-chain ---*/ |
| /*--- propagation in add/sub and related operations. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static |
| IRAtom* expensiveAddSub ( MCEnv* mce, |
| Bool add, |
| IRType ty, |
| IRAtom* qaa, IRAtom* qbb, |
| IRAtom* aa, IRAtom* bb ) |
| { |
| IRAtom *a_min, *b_min, *a_max, *b_max; |
| IROp opAND, opOR, opXOR, opNOT, opADD, opSUB; |
| |
| tl_assert(isShadowAtom(mce,qaa)); |
| tl_assert(isShadowAtom(mce,qbb)); |
| tl_assert(isOriginalAtom(mce,aa)); |
| tl_assert(isOriginalAtom(mce,bb)); |
| tl_assert(sameKindedAtoms(qaa,aa)); |
| tl_assert(sameKindedAtoms(qbb,bb)); |
| |
| switch (ty) { |
| case Ity_I32: |
| opAND = Iop_And32; |
| opOR = Iop_Or32; |
| opXOR = Iop_Xor32; |
| opNOT = Iop_Not32; |
| opADD = Iop_Add32; |
| opSUB = Iop_Sub32; |
| break; |
| case Ity_I64: |
| opAND = Iop_And64; |
| opOR = Iop_Or64; |
| opXOR = Iop_Xor64; |
| opNOT = Iop_Not64; |
| opADD = Iop_Add64; |
| opSUB = Iop_Sub64; |
| break; |
| default: |
| VG_(tool_panic)("expensiveAddSub"); |
| } |
| |
| // a_min = aa & ~qaa |
| a_min = assignNew('V', mce,ty, |
| binop(opAND, aa, |
| assignNew('V', mce,ty, unop(opNOT, qaa)))); |
| |
| // b_min = bb & ~qbb |
| b_min = assignNew('V', mce,ty, |
| binop(opAND, bb, |
| assignNew('V', mce,ty, unop(opNOT, qbb)))); |
| |
| // a_max = aa | qaa |
| a_max = assignNew('V', mce,ty, binop(opOR, aa, qaa)); |
| |
| // b_max = bb | qbb |
| b_max = assignNew('V', mce,ty, binop(opOR, bb, qbb)); |
| |
| if (add) { |
| // result = (qaa | qbb) | ((a_min + b_min) ^ (a_max + b_max)) |
| return |
| assignNew('V', mce,ty, |
| binop( opOR, |
| assignNew('V', mce,ty, binop(opOR, qaa, qbb)), |
| assignNew('V', mce,ty, |
| binop( opXOR, |
| assignNew('V', mce,ty, binop(opADD, a_min, b_min)), |
| assignNew('V', mce,ty, binop(opADD, a_max, b_max)) |
| ) |
| ) |
| ) |
| ); |
| } else { |
| // result = (qaa | qbb) | ((a_min - b_max) ^ (a_max + b_min)) |
| return |
| assignNew('V', mce,ty, |
| binop( opOR, |
| assignNew('V', mce,ty, binop(opOR, qaa, qbb)), |
| assignNew('V', mce,ty, |
| binop( opXOR, |
| assignNew('V', mce,ty, binop(opSUB, a_min, b_max)), |
| assignNew('V', mce,ty, binop(opSUB, a_max, b_min)) |
| ) |
| ) |
| ) |
| ); |
| } |
| |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Scalar shifts. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Produce an interpretation for (aa << bb) (or >>s, >>u). The basic |
| idea is to shift the definedness bits by the original shift amount. |
| This introduces 0s ("defined") in new positions for left shifts and |
| unsigned right shifts, and copies the top definedness bit for |
| signed right shifts. So, conveniently, applying the original shift |
| operator to the definedness bits for the left arg is exactly the |
| right thing to do: |
| |
| (qaa << bb) |
| |
| However if the shift amount is undefined then the whole result |
| is undefined. Hence need: |
| |
| (qaa << bb) `UifU` PCast(qbb) |
| |
| If the shift amount bb is a literal than qbb will say 'all defined' |
| and the UifU and PCast will get folded out by post-instrumentation |
| optimisation. |
| */ |
| static IRAtom* scalarShift ( MCEnv* mce, |
| IRType ty, |
| IROp original_op, |
| IRAtom* qaa, IRAtom* qbb, |
| IRAtom* aa, IRAtom* bb ) |
| { |
| tl_assert(isShadowAtom(mce,qaa)); |
| tl_assert(isShadowAtom(mce,qbb)); |
| tl_assert(isOriginalAtom(mce,aa)); |
| tl_assert(isOriginalAtom(mce,bb)); |
| tl_assert(sameKindedAtoms(qaa,aa)); |
| tl_assert(sameKindedAtoms(qbb,bb)); |
| return |
| assignNew( |
| 'V', mce, ty, |
| mkUifU( mce, ty, |
| assignNew('V', mce, ty, binop(original_op, qaa, bb)), |
| mkPCastTo(mce, ty, qbb) |
| ) |
| ); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Helpers for dealing with vector primops. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Vector pessimisation -- pessimise within each lane individually. */ |
| |
| static IRAtom* mkPCast8x16 ( MCEnv* mce, IRAtom* at ) |
| { |
| return assignNew('V', mce, Ity_V128, unop(Iop_CmpNEZ8x16, at)); |
| } |
| |
| static IRAtom* mkPCast16x8 ( MCEnv* mce, IRAtom* at ) |
| { |
| return assignNew('V', mce, Ity_V128, unop(Iop_CmpNEZ16x8, at)); |
| } |
| |
| static IRAtom* mkPCast32x4 ( MCEnv* mce, IRAtom* at ) |
| { |
| return assignNew('V', mce, Ity_V128, unop(Iop_CmpNEZ32x4, at)); |
| } |
| |
| static IRAtom* mkPCast64x2 ( MCEnv* mce, IRAtom* at ) |
| { |
| return assignNew('V', mce, Ity_V128, unop(Iop_CmpNEZ64x2, at)); |
| } |
| |
| static IRAtom* mkPCast32x2 ( MCEnv* mce, IRAtom* at ) |
| { |
| return assignNew('V', mce, Ity_I64, unop(Iop_CmpNEZ32x2, at)); |
| } |
| |
| static IRAtom* mkPCast16x4 ( MCEnv* mce, IRAtom* at ) |
| { |
| return assignNew('V', mce, Ity_I64, unop(Iop_CmpNEZ16x4, at)); |
| } |
| |
| static IRAtom* mkPCast8x8 ( MCEnv* mce, IRAtom* at ) |
| { |
| return assignNew('V', mce, Ity_I64, unop(Iop_CmpNEZ8x8, at)); |
| } |
| |
| |
| /* Here's a simple scheme capable of handling ops derived from SSE1 |
| code and while only generating ops that can be efficiently |
| implemented in SSE1. */ |
| |
| /* All-lanes versions are straightforward: |
| |
| binary32Fx4(x,y) ==> PCast32x4(UifUV128(x#,y#)) |
| |
| unary32Fx4(x,y) ==> PCast32x4(x#) |
| |
| Lowest-lane-only versions are more complex: |
| |
| binary32F0x4(x,y) ==> SetV128lo32( |
| x#, |
| PCast32(V128to32(UifUV128(x#,y#))) |
| ) |
| |
| This is perhaps not so obvious. In particular, it's faster to |
| do a V128-bit UifU and then take the bottom 32 bits than the more |
| obvious scheme of taking the bottom 32 bits of each operand |
| and doing a 32-bit UifU. Basically since UifU is fast and |
| chopping lanes off vector values is slow. |
| |
| Finally: |
| |
| unary32F0x4(x) ==> SetV128lo32( |
| x#, |
| PCast32(V128to32(x#)) |
| ) |
| |
| Where: |
| |
| PCast32(v#) = 1Sto32(CmpNE32(v#,0)) |
| PCast32x4(v#) = CmpNEZ32x4(v#) |
| */ |
| |
| static |
| IRAtom* binary32Fx4 ( MCEnv* mce, IRAtom* vatomX, IRAtom* vatomY ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| tl_assert(isShadowAtom(mce, vatomY)); |
| at = mkUifUV128(mce, vatomX, vatomY); |
| at = assignNew('V', mce, Ity_V128, mkPCast32x4(mce, at)); |
| return at; |
| } |
| |
| static |
| IRAtom* unary32Fx4 ( MCEnv* mce, IRAtom* vatomX ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| at = assignNew('V', mce, Ity_V128, mkPCast32x4(mce, vatomX)); |
| return at; |
| } |
| |
| static |
| IRAtom* binary32F0x4 ( MCEnv* mce, IRAtom* vatomX, IRAtom* vatomY ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| tl_assert(isShadowAtom(mce, vatomY)); |
| at = mkUifUV128(mce, vatomX, vatomY); |
| at = assignNew('V', mce, Ity_I32, unop(Iop_V128to32, at)); |
| at = mkPCastTo(mce, Ity_I32, at); |
| at = assignNew('V', mce, Ity_V128, binop(Iop_SetV128lo32, vatomX, at)); |
| return at; |
| } |
| |
| static |
| IRAtom* unary32F0x4 ( MCEnv* mce, IRAtom* vatomX ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| at = assignNew('V', mce, Ity_I32, unop(Iop_V128to32, vatomX)); |
| at = mkPCastTo(mce, Ity_I32, at); |
| at = assignNew('V', mce, Ity_V128, binop(Iop_SetV128lo32, vatomX, at)); |
| return at; |
| } |
| |
| /* --- ... and ... 64Fx2 versions of the same ... --- */ |
| |
| static |
| IRAtom* binary64Fx2 ( MCEnv* mce, IRAtom* vatomX, IRAtom* vatomY ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| tl_assert(isShadowAtom(mce, vatomY)); |
| at = mkUifUV128(mce, vatomX, vatomY); |
| at = assignNew('V', mce, Ity_V128, mkPCast64x2(mce, at)); |
| return at; |
| } |
| |
| static |
| IRAtom* unary64Fx2 ( MCEnv* mce, IRAtom* vatomX ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| at = assignNew('V', mce, Ity_V128, mkPCast64x2(mce, vatomX)); |
| return at; |
| } |
| |
| static |
| IRAtom* binary64F0x2 ( MCEnv* mce, IRAtom* vatomX, IRAtom* vatomY ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| tl_assert(isShadowAtom(mce, vatomY)); |
| at = mkUifUV128(mce, vatomX, vatomY); |
| at = assignNew('V', mce, Ity_I64, unop(Iop_V128to64, at)); |
| at = mkPCastTo(mce, Ity_I64, at); |
| at = assignNew('V', mce, Ity_V128, binop(Iop_SetV128lo64, vatomX, at)); |
| return at; |
| } |
| |
| static |
| IRAtom* unary64F0x2 ( MCEnv* mce, IRAtom* vatomX ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| at = assignNew('V', mce, Ity_I64, unop(Iop_V128to64, vatomX)); |
| at = mkPCastTo(mce, Ity_I64, at); |
| at = assignNew('V', mce, Ity_V128, binop(Iop_SetV128lo64, vatomX, at)); |
| return at; |
| } |
| |
| /* --- --- Vector saturated narrowing --- --- */ |
| |
| /* This is quite subtle. What to do is simple: |
| |
| Let the original narrowing op be QNarrowW{S,U}xN. Produce: |
| |
| the-narrowing-op( PCastWxN(vatom1), PCastWxN(vatom2)) |
| |
| Why this is right is not so simple. Consider a lane in the args, |
| vatom1 or 2, doesn't matter. |
| |
| After the PCast, that lane is all 0s (defined) or all |
| 1s(undefined). |
| |
| Both signed and unsigned saturating narrowing of all 0s produces |
| all 0s, which is what we want. |
| |
| The all-1s case is more complex. Unsigned narrowing interprets an |
| all-1s input as the largest unsigned integer, and so produces all |
| 1s as a result since that is the largest unsigned value at the |
| smaller width. |
| |
| Signed narrowing interprets all 1s as -1. Fortunately, -1 narrows |
| to -1, so we still wind up with all 1s at the smaller width. |
| |
| So: In short, pessimise the args, then apply the original narrowing |
| op. |
| */ |
| static |
| IRAtom* vectorNarrowV128 ( MCEnv* mce, IROp narrow_op, |
| IRAtom* vatom1, IRAtom* vatom2) |
| { |
| IRAtom *at1, *at2, *at3; |
| IRAtom* (*pcast)( MCEnv*, IRAtom* ); |
| switch (narrow_op) { |
| case Iop_QNarrow32Sx4: pcast = mkPCast32x4; break; |
| case Iop_QNarrow32Ux4: pcast = mkPCast32x4; break; |
| case Iop_QNarrow16Sx8: pcast = mkPCast16x8; break; |
| case Iop_QNarrow16Ux8: pcast = mkPCast16x8; break; |
| default: VG_(tool_panic)("vectorNarrowV128"); |
| } |
| tl_assert(isShadowAtom(mce,vatom1)); |
| tl_assert(isShadowAtom(mce,vatom2)); |
| at1 = assignNew('V', mce, Ity_V128, pcast(mce, vatom1)); |
| at2 = assignNew('V', mce, Ity_V128, pcast(mce, vatom2)); |
| at3 = assignNew('V', mce, Ity_V128, binop(narrow_op, at1, at2)); |
| return at3; |
| } |
| |
| static |
| IRAtom* vectorNarrow64 ( MCEnv* mce, IROp narrow_op, |
| IRAtom* vatom1, IRAtom* vatom2) |
| { |
| IRAtom *at1, *at2, *at3; |
| IRAtom* (*pcast)( MCEnv*, IRAtom* ); |
| switch (narrow_op) { |
| case Iop_QNarrow32Sx2: pcast = mkPCast32x2; break; |
| case Iop_QNarrow16Sx4: pcast = mkPCast16x4; break; |
| case Iop_QNarrow16Ux4: pcast = mkPCast16x4; break; |
| default: VG_(tool_panic)("vectorNarrow64"); |
| } |
| tl_assert(isShadowAtom(mce,vatom1)); |
| tl_assert(isShadowAtom(mce,vatom2)); |
| at1 = assignNew('V', mce, Ity_I64, pcast(mce, vatom1)); |
| at2 = assignNew('V', mce, Ity_I64, pcast(mce, vatom2)); |
| at3 = assignNew('V', mce, Ity_I64, binop(narrow_op, at1, at2)); |
| return at3; |
| } |
| |
| |
| /* --- --- Vector integer arithmetic --- --- */ |
| |
| /* Simple ... UifU the args and per-lane pessimise the results. */ |
| |
| /* --- V128-bit versions --- */ |
| |
| static |
| IRAtom* binary8Ix16 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) |
| { |
| IRAtom* at; |
| at = mkUifUV128(mce, vatom1, vatom2); |
| at = mkPCast8x16(mce, at); |
| return at; |
| } |
| |
| static |
| IRAtom* binary16Ix8 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) |
| { |
| IRAtom* at; |
| at = mkUifUV128(mce, vatom1, vatom2); |
| at = mkPCast16x8(mce, at); |
| return at; |
| } |
| |
| static |
| IRAtom* binary32Ix4 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) |
| { |
| IRAtom* at; |
| at = mkUifUV128(mce, vatom1, vatom2); |
| at = mkPCast32x4(mce, at); |
| return at; |
| } |
| |
| static |
| IRAtom* binary64Ix2 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) |
| { |
| IRAtom* at; |
| at = mkUifUV128(mce, vatom1, vatom2); |
| at = mkPCast64x2(mce, at); |
| return at; |
| } |
| |
| /* --- 64-bit versions --- */ |
| |
| static |
| IRAtom* binary8Ix8 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) |
| { |
| IRAtom* at; |
| at = mkUifU64(mce, vatom1, vatom2); |
| at = mkPCast8x8(mce, at); |
| return at; |
| } |
| |
| static |
| IRAtom* binary16Ix4 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) |
| { |
| IRAtom* at; |
| at = mkUifU64(mce, vatom1, vatom2); |
| at = mkPCast16x4(mce, at); |
| return at; |
| } |
| |
| static |
| IRAtom* binary32Ix2 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) |
| { |
| IRAtom* at; |
| at = mkUifU64(mce, vatom1, vatom2); |
| at = mkPCast32x2(mce, at); |
| return at; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Generate shadow values from all kinds of IRExprs. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static |
| IRAtom* expr2vbits_Qop ( MCEnv* mce, |
| IROp op, |
| IRAtom* atom1, IRAtom* atom2, |
| IRAtom* atom3, IRAtom* atom4 ) |
| { |
| IRAtom* vatom1 = expr2vbits( mce, atom1 ); |
| IRAtom* vatom2 = expr2vbits( mce, atom2 ); |
| IRAtom* vatom3 = expr2vbits( mce, atom3 ); |
| IRAtom* vatom4 = expr2vbits( mce, atom4 ); |
| |
| tl_assert(isOriginalAtom(mce,atom1)); |
| tl_assert(isOriginalAtom(mce,atom2)); |
| tl_assert(isOriginalAtom(mce,atom3)); |
| tl_assert(isOriginalAtom(mce,atom4)); |
| tl_assert(isShadowAtom(mce,vatom1)); |
| tl_assert(isShadowAtom(mce,vatom2)); |
| tl_assert(isShadowAtom(mce,vatom3)); |
| tl_assert(isShadowAtom(mce,vatom4)); |
| tl_assert(sameKindedAtoms(atom1,vatom1)); |
| tl_assert(sameKindedAtoms(atom2,vatom2)); |
| tl_assert(sameKindedAtoms(atom3,vatom3)); |
| tl_assert(sameKindedAtoms(atom4,vatom4)); |
| switch (op) { |
| case Iop_MAddF64: |
| case Iop_MAddF64r32: |
| case Iop_MSubF64: |
| case Iop_MSubF64r32: |
| /* I32(rm) x F64 x F64 x F64 -> F64 */ |
| return mkLazy4(mce, Ity_I64, vatom1, vatom2, vatom3, vatom4); |
| default: |
| ppIROp(op); |
| VG_(tool_panic)("memcheck:expr2vbits_Qop"); |
| } |
| } |
| |
| |
| static |
| IRAtom* expr2vbits_Triop ( MCEnv* mce, |
| IROp op, |
| IRAtom* atom1, IRAtom* atom2, IRAtom* atom3 ) |
| { |
| IRAtom* vatom1 = expr2vbits( mce, atom1 ); |
| IRAtom* vatom2 = expr2vbits( mce, atom2 ); |
| IRAtom* vatom3 = expr2vbits( mce, atom3 ); |
| |
| tl_assert(isOriginalAtom(mce,atom1)); |
| tl_assert(isOriginalAtom(mce,atom2)); |
| tl_assert(isOriginalAtom(mce,atom3)); |
| tl_assert(isShadowAtom(mce,vatom1)); |
| tl_assert(isShadowAtom(mce,vatom2)); |
| tl_assert(isShadowAtom(mce,vatom3)); |
| tl_assert(sameKindedAtoms(atom1,vatom1)); |
| tl_assert(sameKindedAtoms(atom2,vatom2)); |
| tl_assert(sameKindedAtoms(atom3,vatom3)); |
| switch (op) { |
| case Iop_AddF64: |
| case Iop_AddF64r32: |
| case Iop_SubF64: |
| case Iop_SubF64r32: |
| case Iop_MulF64: |
| case Iop_MulF64r32: |
| case Iop_DivF64: |
| case Iop_DivF64r32: |
| case Iop_ScaleF64: |
| case Iop_Yl2xF64: |
| case Iop_Yl2xp1F64: |
| case Iop_AtanF64: |
| case Iop_PRemF64: |
| case Iop_PRem1F64: |
| /* I32(rm) x F64 x F64 -> F64 */ |
| return mkLazy3(mce, Ity_I64, vatom1, vatom2, vatom3); |
| case Iop_PRemC3210F64: |
| case Iop_PRem1C3210F64: |
| /* I32(rm) x F64 x F64 -> I32 */ |
| return mkLazy3(mce, Ity_I32, vatom1, vatom2, vatom3); |
| default: |
| ppIROp(op); |
| VG_(tool_panic)("memcheck:expr2vbits_Triop"); |
| } |
| } |
| |
| |
| static |
| IRAtom* expr2vbits_Binop ( MCEnv* mce, |
| IROp op, |
| IRAtom* atom1, IRAtom* atom2 ) |
| { |
| IRType and_or_ty; |
| IRAtom* (*uifu) (MCEnv*, IRAtom*, IRAtom*); |
| IRAtom* (*difd) (MCEnv*, IRAtom*, IRAtom*); |
| IRAtom* (*improve) (MCEnv*, IRAtom*, IRAtom*); |
| |
| IRAtom* vatom1 = expr2vbits( mce, atom1 ); |
| IRAtom* vatom2 = expr2vbits( mce, atom2 ); |
| |
| tl_assert(isOriginalAtom(mce,atom1)); |
| tl_assert(isOriginalAtom(mce,atom2)); |
| tl_assert(isShadowAtom(mce,vatom1)); |
| tl_assert(isShadowAtom(mce,vatom2)); |
| tl_assert(sameKindedAtoms(atom1,vatom1)); |
| tl_assert(sameKindedAtoms(atom2,vatom2)); |
| switch (op) { |
| |
| /* 64-bit SIMD */ |
| |
| case Iop_ShrN16x4: |
| case Iop_ShrN32x2: |
| case Iop_SarN8x8: |
| case Iop_SarN16x4: |
| case Iop_SarN32x2: |
| case Iop_ShlN16x4: |
| case Iop_ShlN32x2: |
| case Iop_ShlN8x8: |
| /* Same scheme as with all other shifts. */ |
| complainIfUndefined(mce, atom2); |
| return assignNew('V', mce, Ity_I64, binop(op, vatom1, atom2)); |
| |
| case Iop_QNarrow32Sx2: |
| case Iop_QNarrow16Sx4: |
| case Iop_QNarrow16Ux4: |
| return vectorNarrow64(mce, op, vatom1, vatom2); |
| |
| case Iop_Min8Ux8: |
| case Iop_Max8Ux8: |
| case Iop_Avg8Ux8: |
| case Iop_QSub8Sx8: |
| case Iop_QSub8Ux8: |
| case Iop_Sub8x8: |
| case Iop_CmpGT8Sx8: |
| case Iop_CmpEQ8x8: |
| case Iop_QAdd8Sx8: |
| case Iop_QAdd8Ux8: |
| case Iop_Add8x8: |
| return binary8Ix8(mce, vatom1, vatom2); |
| |
| case Iop_Min16Sx4: |
| case Iop_Max16Sx4: |
| case Iop_Avg16Ux4: |
| case Iop_QSub16Ux4: |
| case Iop_QSub16Sx4: |
| case Iop_Sub16x4: |
| case Iop_Mul16x4: |
| case Iop_MulHi16Sx4: |
| case Iop_MulHi16Ux4: |
| case Iop_CmpGT16Sx4: |
| case Iop_CmpEQ16x4: |
| case Iop_QAdd16Sx4: |
| case Iop_QAdd16Ux4: |
| case Iop_Add16x4: |
| return binary16Ix4(mce, vatom1, vatom2); |
| |
| case Iop_Sub32x2: |
| case Iop_Mul32x2: |
| case Iop_CmpGT32Sx2: |
| case Iop_CmpEQ32x2: |
| case Iop_Add32x2: |
| return binary32Ix2(mce, vatom1, vatom2); |
| |
| /* 64-bit data-steering */ |
| case Iop_InterleaveLO32x2: |
| case Iop_InterleaveLO16x4: |
| case Iop_InterleaveLO8x8: |
| case Iop_InterleaveHI32x2: |
| case Iop_InterleaveHI16x4: |
| case Iop_InterleaveHI8x8: |
| case Iop_CatOddLanes16x4: |
| case Iop_CatEvenLanes16x4: |
| return assignNew('V', mce, Ity_I64, binop(op, vatom1, vatom2)); |
| |
| /* Perm8x8: rearrange values in left arg using steering values |
| from right arg. So rearrange the vbits in the same way but |
| pessimise wrt steering values. */ |
| case Iop_Perm8x8: |
| return mkUifU64( |
| mce, |
| assignNew('V', mce, Ity_I64, binop(op, vatom1, atom2)), |
| mkPCast8x8(mce, vatom2) |
| ); |
| |
| /* V128-bit SIMD */ |
| |
| case Iop_ShrN16x8: |
| case Iop_ShrN32x4: |
| case Iop_ShrN64x2: |
| case Iop_SarN16x8: |
| case Iop_SarN32x4: |
| case Iop_ShlN16x8: |
| case Iop_ShlN32x4: |
| case Iop_ShlN64x2: |
| case Iop_ShlN8x16: |
| case Iop_SarN8x16: |
| /* Same scheme as with all other shifts. Note: 22 Oct 05: |
| this is wrong now, scalar shifts are done properly lazily. |
| Vector shifts should be fixed too. */ |
| complainIfUndefined(mce, atom2); |
| return assignNew('V', mce, Ity_V128, binop(op, vatom1, atom2)); |
| |
| /* V x V shifts/rotates are done using the standard lazy scheme. */ |
| case Iop_Shl8x16: |
| case Iop_Shr8x16: |
| case Iop_Sar8x16: |
| case Iop_Rol8x16: |
| return mkUifUV128(mce, |
| assignNew('V', mce, Ity_V128, binop(op, vatom1, atom2)), |
| mkPCast8x16(mce,vatom2) |
| ); |
| |
| case Iop_Shl16x8: |
| case Iop_Shr16x8: |
| case Iop_Sar16x8: |
| case Iop_Rol16x8: |
| return mkUifUV128(mce, |
| assignNew('V', mce, Ity_V128, binop(op, vatom1, atom2)), |
| mkPCast16x8(mce,vatom2) |
| ); |
| |
| case Iop_Shl32x4: |
| case Iop_Shr32x4: |
| case Iop_Sar32x4: |
| case Iop_Rol32x4: |
| return mkUifUV128(mce, |
| assignNew('V', mce, Ity_V128, binop(op, vatom1, atom2)), |
| mkPCast32x4(mce,vatom2) |
| ); |
| |
| case Iop_QSub8Ux16: |
| case Iop_QSub8Sx16: |
| case Iop_Sub8x16: |
| case Iop_Min8Ux16: |
| case Iop_Min8Sx16: |
| case Iop_Max8Ux16: |
| case Iop_Max8Sx16: |
| case Iop_CmpGT8Sx16: |
| case Iop_CmpGT8Ux16: |
| case Iop_CmpEQ8x16: |
| case Iop_Avg8Ux16: |
| case Iop_Avg8Sx16: |
| case Iop_QAdd8Ux16: |
| case Iop_QAdd8Sx16: |
| case Iop_Add8x16: |
| return binary8Ix16(mce, vatom1, vatom2); |
| |
| case Iop_QSub16Ux8: |
| case Iop_QSub16Sx8: |
| case Iop_Sub16x8: |
| case Iop_Mul16x8: |
| case Iop_MulHi16Sx8: |
| case Iop_MulHi16Ux8: |
| case Iop_Min16Sx8: |
| case Iop_Min16Ux8: |
| case Iop_Max16Sx8: |
| case Iop_Max16Ux8: |
| case Iop_CmpGT16Sx8: |
| case Iop_CmpGT16Ux8: |
| case Iop_CmpEQ16x8: |
| case Iop_Avg16Ux8: |
| case Iop_Avg16Sx8: |
| case Iop_QAdd16Ux8: |
| case Iop_QAdd16Sx8: |
| case Iop_Add16x8: |
| return binary16Ix8(mce, vatom1, vatom2); |
| |
| case Iop_Sub32x4: |
| case Iop_CmpGT32Sx4: |
| case Iop_CmpGT32Ux4: |
| case Iop_CmpEQ32x4: |
| case Iop_QAdd32Sx4: |
| case Iop_QAdd32Ux4: |
| case Iop_QSub32Sx4: |
| case Iop_QSub32Ux4: |
| case Iop_Avg32Ux4: |
| case Iop_Avg32Sx4: |
| case Iop_Add32x4: |
| case Iop_Max32Ux4: |
| case Iop_Max32Sx4: |
| case Iop_Min32Ux4: |
| case Iop_Min32Sx4: |
| return binary32Ix4(mce, vatom1, vatom2); |
| |
| case Iop_Sub64x2: |
| case Iop_Add64x2: |
| return binary64Ix2(mce, vatom1, vatom2); |
| |
| case Iop_QNarrow32Sx4: |
| case Iop_QNarrow32Ux4: |
| case Iop_QNarrow16Sx8: |
| case Iop_QNarrow16Ux8: |
| return vectorNarrowV128(mce, op, vatom1, vatom2); |
| |
| case Iop_Sub64Fx2: |
| case Iop_Mul64Fx2: |
| case Iop_Min64Fx2: |
| case Iop_Max64Fx2: |
| case Iop_Div64Fx2: |
| case Iop_CmpLT64Fx2: |
| case Iop_CmpLE64Fx2: |
| case Iop_CmpEQ64Fx2: |
| case Iop_CmpUN64Fx2: |
| case Iop_Add64Fx2: |
| return binary64Fx2(mce, vatom1, vatom2); |
| |
| case Iop_Sub64F0x2: |
| case Iop_Mul64F0x2: |
| case Iop_Min64F0x2: |
| case Iop_Max64F0x2: |
| case Iop_Div64F0x2: |
| case Iop_CmpLT64F0x2: |
| case Iop_CmpLE64F0x2: |
| case Iop_CmpEQ64F0x2: |
| case Iop_CmpUN64F0x2: |
| case Iop_Add64F0x2: |
| return binary64F0x2(mce, vatom1, vatom2); |
| |
| case Iop_Sub32Fx4: |
| case Iop_Mul32Fx4: |
| case Iop_Min32Fx4: |
| case Iop_Max32Fx4: |
| case Iop_Div32Fx4: |
| case Iop_CmpLT32Fx4: |
| case Iop_CmpLE32Fx4: |
| case Iop_CmpEQ32Fx4: |
| case Iop_CmpUN32Fx4: |
| case Iop_CmpGT32Fx4: |
| case Iop_CmpGE32Fx4: |
| case Iop_Add32Fx4: |
| return binary32Fx4(mce, vatom1, vatom2); |
| |
| case Iop_Sub32F0x4: |
| case Iop_Mul32F0x4: |
| case Iop_Min32F0x4: |
| case Iop_Max32F0x4: |
| case Iop_Div32F0x4: |
| case Iop_CmpLT32F0x4: |
| case Iop_CmpLE32F0x4: |
| case Iop_CmpEQ32F0x4: |
| case Iop_CmpUN32F0x4: |
| case Iop_Add32F0x4: |
| return binary32F0x4(mce, vatom1, vatom2); |
| |
| /* V128-bit data-steering */ |
| case Iop_SetV128lo32: |
| case Iop_SetV128lo64: |
| case Iop_64HLtoV128: |
| case Iop_InterleaveLO64x2: |
| case Iop_InterleaveLO32x4: |
| case Iop_InterleaveLO16x8: |
| case Iop_InterleaveLO8x16: |
| case Iop_InterleaveHI64x2: |
| case Iop_InterleaveHI32x4: |
| case Iop_InterleaveHI16x8: |
| case Iop_InterleaveHI8x16: |
| return assignNew('V', mce, Ity_V128, binop(op, vatom1, vatom2)); |
| |
| /* Perm8x16: rearrange values in left arg using steering values |
| from right arg. So rearrange the vbits in the same way but |
| pessimise wrt steering values. */ |
| case Iop_Perm8x16: |
| return mkUifUV128( |
| mce, |
| assignNew('V', mce, Ity_V128, binop(op, vatom1, atom2)), |
| mkPCast8x16(mce, vatom2) |
| ); |
| |
| /* These two take the lower half of each 16-bit lane, sign/zero |
| extend it to 32, and multiply together, producing a 32x4 |
| result (and implicitly ignoring half the operand bits). So |
| treat it as a bunch of independent 16x8 operations, but then |
| do 32-bit shifts left-right to copy the lower half results |
| (which are all 0s or all 1s due to PCasting in binary16Ix8) |
| into the upper half of each result lane. */ |
| case Iop_MullEven16Ux8: |
| case Iop_MullEven16Sx8: { |
| IRAtom* at; |
| at = binary16Ix8(mce,vatom1,vatom2); |
| at = assignNew('V', mce, Ity_V128, binop(Iop_ShlN32x4, at, mkU8(16))); |
| at = assignNew('V', mce, Ity_V128, binop(Iop_SarN32x4, at, mkU8(16))); |
| return at; |
| } |
| |
| /* Same deal as Iop_MullEven16{S,U}x8 */ |
| case Iop_MullEven8Ux16: |
| case Iop_MullEven8Sx16: { |
| IRAtom* at; |
| at = binary8Ix16(mce,vatom1,vatom2); |
| at = assignNew('V', mce, Ity_V128, binop(Iop_ShlN16x8, at, mkU8(8))); |
| at = assignNew('V', mce, Ity_V128, binop(Iop_SarN16x8, at, mkU8(8))); |
| return at; |
| } |
| |
| /* narrow 2xV128 into 1xV128, hi half from left arg, in a 2 x |
| 32x4 -> 16x8 laneage, discarding the upper half of each lane. |
| Simply apply same op to the V bits, since this really no more |
| than a data steering operation. */ |
| case Iop_Narrow32x4: |
| case Iop_Narrow16x8: |
| return assignNew('V', mce, Ity_V128, |
| binop(op, vatom1, vatom2)); |
| |
| case Iop_ShrV128: |
| case Iop_ShlV128: |
| /* Same scheme as with all other shifts. Note: 10 Nov 05: |
| this is wrong now, scalar shifts are done properly lazily. |
| Vector shifts should be fixed too. */ |
| complainIfUndefined(mce, atom2); |
| return assignNew('V', mce, Ity_V128, binop(op, vatom1, atom2)); |
| |
| |
| /* I128-bit data-steering */ |
| case Iop_64HLto128: |
| return assignNew('V', mce, Ity_I128, binop(op, vatom1, vatom2)); |
| |
| /* Scalar floating point */ |
| |
| case Iop_RoundF64toInt: |
| case Iop_RoundF64toF32: |
| case Iop_F64toI64: |
| case Iop_I64toF64: |
| case Iop_SinF64: |
| case Iop_CosF64: |
| case Iop_TanF64: |
| case Iop_2xm1F64: |
| case Iop_SqrtF64: |
| /* I32(rm) x I64/F64 -> I64/F64 */ |
| return mkLazy2(mce, Ity_I64, vatom1, vatom2); |
| |
| case Iop_F64toI32: |
| case Iop_F64toF32: |
| /* First arg is I32 (rounding mode), second is F64 (data). */ |
| return mkLazy2(mce, Ity_I32, vatom1, vatom2); |
| |
| case Iop_F64toI16: |
| /* First arg is I32 (rounding mode), second is F64 (data). */ |
| return mkLazy2(mce, Ity_I16, vatom1, vatom2); |
| |
| case Iop_CmpF64: |
| return mkLazy2(mce, Ity_I32, vatom1, vatom2); |
| |
| /* non-FP after here */ |
| |
| case Iop_DivModU64to32: |
| case Iop_DivModS64to32: |
| return mkLazy2(mce, Ity_I64, vatom1, vatom2); |
| |
| case Iop_DivModU128to64: |
| case Iop_DivModS128to64: |
| return mkLazy2(mce, Ity_I128, vatom1, vatom2); |
| |
| case Iop_16HLto32: |
| return assignNew('V', mce, Ity_I32, binop(op, vatom1, vatom2)); |
| case Iop_32HLto64: |
| return assignNew('V', mce, Ity_I64, binop(op, vatom1, vatom2)); |
| |
| case Iop_MullS64: |
| case Iop_MullU64: { |
| IRAtom* vLo64 = mkLeft64(mce, mkUifU64(mce, vatom1,vatom2)); |
| IRAtom* vHi64 = mkPCastTo(mce, Ity_I64, vLo64); |
| return assignNew('V', mce, Ity_I128, binop(Iop_64HLto128, vHi64, vLo64)); |
| } |
| |
| case Iop_MullS32: |
| case Iop_MullU32: { |
| IRAtom* vLo32 = mkLeft32(mce, mkUifU32(mce, vatom1,vatom2)); |
| IRAtom* vHi32 = mkPCastTo(mce, Ity_I32, vLo32); |
| return assignNew('V', mce, Ity_I64, binop(Iop_32HLto64, vHi32, vLo32)); |
| } |
| |
| case Iop_MullS16: |
| case Iop_MullU16: { |
| IRAtom* vLo16 = mkLeft16(mce, mkUifU16(mce, vatom1,vatom2)); |
| IRAtom* vHi16 = mkPCastTo(mce, Ity_I16, vLo16); |
| return assignNew('V', mce, Ity_I32, binop(Iop_16HLto32, vHi16, vLo16)); |
| } |
| |
| case Iop_MullS8: |
| case Iop_MullU8: { |
| IRAtom* vLo8 = mkLeft8(mce, mkUifU8(mce, vatom1,vatom2)); |
| IRAtom* vHi8 = mkPCastTo(mce, Ity_I8, vLo8); |
| return assignNew('V', mce, Ity_I16, binop(Iop_8HLto16, vHi8, vLo8)); |
| } |
| |
| case Iop_DivS32: |
| case Iop_DivU32: |
| return mkLazy2(mce, Ity_I32, vatom1, vatom2); |
| |
| case Iop_DivS64: |
| case Iop_DivU64: |
| return mkLazy2(mce, Ity_I64, vatom1, vatom2); |
| |
| case Iop_Add32: |
| if (mce->bogusLiterals) |
| return expensiveAddSub(mce,True,Ity_I32, |
| vatom1,vatom2, atom1,atom2); |
| else |
| goto cheap_AddSub32; |
| case Iop_Sub32: |
| if (mce->bogusLiterals) |
| return expensiveAddSub(mce,False,Ity_I32, |
| vatom1,vatom2, atom1,atom2); |
| else |
| goto cheap_AddSub32; |
| |
| cheap_AddSub32: |
| case Iop_Mul32: |
| return mkLeft32(mce, mkUifU32(mce, vatom1,vatom2)); |
| |
| case Iop_CmpORD32S: |
| case Iop_CmpORD32U: |
| case Iop_CmpORD64S: |
| case Iop_CmpORD64U: |
| return doCmpORD(mce, op, vatom1,vatom2, atom1,atom2); |
| |
| case Iop_Add64: |
| if (mce->bogusLiterals) |
| return expensiveAddSub(mce,True,Ity_I64, |
| vatom1,vatom2, atom1,atom2); |
| else |
| goto cheap_AddSub64; |
| case Iop_Sub64: |
| if (mce->bogusLiterals) |
| return expensiveAddSub(mce,False,Ity_I64, |
| vatom1,vatom2, atom1,atom2); |
| else |
| goto cheap_AddSub64; |
| |
| cheap_AddSub64: |
| case Iop_Mul64: |
| return mkLeft64(mce, mkUifU64(mce, vatom1,vatom2)); |
| |
| case Iop_Mul16: |
| case Iop_Add16: |
| case Iop_Sub16: |
| return mkLeft16(mce, mkUifU16(mce, vatom1,vatom2)); |
| |
| case Iop_Sub8: |
| case Iop_Add8: |
| return mkLeft8(mce, mkUifU8(mce, vatom1,vatom2)); |
| |
| case Iop_CmpEQ64: |
| case Iop_CmpNE64: |
| if (mce->bogusLiterals) |
| return expensiveCmpEQorNE(mce,Ity_I64, vatom1,vatom2, atom1,atom2 ); |
| else |
| goto cheap_cmp64; |
| cheap_cmp64: |
| case Iop_CmpLE64S: case Iop_CmpLE64U: |
| case Iop_CmpLT64U: case Iop_CmpLT64S: |
| return mkPCastTo(mce, Ity_I1, mkUifU64(mce, vatom1,vatom2)); |
| |
| case Iop_CmpEQ32: |
| case Iop_CmpNE32: |
| if (mce->bogusLiterals) |
| return expensiveCmpEQorNE(mce,Ity_I32, vatom1,vatom2, atom1,atom2 ); |
| else |
| goto cheap_cmp32; |
| cheap_cmp32: |
| case Iop_CmpLE32S: case Iop_CmpLE32U: |
| case Iop_CmpLT32U: case Iop_CmpLT32S: |
| return mkPCastTo(mce, Ity_I1, mkUifU32(mce, vatom1,vatom2)); |
| |
| case Iop_CmpEQ16: case Iop_CmpNE16: |
| return mkPCastTo(mce, Ity_I1, mkUifU16(mce, vatom1,vatom2)); |
| |
| case Iop_CmpEQ8: case Iop_CmpNE8: |
| return mkPCastTo(mce, Ity_I1, mkUifU8(mce, vatom1,vatom2)); |
| |
| case Iop_Shl64: case Iop_Shr64: case Iop_Sar64: |
| return scalarShift( mce, Ity_I64, op, vatom1,vatom2, atom1,atom2 ); |
| |
| case Iop_Shl32: case Iop_Shr32: case Iop_Sar32: |
| return scalarShift( mce, Ity_I32, op, vatom1,vatom2, atom1,atom2 ); |
| |
| case Iop_Shl16: case Iop_Shr16: case Iop_Sar16: |
| return scalarShift( mce, Ity_I16, op, vatom1,vatom2, atom1,atom2 ); |
| |
| case Iop_Shl8: case Iop_Shr8: |
| return scalarShift( mce, Ity_I8, op, vatom1,vatom2, atom1,atom2 ); |
| |
| case Iop_AndV128: |
| uifu = mkUifUV128; difd = mkDifDV128; |
| and_or_ty = Ity_V128; improve = mkImproveANDV128; goto do_And_Or; |
| case Iop_And64: |
| uifu = mkUifU64; difd = mkDifD64; |
| and_or_ty = Ity_I64; improve = mkImproveAND64; goto do_And_Or; |
| case Iop_And32: |
| uifu = mkUifU32; difd = mkDifD32; |
| and_or_ty = Ity_I32; improve = mkImproveAND32; goto do_And_Or; |
| case Iop_And16: |
| uifu = mkUifU16; difd = mkDifD16; |
| and_or_ty = Ity_I16; improve = mkImproveAND16; goto do_And_Or; |
| case Iop_And8: |
| uifu = mkUifU8; difd = mkDifD8; |
| and_or_ty = Ity_I8; improve = mkImproveAND8; goto do_And_Or; |
| |
| case Iop_OrV128: |
| uifu = mkUifUV128; difd = mkDifDV128; |
| and_or_ty = Ity_V128; improve = mkImproveORV128; goto do_And_Or; |
| case Iop_Or64: |
| uifu = mkUifU64; difd = mkDifD64; |
| and_or_ty = Ity_I64; improve = mkImproveOR64; goto do_And_Or; |
| case Iop_Or32: |
| uifu = mkUifU32; difd = mkDifD32; |
| and_or_ty = Ity_I32; improve = mkImproveOR32; goto do_And_Or; |
| case Iop_Or16: |
| uifu = mkUifU16; difd = mkDifD16; |
| and_or_ty = Ity_I16; improve = mkImproveOR16; goto do_And_Or; |
| case Iop_Or8: |
| uifu = mkUifU8; difd = mkDifD8; |
| and_or_ty = Ity_I8; improve = mkImproveOR8; goto do_And_Or; |
| |
| do_And_Or: |
| return |
| assignNew( |
| 'V', mce, |
| and_or_ty, |
| difd(mce, uifu(mce, vatom1, vatom2), |
| difd(mce, improve(mce, atom1, vatom1), |
| improve(mce, atom2, vatom2) ) ) ); |
| |
| case Iop_Xor8: |
| return mkUifU8(mce, vatom1, vatom2); |
| case Iop_Xor16: |
| return mkUifU16(mce, vatom1, vatom2); |
| case Iop_Xor32: |
| return mkUifU32(mce, vatom1, vatom2); |
| case Iop_Xor64: |
| return mkUifU64(mce, vatom1, vatom2); |
| case Iop_XorV128: |
| return mkUifUV128(mce, vatom1, vatom2); |
| |
| default: |
| ppIROp(op); |
| VG_(tool_panic)("memcheck:expr2vbits_Binop"); |
| } |
| } |
| |
| |
| static |
| IRExpr* expr2vbits_Unop ( MCEnv* mce, IROp op, IRAtom* atom ) |
| { |
| IRAtom* vatom = expr2vbits( mce, atom ); |
| tl_assert(isOriginalAtom(mce,atom)); |
| switch (op) { |
| |
| case Iop_Sqrt64Fx2: |
| return unary64Fx2(mce, vatom); |
| |
| case Iop_Sqrt64F0x2: |
| return unary64F0x2(mce, vatom); |
| |
| case Iop_Sqrt32Fx4: |
| case Iop_RSqrt32Fx4: |
| case Iop_Recip32Fx4: |
| case Iop_I32UtoFx4: |
| case Iop_I32StoFx4: |
| case Iop_QFtoI32Ux4_RZ: |
| case Iop_QFtoI32Sx4_RZ: |
| case Iop_RoundF32x4_RM: |
| case Iop_RoundF32x4_RP: |
| case Iop_RoundF32x4_RN: |
| case Iop_RoundF32x4_RZ: |
| return unary32Fx4(mce, vatom); |
| |
| case Iop_Sqrt32F0x4: |
| case Iop_RSqrt32F0x4: |
| case Iop_Recip32F0x4: |
| return unary32F0x4(mce, vatom); |
| |
| case Iop_32UtoV128: |
| case Iop_64UtoV128: |
| case Iop_Dup8x16: |
| case Iop_Dup16x8: |
| case Iop_Dup32x4: |
| return assignNew('V', mce, Ity_V128, unop(op, vatom)); |
| |
| case Iop_F32toF64: |
| case Iop_I32toF64: |
| case Iop_NegF64: |
| case Iop_AbsF64: |
| case Iop_Est5FRSqrt: |
| case Iop_RoundF64toF64_NEAREST: |
| case Iop_RoundF64toF64_NegINF: |
| case Iop_RoundF64toF64_PosINF: |
| case Iop_RoundF64toF64_ZERO: |
| case Iop_Clz64: |
| case Iop_Ctz64: |
| return mkPCastTo(mce, Ity_I64, vatom); |
| |
| case Iop_Clz32: |
| case Iop_Ctz32: |
| case Iop_TruncF64asF32: |
| return mkPCastTo(mce, Ity_I32, vatom); |
| |
| case Iop_1Uto64: |
| case Iop_8Uto64: |
| case Iop_8Sto64: |
| case Iop_16Uto64: |
| case Iop_16Sto64: |
| case Iop_32Sto64: |
| case Iop_32Uto64: |
| case Iop_V128to64: |
| case Iop_V128HIto64: |
| case Iop_128HIto64: |
| case Iop_128to64: |
| return assignNew('V', mce, Ity_I64, unop(op, vatom)); |
| |
| case Iop_64to32: |
| case Iop_64HIto32: |
| case Iop_1Uto32: |
| case Iop_1Sto32: |
| case Iop_8Uto32: |
| case Iop_16Uto32: |
| case Iop_16Sto32: |
| case Iop_8Sto32: |
| case Iop_V128to32: |
| return assignNew('V', mce, Ity_I32, unop(op, vatom)); |
| |
| case Iop_8Sto16: |
| case Iop_8Uto16: |
| case Iop_32to16: |
| case Iop_32HIto16: |
| case Iop_64to16: |
| return assignNew('V', mce, Ity_I16, unop(op, vatom)); |
| |
| case Iop_1Uto8: |
| case Iop_16to8: |
| case Iop_16HIto8: |
| case Iop_32to8: |
| case Iop_64to8: |
| return assignNew('V', mce, Ity_I8, unop(op, vatom)); |
| |
| case Iop_32to1: |
| return assignNew('V', mce, Ity_I1, unop(Iop_32to1, vatom)); |
| |
| case Iop_64to1: |
| return assignNew('V', mce, Ity_I1, unop(Iop_64to1, vatom)); |
| |
| case Iop_ReinterpF64asI64: |
| case Iop_ReinterpI64asF64: |
| case Iop_ReinterpI32asF32: |
| case Iop_NotV128: |
| case Iop_Not64: |
| case Iop_Not32: |
| case Iop_Not16: |
| case Iop_Not8: |
| case Iop_Not1: |
| return vatom; |
| |
| default: |
| ppIROp(op); |
| VG_(tool_panic)("memcheck:expr2vbits_Unop"); |
| } |
| } |
| |
| |
| /* Worker function; do not call directly. */ |
| static |
| IRAtom* expr2vbits_Load_WRK ( MCEnv* mce, |
| IREndness end, IRType ty, |
| IRAtom* addr, UInt bias ) |
| { |
| void* helper; |
| Char* hname; |
| IRDirty* di; |
| IRTemp datavbits; |
| IRAtom* addrAct; |
| |
| tl_assert(isOriginalAtom(mce,addr)); |
| tl_assert(end == Iend_LE || end == Iend_BE); |
| |
| /* First, emit a definedness test for the address. This also sets |
| the address (shadow) to 'defined' following the test. */ |
| complainIfUndefined( mce, addr ); |
| |
| /* Now cook up a call to the relevant helper function, to read the |
| data V bits from shadow memory. */ |
| ty = shadowTypeV(ty); |
| |
| if (end == Iend_LE) { |
| switch (ty) { |
| case Ity_I64: helper = &MC_(helperc_LOADV64le); |
| hname = "MC_(helperc_LOADV64le)"; |
| break; |
| case Ity_I32: helper = &MC_(helperc_LOADV32le); |
| hname = "MC_(helperc_LOADV32le)"; |
| break; |
| case Ity_I16: helper = &MC_(helperc_LOADV16le); |
| hname = "MC_(helperc_LOADV16le)"; |
| break; |
| case Ity_I8: helper = &MC_(helperc_LOADV8); |
| hname = "MC_(helperc_LOADV8)"; |
| break; |
| default: ppIRType(ty); |
| VG_(tool_panic)("memcheck:do_shadow_Load(LE)"); |
| } |
| } else { |
| switch (ty) { |
| case Ity_I64: helper = &MC_(helperc_LOADV64be); |
| hname = "MC_(helperc_LOADV64be)"; |
| break; |
| case Ity_I32: helper = &MC_(helperc_LOADV32be); |
| hname = "MC_(helperc_LOADV32be)"; |
| break; |
| case Ity_I16: helper = &MC_(helperc_LOADV16be); |
| hname = "MC_(helperc_LOADV16be)"; |
| break; |
| case Ity_I8: helper = &MC_(helperc_LOADV8); |
| hname = "MC_(helperc_LOADV8)"; |
| break; |
| default: ppIRType(ty); |
| VG_(tool_panic)("memcheck:do_shadow_Load(BE)"); |
| } |
| } |
| |
| /* Generate the actual address into addrAct. */ |
| if (bias == 0) { |
| addrAct = addr; |
| } else { |
| IROp mkAdd; |
| IRAtom* eBias; |
| IRType tyAddr = mce->hWordTy; |
| tl_assert( tyAddr == Ity_I32 || tyAddr == Ity_I64 ); |
| mkAdd = tyAddr==Ity_I32 ? Iop_Add32 : Iop_Add64; |
| eBias = tyAddr==Ity_I32 ? mkU32(bias) : mkU64(bias); |
| addrAct = assignNew('V', mce, tyAddr, binop(mkAdd, addr, eBias) ); |
| } |
| |
| /* We need to have a place to park the V bits we're just about to |
| read. */ |
| datavbits = newIRTemp(mce->bb->tyenv, ty); |
| di = unsafeIRDirty_1_N( datavbits, |
| 1/*regparms*/, |
| hname, VG_(fnptr_to_fnentry)( helper ), |
| mkIRExprVec_1( addrAct )); |
| setHelperAnns( mce, di ); |
| stmt( 'V', mce, IRStmt_Dirty(di) ); |
| |
| return mkexpr(datavbits); |
| } |
| |
| |
| static |
| IRAtom* expr2vbits_Load ( MCEnv* mce, |
| IREndness end, IRType ty, |
| IRAtom* addr, UInt bias ) |
| { |
| IRAtom *v64hi, *v64lo; |
| tl_assert(end == Iend_LE || end == Iend_BE); |
| switch (shadowTypeV(ty)) { |
| case Ity_I8: |
| case Ity_I16: |
| case Ity_I32: |
| case Ity_I64: |
| return expr2vbits_Load_WRK(mce, end, ty, addr, bias); |
| case Ity_V128: |
| if (end == Iend_LE) { |
| v64lo = expr2vbits_Load_WRK(mce, end, Ity_I64, addr, bias); |
| v64hi = expr2vbits_Load_WRK(mce, end, Ity_I64, addr, bias+8); |
| } else { |
| v64hi = expr2vbits_Load_WRK(mce, end, Ity_I64, addr, bias); |
| v64lo = expr2vbits_Load_WRK(mce, end, Ity_I64, addr, bias+8); |
| } |
| return assignNew( 'V', mce, |
| Ity_V128, |
| binop(Iop_64HLtoV128, v64hi, v64lo)); |
| default: |
| VG_(tool_panic)("expr2vbits_Load"); |
| } |
| } |
| |
| |
| static |
| IRAtom* expr2vbits_Mux0X ( MCEnv* mce, |
| IRAtom* cond, IRAtom* expr0, IRAtom* exprX ) |
| { |
| IRAtom *vbitsC, *vbits0, *vbitsX; |
| IRType ty; |
| /* Given Mux0X(cond,expr0,exprX), generate |
| Mux0X(cond,expr0#,exprX#) `UifU` PCast(cond#) |
| That is, steer the V bits like the originals, but trash the |
| result if the steering value is undefined. This gives |
| lazy propagation. */ |
| tl_assert(isOriginalAtom(mce, cond)); |
| tl_assert(isOriginalAtom(mce, expr0)); |
| tl_assert(isOriginalAtom(mce, exprX)); |
| |
| vbitsC = expr2vbits(mce, cond); |
| vbits0 = expr2vbits(mce, expr0); |
| vbitsX = expr2vbits(mce, exprX); |
| ty = typeOfIRExpr(mce->bb->tyenv, vbits0); |
| |
| return |
| mkUifU(mce, ty, assignNew('V', mce, ty, |
| IRExpr_Mux0X(cond, vbits0, vbitsX)), |
| mkPCastTo(mce, ty, vbitsC) ); |
| } |
| |
| /* --------- This is the main expression-handling function. --------- */ |
| |
| static |
| IRExpr* expr2vbits ( MCEnv* mce, IRExpr* e ) |
| { |
| switch (e->tag) { |
| |
| case Iex_Get: |
| return shadow_GET( mce, e->Iex.Get.offset, e->Iex.Get.ty ); |
| |
| case Iex_GetI: |
| return shadow_GETI( mce, e->Iex.GetI.descr, |
| e->Iex.GetI.ix, e->Iex.GetI.bias ); |
| |
| case Iex_RdTmp: |
| return IRExpr_RdTmp( findShadowTmpV(mce, e->Iex.RdTmp.tmp) ); |
| |
| case Iex_Const: |
| return definedOfType(shadowTypeV(typeOfIRExpr(mce->bb->tyenv, e))); |
| |
| case Iex_Qop: |
| return expr2vbits_Qop( |
| mce, |
| e->Iex.Qop.op, |
| e->Iex.Qop.arg1, e->Iex.Qop.arg2, |
| e->Iex.Qop.arg3, e->Iex.Qop.arg4 |
| ); |
| |
| case Iex_Triop: |
| return expr2vbits_Triop( |
| mce, |
| e->Iex.Triop.op, |
| e->Iex.Triop.arg1, e->Iex.Triop.arg2, e->Iex.Triop.arg3 |
| ); |
| |
| case Iex_Binop: |
| return expr2vbits_Binop( |
| mce, |
| e->Iex.Binop.op, |
| e->Iex.Binop.arg1, e->Iex.Binop.arg2 |
| ); |
| |
| case Iex_Unop: |
| return expr2vbits_Unop( mce, e->Iex.Unop.op, e->Iex.Unop.arg ); |
| |
| case Iex_Load: |
| return expr2vbits_Load( mce, e->Iex.Load.end, |
| e->Iex.Load.ty, |
| e->Iex.Load.addr, 0/*addr bias*/ ); |
| |
| case Iex_CCall: |
| return mkLazyN( mce, e->Iex.CCall.args, |
| e->Iex.CCall.retty, |
| e->Iex.CCall.cee ); |
| |
| case Iex_Mux0X: |
| return expr2vbits_Mux0X( mce, e->Iex.Mux0X.cond, e->Iex.Mux0X.expr0, |
| e->Iex.Mux0X.exprX); |
| |
| default: |
| VG_(printf)("\n"); |
| ppIRExpr(e); |
| VG_(printf)("\n"); |
| VG_(tool_panic)("memcheck: expr2vbits"); |
| } |
| } |
| |
| /*------------------------------------------------------------*/ |
| /*--- Generate shadow stmts from all kinds of IRStmts. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Widen a value to the host word size. */ |
| |
| static |
| IRExpr* zwidenToHostWord ( MCEnv* mce, IRAtom* vatom ) |
| { |
| IRType ty, tyH; |
| |
| /* vatom is vbits-value and as such can only have a shadow type. */ |
| tl_assert(isShadowAtom(mce,vatom)); |
| |
| ty = typeOfIRExpr(mce->bb->tyenv, vatom); |
| tyH = mce->hWordTy; |
| |
| if (tyH == Ity_I32) { |
| switch (ty) { |
| case Ity_I32: |
| return vatom; |
| case Ity_I16: |
| return assignNew('V', mce, tyH, unop(Iop_16Uto32, vatom)); |
| case Ity_I8: |
| return assignNew('V', mce, tyH, unop(Iop_8Uto32, vatom)); |
| default: |
| goto unhandled; |
| } |
| } else |
| if (tyH == Ity_I64) { |
| switch (ty) { |
| case Ity_I32: |
| return assignNew('V', mce, tyH, unop(Iop_32Uto64, vatom)); |
| case Ity_I16: |
| return assignNew('V', mce, tyH, unop(Iop_32Uto64, |
| assignNew('V', mce, Ity_I32, unop(Iop_16Uto32, vatom)))); |
| case Ity_I8: |
| return assignNew('V', mce, tyH, unop(Iop_32Uto64, |
| assignNew('V', mce, Ity_I32, unop(Iop_8Uto32, vatom)))); |
| default: |
| goto unhandled; |
| } |
| } else { |
| goto unhandled; |
| } |
| unhandled: |
| VG_(printf)("\nty = "); ppIRType(ty); VG_(printf)("\n"); |
| VG_(tool_panic)("zwidenToHostWord"); |
| } |
| |
| |
| /* Generate a shadow store. addr is always the original address atom. |
| You can pass in either originals or V-bits for the data atom, but |
| obviously not both. */ |
| |
| static |
| void do_shadow_Store ( MCEnv* mce, |
| IREndness end, |
| IRAtom* addr, UInt bias, |
| IRAtom* data, IRAtom* vdata ) |
| { |
| IROp mkAdd; |
| IRType ty, tyAddr; |
| void* helper = NULL; |
| Char* hname = NULL; |
| IRConst* c; |
| |
| tyAddr = mce->hWordTy; |
| mkAdd = tyAddr==Ity_I32 ? Iop_Add32 : Iop_Add64; |
| tl_assert( tyAddr == Ity_I32 || tyAddr == Ity_I64 ); |
| tl_assert( end == Iend_LE || end == Iend_BE ); |
| |
| if (data) { |
| tl_assert(!vdata); |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(bias == 0); |
| vdata = expr2vbits( mce, data ); |
| } else { |
| tl_assert(vdata); |
| } |
| |
| tl_assert(isOriginalAtom(mce,addr)); |
| tl_assert(isShadowAtom(mce,vdata)); |
| |
| ty = typeOfIRExpr(mce->bb->tyenv, vdata); |
| |
| // If we're not doing undefined value checking, pretend that this value |
| // is "all valid". That lets Vex's optimiser remove some of the V bit |
| // shadow computation ops that precede it. |
| if (MC_(clo_mc_level) == 1) { |
| switch (ty) { |
| case Ity_V128: c = IRConst_V128(V_BITS16_DEFINED); break; // V128 weirdness |
| case Ity_I64: c = IRConst_U64 (V_BITS64_DEFINED); break; |
| case Ity_I32: c = IRConst_U32 (V_BITS32_DEFINED); break; |
| case Ity_I16: c = IRConst_U16 (V_BITS16_DEFINED); break; |
| case Ity_I8: c = IRConst_U8 (V_BITS8_DEFINED); break; |
| default: VG_(tool_panic)("memcheck:do_shadow_Store(LE)"); |
| } |
| vdata = IRExpr_Const( c ); |
| } |
| |
| /* First, emit a definedness test for the address. This also sets |
| the address (shadow) to 'defined' following the test. */ |
| complainIfUndefined( mce, addr ); |
| |
| /* Now decide which helper function to call to write the data V |
| bits into shadow memory. */ |
| if (end == Iend_LE) { |
| switch (ty) { |
| case Ity_V128: /* we'll use the helper twice */ |
| case Ity_I64: helper = &MC_(helperc_STOREV64le); |
| hname = "MC_(helperc_STOREV64le)"; |
| break; |
| case Ity_I32: helper = &MC_(helperc_STOREV32le); |
| hname = "MC_(helperc_STOREV32le)"; |
| break; |
| case Ity_I16: helper = &MC_(helperc_STOREV16le); |
| hname = "MC_(helperc_STOREV16le)"; |
| break; |
| case Ity_I8: helper = &MC_(helperc_STOREV8); |
| hname = "MC_(helperc_STOREV8)"; |
| break; |
| default: VG_(tool_panic)("memcheck:do_shadow_Store(LE)"); |
| } |
| } else { |
| switch (ty) { |
| case Ity_V128: /* we'll use the helper twice */ |
| case Ity_I64: helper = &MC_(helperc_STOREV64be); |
| hname = "MC_(helperc_STOREV64be)"; |
| break; |
| case Ity_I32: helper = &MC_(helperc_STOREV32be); |
| hname = "MC_(helperc_STOREV32be)"; |
| break; |
| case Ity_I16: helper = &MC_(helperc_STOREV16be); |
| hname = "MC_(helperc_STOREV16be)"; |
| break; |
| case Ity_I8: helper = &MC_(helperc_STOREV8); |
| hname = "MC_(helperc_STOREV8)"; |
| break; |
| default: VG_(tool_panic)("memcheck:do_shadow_Store(BE)"); |
| } |
| } |
| |
| if (ty == Ity_V128) { |
| |
| /* V128-bit case */ |
| /* See comment in next clause re 64-bit regparms */ |
| /* also, need to be careful about endianness */ |
| |
| Int offLo64, offHi64; |
| IRDirty *diLo64, *diHi64; |
| IRAtom *addrLo64, *addrHi64; |
| IRAtom *vdataLo64, *vdataHi64; |
| IRAtom *eBiasLo64, *eBiasHi64; |
| |
| if (end == Iend_LE) { |
| offLo64 = 0; |
| offHi64 = 8; |
| } else { |
| offLo64 = 8; |
| offHi64 = 0; |
| } |
| |
| eBiasLo64 = tyAddr==Ity_I32 ? mkU32(bias+offLo64) : mkU64(bias+offLo64); |
| addrLo64 = assignNew('V', mce, tyAddr, binop(mkAdd, addr, eBiasLo64) ); |
| vdataLo64 = assignNew('V', mce, Ity_I64, unop(Iop_V128to64, vdata)); |
| diLo64 = unsafeIRDirty_0_N( |
| 1/*regparms*/, |
| hname, VG_(fnptr_to_fnentry)( helper ), |
| mkIRExprVec_2( addrLo64, vdataLo64 ) |
| ); |
| eBiasHi64 = tyAddr==Ity_I32 ? mkU32(bias+offHi64) : mkU64(bias+offHi64); |
| addrHi64 = assignNew('V', mce, tyAddr, binop(mkAdd, addr, eBiasHi64) ); |
| vdataHi64 = assignNew('V', mce, Ity_I64, unop(Iop_V128HIto64, vdata)); |
| diHi64 = unsafeIRDirty_0_N( |
| 1/*regparms*/, |
| hname, VG_(fnptr_to_fnentry)( helper ), |
| mkIRExprVec_2( addrHi64, vdataHi64 ) |
| ); |
| setHelperAnns( mce, diLo64 ); |
| setHelperAnns( mce, diHi64 ); |
| stmt( 'V', mce, IRStmt_Dirty(diLo64) ); |
| stmt( 'V', mce, IRStmt_Dirty(diHi64) ); |
| |
| } else { |
| |
| IRDirty *di; |
| IRAtom *addrAct; |
| |
| /* 8/16/32/64-bit cases */ |
| /* Generate the actual address into addrAct. */ |
| if (bias == 0) { |
| addrAct = addr; |
| } else { |
| IRAtom* eBias = tyAddr==Ity_I32 ? mkU32(bias) : mkU64(bias); |
| addrAct = assignNew('V', mce, tyAddr, binop(mkAdd, addr, eBias)); |
| } |
| |
| if (ty == Ity_I64) { |
| /* We can't do this with regparm 2 on 32-bit platforms, since |
| the back ends aren't clever enough to handle 64-bit |
| regparm args. Therefore be different. */ |
| di = unsafeIRDirty_0_N( |
| 1/*regparms*/, |
| hname, VG_(fnptr_to_fnentry)( helper ), |
| mkIRExprVec_2( addrAct, vdata ) |
| ); |
| } else { |
| di = unsafeIRDirty_0_N( |
| 2/*regparms*/, |
| hname, VG_(fnptr_to_fnentry)( helper ), |
| mkIRExprVec_2( addrAct, |
| zwidenToHostWord( mce, vdata )) |
| ); |
| } |
| setHelperAnns( mce, di ); |
| stmt( 'V', mce, IRStmt_Dirty(di) ); |
| } |
| |
| } |
| |
| |
| /* Do lazy pessimistic propagation through a dirty helper call, by |
| looking at the annotations on it. This is the most complex part of |
| Memcheck. */ |
| |
| static IRType szToITy ( Int n ) |
| { |
| switch (n) { |
| case 1: return Ity_I8; |
| case 2: return Ity_I16; |
| case 4: return Ity_I32; |
| case 8: return Ity_I64; |
| default: VG_(tool_panic)("szToITy(memcheck)"); |
| } |
| } |
| |
| static |
| void do_shadow_Dirty ( MCEnv* mce, IRDirty* d ) |
| { |
| Int i, n, toDo, gSz, gOff; |
| IRAtom *src, *here, *curr; |
| IRType tySrc, tyDst; |
| IRTemp dst; |
| IREndness end; |
| |
| /* What's the native endianness? We need to know this. */ |
| # if defined(VG_BIGENDIAN) |
| end = Iend_BE; |
| # elif defined(VG_LITTLEENDIAN) |
| end = Iend_LE; |
| # else |
| # error "Unknown endianness" |
| # endif |
| |
| /* First check the guard. */ |
| complainIfUndefined(mce, d->guard); |
| |
| /* Now round up all inputs and PCast over them. */ |
| curr = definedOfType(Ity_I32); |
| |
| /* Inputs: unmasked args */ |
| for (i = 0; d->args[i]; i++) { |
| if (d->cee->mcx_mask & (1<<i)) { |
| /* ignore this arg */ |
| } else { |
| here = mkPCastTo( mce, Ity_I32, expr2vbits(mce, d->args[i]) ); |
| curr = mkUifU32(mce, here, curr); |
| } |
| } |
| |
| /* Inputs: guest state that we read. */ |
| for (i = 0; i < d->nFxState; i++) { |
| tl_assert(d->fxState[i].fx != Ifx_None); |
| if (d->fxState[i].fx == Ifx_Write) |
| continue; |
| |
| /* Ignore any sections marked as 'always defined'. */ |
| if (isAlwaysDefd(mce, d->fxState[i].offset, d->fxState[i].size )) { |
| if (0) |
| VG_(printf)("memcheck: Dirty gst: ignored off %d, sz %d\n", |
| d->fxState[i].offset, d->fxState[i].size ); |
| continue; |
| } |
| |
| /* This state element is read or modified. So we need to |
| consider it. If larger than 8 bytes, deal with it in 8-byte |
| chunks. */ |
| gSz = d->fxState[i].size; |
| gOff = d->fxState[i].offset; |
| tl_assert(gSz > 0); |
| while (True) { |
| if (gSz == 0) break; |
| n = gSz <= 8 ? gSz : 8; |
| /* update 'curr' with UifU of the state slice |
| gOff .. gOff+n-1 */ |
| tySrc = szToITy( n ); |
| src = assignNew( 'V', mce, tySrc, |
| shadow_GET(mce, gOff, tySrc ) ); |
| here = mkPCastTo( mce, Ity_I32, src ); |
| curr = mkUifU32(mce, here, curr); |
| gSz -= n; |
| gOff += n; |
| } |
| |
| } |
| |
| /* Inputs: memory. First set up some info needed regardless of |
| whether we're doing reads or writes. */ |
| |
| if (d->mFx != Ifx_None) { |
| /* Because we may do multiple shadow loads/stores from the same |
| base address, it's best to do a single test of its |
| definedness right now. Post-instrumentation optimisation |
| should remove all but this test. */ |
| IRType tyAddr; |
| tl_assert(d->mAddr); |
| complainIfUndefined(mce, d->mAddr); |
| |
| tyAddr = typeOfIRExpr(mce->bb->tyenv, d->mAddr); |
| tl_assert(tyAddr == Ity_I32 || tyAddr == Ity_I64); |
| tl_assert(tyAddr == mce->hWordTy); /* not really right */ |
| } |
| |
| /* Deal with memory inputs (reads or modifies) */ |
| if (d->mFx == Ifx_Read || d->mFx == Ifx_Modify) { |
| toDo = d->mSize; |
| /* chew off 32-bit chunks. We don't care about the endianness |
| since it's all going to be condensed down to a single bit, |
| but nevertheless choose an endianness which is hopefully |
| native to the platform. */ |
| while (toDo >= 4) { |
| here = mkPCastTo( |
| mce, Ity_I32, |
| expr2vbits_Load ( mce, end, Ity_I32, |
| d->mAddr, d->mSize - toDo ) |
| ); |
| curr = mkUifU32(mce, here, curr); |
| toDo -= 4; |
| } |
| /* chew off 16-bit chunks */ |
| while (toDo >= 2) { |
| here = mkPCastTo( |
| mce, Ity_I32, |
| expr2vbits_Load ( mce, end, Ity_I16, |
| d->mAddr, d->mSize - toDo ) |
| ); |
| curr = mkUifU32(mce, here, curr); |
| toDo -= 2; |
| } |
| tl_assert(toDo == 0); /* also need to handle 1-byte excess */ |
| } |
| |
| /* Whew! So curr is a 32-bit V-value summarising pessimistically |
| all the inputs to the helper. Now we need to re-distribute the |
| results to all destinations. */ |
| |
| /* Outputs: the destination temporary, if there is one. */ |
| if (d->tmp != IRTemp_INVALID) { |
| dst = findShadowTmpV(mce, d->tmp); |
| tyDst = typeOfIRTemp(mce->bb->tyenv, d->tmp); |
| assign( 'V', mce, dst, mkPCastTo( mce, tyDst, curr) ); |
| } |
| |
| /* Outputs: guest state that we write or modify. */ |
| for (i = 0; i < d->nFxState; i++) { |
| tl_assert(d->fxState[i].fx != Ifx_None); |
| if (d->fxState[i].fx == Ifx_Read) |
| continue; |
| /* Ignore any sections marked as 'always defined'. */ |
| if (isAlwaysDefd(mce, d->fxState[i].offset, d->fxState[i].size )) |
| continue; |
| /* This state element is written or modified. So we need to |
| consider it. If larger than 8 bytes, deal with it in 8-byte |
| chunks. */ |
| gSz = d->fxState[i].size; |
| gOff = d->fxState[i].offset; |
| tl_assert(gSz > 0); |
| while (True) { |
| if (gSz == 0) break; |
| n = gSz <= 8 ? gSz : 8; |
| /* Write suitably-casted 'curr' to the state slice |
| gOff .. gOff+n-1 */ |
| tyDst = szToITy( n ); |
| do_shadow_PUT( mce, gOff, |
| NULL, /* original atom */ |
| mkPCastTo( mce, tyDst, curr ) ); |
| gSz -= n; |
| gOff += n; |
| } |
| } |
| |
| /* Outputs: memory that we write or modify. Same comments about |
| endianness as above apply. */ |
| if (d->mFx == Ifx_Write || d->mFx == Ifx_Modify) { |
| toDo = d->mSize; |
| /* chew off 32-bit chunks */ |
| while (toDo >= 4) { |
| do_shadow_Store( mce, end, d->mAddr, d->mSize - toDo, |
| NULL, /* original data */ |
| mkPCastTo( mce, Ity_I32, curr ) ); |
| toDo -= 4; |
| } |
| /* chew off 16-bit chunks */ |
| while (toDo >= 2) { |
| do_shadow_Store( mce, end, d->mAddr, d->mSize - toDo, |
| NULL, /* original data */ |
| mkPCastTo( mce, Ity_I16, curr ) ); |
| toDo -= 2; |
| } |
| tl_assert(toDo == 0); /* also need to handle 1-byte excess */ |
| } |
| |
| } |
| |
| /* We have an ABI hint telling us that [base .. base+len-1] is to |
| become undefined ("writable"). Generate code to call a helper to |
| notify the A/V bit machinery of this fact. |
| |
| We call |
| void MC_(helperc_MAKE_STACK_UNINIT) ( Addr base, UWord len, |
| Addr nia ); |
| */ |
| static |
| void do_AbiHint ( MCEnv* mce, IRExpr* base, Int len, IRExpr* nia ) |
| { |
| IRDirty* di; |
| /* Minor optimisation: if not doing origin tracking, ignore the |
| supplied nia and pass zero instead. This is on the basis that |
| MC_(helperc_MAKE_STACK_UNINIT) will ignore it anyway, and we can |
| almost always generate a shorter instruction to put zero into a |
| register than any other value. */ |
| if (MC_(clo_mc_level) < 3) |
| nia = mkIRExpr_HWord(0); |
| |
| di = unsafeIRDirty_0_N( |
| 0/*regparms*/, |
| "MC_(helperc_MAKE_STACK_UNINIT)", |
| VG_(fnptr_to_fnentry)( &MC_(helperc_MAKE_STACK_UNINIT) ), |
| mkIRExprVec_3( base, mkIRExpr_HWord( (UInt)len), nia ) |
| ); |
| stmt( 'V', mce, IRStmt_Dirty(di) ); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Memcheck main ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static void schemeS ( MCEnv* mce, IRStmt* st ); |
| |
| static Bool isBogusAtom ( IRAtom* at ) |
| { |
| ULong n = 0; |
| IRConst* con; |
| tl_assert(isIRAtom(at)); |
| if (at->tag == Iex_RdTmp) |
| return False; |
| tl_assert(at->tag == Iex_Const); |
| con = at->Iex.Const.con; |
| switch (con->tag) { |
| case Ico_U1: return False; |
| case Ico_U8: n = (ULong)con->Ico.U8; break; |
| case Ico_U16: n = (ULong)con->Ico.U16; break; |
| case Ico_U32: n = (ULong)con->Ico.U32; break; |
| case Ico_U64: n = (ULong)con->Ico.U64; break; |
| case Ico_F64: return False; |
| case Ico_F64i: return False; |
| case Ico_V128: return False; |
| default: ppIRExpr(at); tl_assert(0); |
| } |
| /* VG_(printf)("%llx\n", n); */ |
| return (/*32*/ n == 0xFEFEFEFFULL |
| /*32*/ || n == 0x80808080ULL |
| /*32*/ || n == 0x7F7F7F7FULL |
| /*64*/ || n == 0xFFFFFFFFFEFEFEFFULL |
| /*64*/ || n == 0xFEFEFEFEFEFEFEFFULL |
| /*64*/ || n == 0x0000000000008080ULL |
| /*64*/ || n == 0x8080808080808080ULL |
| /*64*/ || n == 0x0101010101010101ULL |
| ); |
| } |
| |
| static Bool checkForBogusLiterals ( /*FLAT*/ IRStmt* st ) |
| { |
| Int i; |
| IRExpr* e; |
| IRDirty* d; |
| switch (st->tag) { |
| case Ist_WrTmp: |
| e = st->Ist.WrTmp.data; |
| switch (e->tag) { |
| case Iex_Get: |
| case Iex_RdTmp: |
| return False; |
| case Iex_Const: |
| return isBogusAtom(e); |
| case Iex_Unop: |
| return isBogusAtom(e->Iex.Unop.arg); |
| case Iex_GetI: |
| return isBogusAtom(e->Iex.GetI.ix); |
| case Iex_Binop: |
| return isBogusAtom(e->Iex.Binop.arg1) |
| || isBogusAtom(e->Iex.Binop.arg2); |
| case Iex_Triop: |
| return isBogusAtom(e->Iex.Triop.arg1) |
| || isBogusAtom(e->Iex.Triop.arg2) |
| || isBogusAtom(e->Iex.Triop.arg3); |
| case Iex_Qop: |
| return isBogusAtom(e->Iex.Qop.arg1) |
| || isBogusAtom(e->Iex.Qop.arg2) |
| || isBogusAtom(e->Iex.Qop.arg3) |
| || isBogusAtom(e->Iex.Qop.arg4); |
| case Iex_Mux0X: |
| return isBogusAtom(e->Iex.Mux0X.cond) |
| || isBogusAtom(e->Iex.Mux0X.expr0) |
| || isBogusAtom(e->Iex.Mux0X.exprX); |
| case Iex_Load: |
| return isBogusAtom(e->Iex.Load.addr); |
| case Iex_CCall: |
| for (i = 0; e->Iex.CCall.args[i]; i++) |
| if (isBogusAtom(e->Iex.CCall.args[i])) |
| return True; |
| return False; |
| default: |
| goto unhandled; |
| } |
| case Ist_Dirty: |
| d = st->Ist.Dirty.details; |
| for (i = 0; d->args[i]; i++) |
| if (isBogusAtom(d->args[i])) |
| return True; |
| if (d->guard && isBogusAtom(d->guard)) |
| return True; |
| if (d->mAddr && isBogusAtom(d->mAddr)) |
| return True; |
| return False; |
| case Ist_Put: |
| return isBogusAtom(st->Ist.Put.data); |
| case Ist_PutI: |
| return isBogusAtom(st->Ist.PutI.ix) |
| || isBogusAtom(st->Ist.PutI.data); |
| case Ist_Store: |
| return isBogusAtom(st->Ist.Store.addr) |
| || isBogusAtom(st->Ist.Store.data); |
| case Ist_Exit: |
| return isBogusAtom(st->Ist.Exit.guard); |
| case Ist_AbiHint: |
| return isBogusAtom(st->Ist.AbiHint.base) |
| || isBogusAtom(st->Ist.AbiHint.nia); |
| case Ist_NoOp: |
| case Ist_IMark: |
| case Ist_MBE: |
| return False; |
| default: |
| unhandled: |
| ppIRStmt(st); |
| VG_(tool_panic)("hasBogusLiterals"); |
| } |
| } |
| |
| |
| IRSB* MC_(instrument) ( VgCallbackClosure* closure, |
| IRSB* bb_in, |
| VexGuestLayout* layout, |
| VexGuestExtents* vge, |
| IRType gWordTy, IRType hWordTy ) |
| { |
| Bool verboze = 0||False; |
| Bool bogus; |
| Int i, j, first_stmt; |
| IRStmt* st; |
| MCEnv mce; |
| IRSB* bb; |
| |
| if (gWordTy != hWordTy) { |
| /* We don't currently support this case. */ |
| VG_(tool_panic)("host/guest word size mismatch"); |
| } |
| |
| /* Check we're not completely nuts */ |
| tl_assert(sizeof(UWord) == sizeof(void*)); |
| tl_assert(sizeof(Word) == sizeof(void*)); |
| tl_assert(sizeof(Addr) == sizeof(void*)); |
| tl_assert(sizeof(ULong) == 8); |
| tl_assert(sizeof(Long) == 8); |
| tl_assert(sizeof(Addr64) == 8); |
| tl_assert(sizeof(UInt) == 4); |
| tl_assert(sizeof(Int) == 4); |
| |
| tl_assert(MC_(clo_mc_level) >= 1 && MC_(clo_mc_level) <= 3); |
| |
| /* Set up SB */ |
| bb = deepCopyIRSBExceptStmts(bb_in); |
| |
| /* Set up the running environment. Only .bb is modified as we go |
| along. */ |
| mce.bb = bb; |
| mce.trace = verboze; |
| mce.layout = layout; |
| mce.n_originalTmps = bb->tyenv->types_used; |
| mce.hWordTy = hWordTy; |
| mce.bogusLiterals = False; |
| mce.tmpMapV = LibVEX_Alloc(mce.n_originalTmps * sizeof(IRTemp)); |
| mce.tmpMapB = LibVEX_Alloc(mce.n_originalTmps * sizeof(IRTemp)); |
| for (i = 0; i < mce.n_originalTmps; i++) { |
| mce.tmpMapV[i] = IRTemp_INVALID; |
| mce.tmpMapB[i] = IRTemp_INVALID; |
| } |
| |
| /* Make a preliminary inspection of the statements, to see if there |
| are any dodgy-looking literals. If there are, we generate |
| extra-detailed (hence extra-expensive) instrumentation in |
| places. Scan the whole bb even if dodgyness is found earlier, |
| so that the flatness assertion is applied to all stmts. */ |
| |
| bogus = False; |
| |
| for (i = 0; i < bb_in->stmts_used; i++) { |
| |
| st = bb_in->stmts[i]; |
| tl_assert(st); |
| tl_assert(isFlatIRStmt(st)); |
| |
| if (!bogus) { |
| bogus = checkForBogusLiterals(st); |
| if (0 && bogus) { |
| VG_(printf)("bogus: "); |
| ppIRStmt(st); |
| VG_(printf)("\n"); |
| } |
| } |
| |
| } |
| |
| mce.bogusLiterals = bogus; |
| |
| /* Copy verbatim any IR preamble preceding the first IMark */ |
| |
| tl_assert(mce.bb == bb); |
| |
| i = 0; |
| while (i < bb_in->stmts_used && bb_in->stmts[i]->tag != Ist_IMark) { |
| |
| st = bb_in->stmts[i]; |
| tl_assert(st); |
| tl_assert(isFlatIRStmt(st)); |
| |
| stmt( 'C', &mce, bb_in->stmts[i] ); |
| i++; |
| } |
| |
| /* Nasty problem. IR optimisation of the pre-instrumented IR may |
| cause the IR following the preamble to contain references to IR |
| temporaries defined in the preamble. Because the preamble isn't |
| instrumented, these temporaries don't have any shadows. |
| Nevertheless uses of them following the preamble will cause |
| memcheck to generate references to their shadows. End effect is |
| to cause IR sanity check failures, due to references to |
| non-existent shadows. This is only evident for the complex |
| preambles used for function wrapping on TOC-afflicted platforms |
| (ppc64-linux, ppc32-aix5, ppc64-aix5). |
| |
| The following loop therefore scans the preamble looking for |
| assignments to temporaries. For each one found it creates an |
| assignment to the corresponding (V) shadow temp, marking it as |
| 'defined'. This is the same resulting IR as if the main |
| instrumentation loop before had been applied to the statement |
| 'tmp = CONSTANT'. |
| |
| Similarly, if origin tracking is enabled, we must generate an |
| assignment for the corresponding origin (B) shadow, claiming |
| no-origin, as appropriate for a defined value. |
| */ |
| for (j = 0; j < i; j++) { |
| if (bb_in->stmts[j]->tag == Ist_WrTmp) { |
| /* findShadowTmpV checks its arg is an original tmp; |
| no need to assert that here. */ |
| IRTemp tmp_o = bb_in->stmts[j]->Ist.WrTmp.tmp; |
| IRTemp tmp_v = findShadowTmpV(&mce, tmp_o); |
| IRType ty_v = typeOfIRTemp(bb->tyenv, tmp_v); |
| assign( 'V', &mce, tmp_v, definedOfType( ty_v ) ); |
| if (MC_(clo_mc_level) == 3) { |
| IRTemp tmp_b = findShadowTmpB(&mce, tmp_o); |
| tl_assert(typeOfIRTemp(bb->tyenv, tmp_b) == Ity_I32); |
| assign( 'B', &mce, tmp_b, mkU32(0)/* UNKNOWN ORIGIN */); |
| } |
| if (0) { |
| VG_(printf)("create shadow tmp(s) for preamble tmp [%d] ty ", j); |
| ppIRType( ty_v ); |
| VG_(printf)("\n"); |
| } |
| } |
| } |
| |
| /* Iterate over the remaining stmts to generate instrumentation. */ |
| |
| tl_assert(bb_in->stmts_used > 0); |
| tl_assert(i >= 0); |
| tl_assert(i < bb_in->stmts_used); |
| tl_assert(bb_in->stmts[i]->tag == Ist_IMark); |
| |
| for (/* use current i*/; i < bb_in->stmts_used; i++) { |
| |
| st = bb_in->stmts[i]; |
| first_stmt = bb->stmts_used; |
| |
| if (verboze) { |
| VG_(printf)("\n"); |
| ppIRStmt(st); |
| VG_(printf)("\n"); |
| } |
| |
| if (MC_(clo_mc_level) == 3) |
| schemeS( &mce, st ); |
| |
| /* Generate instrumentation code for each stmt ... */ |
| |
| switch (st->tag) { |
| |
| case Ist_WrTmp: |
| assign( 'V', &mce, findShadowTmpV(&mce, st->Ist.WrTmp.tmp), |
| expr2vbits( &mce, st->Ist.WrTmp.data) ); |
| break; |
| |
| case Ist_Put: |
| do_shadow_PUT( &mce, |
| st->Ist.Put.offset, |
| st->Ist.Put.data, |
| NULL /* shadow atom */ ); |
| break; |
| |
| case Ist_PutI: |
| do_shadow_PUTI( &mce, |
| st->Ist.PutI.descr, |
| st->Ist.PutI.ix, |
| st->Ist.PutI.bias, |
| st->Ist.PutI.data ); |
| break; |
| |
| case Ist_Store: |
| do_shadow_Store( &mce, st->Ist.Store.end, |
| st->Ist.Store.addr, 0/* addr bias */, |
| st->Ist.Store.data, |
| NULL /* shadow data */ ); |
| break; |
| |
| case Ist_Exit: |
| complainIfUndefined( &mce, st->Ist.Exit.guard ); |
| break; |
| |
| case Ist_IMark: |
| break; |
| |
| case Ist_NoOp: |
| case Ist_MBE: |
| break; |
| |
| case Ist_Dirty: |
| do_shadow_Dirty( &mce, st->Ist.Dirty.details ); |
| break; |
| |
| case Ist_AbiHint: |
| do_AbiHint( &mce, st->Ist.AbiHint.base, |
| st->Ist.AbiHint.len, |
| st->Ist.AbiHint.nia ); |
| break; |
| |
| default: |
| VG_(printf)("\n"); |
| ppIRStmt(st); |
| VG_(printf)("\n"); |
| VG_(tool_panic)("memcheck: unhandled IRStmt"); |
| |
| } /* switch (st->tag) */ |
| |
| if (0 && verboze) { |
| for (j = first_stmt; j < bb->stmts_used; j++) { |
| VG_(printf)(" "); |
| ppIRStmt(bb->stmts[j]); |
| VG_(printf)("\n"); |
| } |
| VG_(printf)("\n"); |
| } |
| |
| /* ... and finally copy the stmt itself to the output. */ |
| stmt('C', &mce, st); |
| |
| } |
| |
| /* Now we need to complain if the jump target is undefined. */ |
| first_stmt = bb->stmts_used; |
| |
| if (verboze) { |
| VG_(printf)("bb->next = "); |
| ppIRExpr(bb->next); |
| VG_(printf)("\n\n"); |
| } |
| |
| complainIfUndefined( &mce, bb->next ); |
| |
| if (0 && verboze) { |
| for (j = first_stmt; j < bb->stmts_used; j++) { |
| VG_(printf)(" "); |
| ppIRStmt(bb->stmts[j]); |
| VG_(printf)("\n"); |
| } |
| VG_(printf)("\n"); |
| } |
| |
| return bb; |
| } |
| |
| /*------------------------------------------------------------*/ |
| /*--- Post-tree-build final tidying ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* This exploits the observation that Memcheck often produces |
| repeated conditional calls of the form |
| |
| Dirty G MC_(helperc_value_check0/1/4/8_fail)(UInt otag) |
| |
| with the same guard expression G guarding the same helper call. |
| The second and subsequent calls are redundant. This usually |
| results from instrumentation of guest code containing multiple |
| memory references at different constant offsets from the same base |
| register. After optimisation of the instrumentation, you get a |
| test for the definedness of the base register for each memory |
| reference, which is kinda pointless. MC_(final_tidy) therefore |
| looks for such repeated calls and removes all but the first. */ |
| |
| /* A struct for recording which (helper, guard) pairs we have already |
| seen. */ |
| typedef |
| struct { void* entry; IRExpr* guard; } |
| Pair; |
| |
| /* Return True if e1 and e2 definitely denote the same value (used to |
| compare guards). Return False if unknown; False is the safe |
| answer. Since guest registers and guest memory do not have the |
| SSA property we must return False if any Gets or Loads appear in |
| the expression. */ |
| |
| static Bool sameIRValue ( IRExpr* e1, IRExpr* e2 ) |
| { |
| if (e1->tag != e2->tag) |
| return False; |
| switch (e1->tag) { |
| case Iex_Const: |
| return eqIRConst( e1->Iex.Const.con, e2->Iex.Const.con ); |
| case Iex_Binop: |
| return e1->Iex.Binop.op == e2->Iex.Binop.op |
| && sameIRValue(e1->Iex.Binop.arg1, e2->Iex.Binop.arg1) |
| && sameIRValue(e1->Iex.Binop.arg2, e2->Iex.Binop.arg2); |
| case Iex_Unop: |
| return e1->Iex.Unop.op == e2->Iex.Unop.op |
| && sameIRValue(e1->Iex.Unop.arg, e2->Iex.Unop.arg); |
| case Iex_RdTmp: |
| return e1->Iex.RdTmp.tmp == e2->Iex.RdTmp.tmp; |
| case Iex_Mux0X: |
| return sameIRValue( e1->Iex.Mux0X.cond, e2->Iex.Mux0X.cond ) |
| && sameIRValue( e1->Iex.Mux0X.expr0, e2->Iex.Mux0X.expr0 ) |
| && sameIRValue( e1->Iex.Mux0X.exprX, e2->Iex.Mux0X.exprX ); |
| case Iex_Qop: |
| case Iex_Triop: |
| case Iex_CCall: |
| /* be lazy. Could define equality for these, but they never |
| appear to be used. */ |
| return False; |
| case Iex_Get: |
| case Iex_GetI: |
| case Iex_Load: |
| /* be conservative - these may not give the same value each |
| time */ |
| return False; |
| case Iex_Binder: |
| /* should never see this */ |
| /* fallthrough */ |
| default: |
| VG_(printf)("mc_translate.c: sameIRValue: unhandled: "); |
| ppIRExpr(e1); |
| VG_(tool_panic)("memcheck:sameIRValue"); |
| return False; |
| } |
| } |
| |
| /* See if 'pairs' already has an entry for (entry, guard). Return |
| True if so. If not, add an entry. */ |
| |
| static |
| Bool check_or_add ( XArray* /*of Pair*/ pairs, IRExpr* guard, void* entry ) |
| { |
| Pair p; |
| Pair* pp; |
| Int i, n = VG_(sizeXA)( pairs ); |
| for (i = 0; i < n; i++) { |
| pp = VG_(indexXA)( pairs, i ); |
| if (pp->entry == entry && sameIRValue(pp->guard, guard)) |
| return True; |
| } |
| p.guard = guard; |
| p.entry = entry; |
| VG_(addToXA)( pairs, &p ); |
| return False; |
| } |
| |
| static Bool is_helperc_value_checkN_fail ( HChar* name ) |
| { |
| return |
| 0==VG_(strcmp)(name, "MC_(helperc_value_check0_fail_no_o)") |
| || 0==VG_(strcmp)(name, "MC_(helperc_value_check1_fail_no_o)") |
| || 0==VG_(strcmp)(name, "MC_(helperc_value_check4_fail_no_o)") |
| || 0==VG_(strcmp)(name, "MC_(helperc_value_check8_fail_no_o)") |
| || 0==VG_(strcmp)(name, "MC_(helperc_value_check0_fail_w_o)") |
| || 0==VG_(strcmp)(name, "MC_(helperc_value_check1_fail_w_o)") |
| || 0==VG_(strcmp)(name, "MC_(helperc_value_check4_fail_w_o)") |
| || 0==VG_(strcmp)(name, "MC_(helperc_value_check8_fail_w_o)"); |
| } |
| |
| IRSB* MC_(final_tidy) ( IRSB* sb_in ) |
| { |
| Int i; |
| IRStmt* st; |
| IRDirty* di; |
| IRExpr* guard; |
| IRCallee* cee; |
| Bool alreadyPresent; |
| XArray* pairs = VG_(newXA)( VG_(malloc), "mc.ft.1", |
| VG_(free), sizeof(Pair) ); |
| /* Scan forwards through the statements. Each time a call to one |
| of the relevant helpers is seen, check if we have made a |
| previous call to the same helper using the same guard |
| expression, and if so, delete the call. */ |
| for (i = 0; i < sb_in->stmts_used; i++) { |
| st = sb_in->stmts[i]; |
| tl_assert(st); |
| if (st->tag != Ist_Dirty) |
| continue; |
| di = st->Ist.Dirty.details; |
| guard = di->guard; |
| if (!guard) |
| continue; |
| if (0) { ppIRExpr(guard); VG_(printf)("\n"); } |
| cee = di->cee; |
| if (!is_helperc_value_checkN_fail( cee->name )) |
| continue; |
| /* Ok, we have a call to helperc_value_check0/1/4/8_fail with |
| guard 'guard'. Check if we have already seen a call to this |
| function with the same guard. If so, delete it. If not, |
| add it to the set of calls we do know about. */ |
| alreadyPresent = check_or_add( pairs, guard, cee->addr ); |
| if (alreadyPresent) { |
| sb_in->stmts[i] = IRStmt_NoOp(); |
| if (0) VG_(printf)("XX\n"); |
| } |
| } |
| VG_(deleteXA)( pairs ); |
| return sb_in; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Origin tracking stuff ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static IRTemp findShadowTmpB ( MCEnv* mce, IRTemp orig ) |
| { |
| tl_assert(orig < mce->n_originalTmps); |
| if (mce->tmpMapB[orig] == IRTemp_INVALID) { |
| mce->tmpMapB[orig] |
| = newIRTemp(mce->bb->tyenv, Ity_I32); |
| } |
| return mce->tmpMapB[orig]; |
| } |
| |
| static IRAtom* gen_maxU32 ( MCEnv* mce, IRAtom* b1, IRAtom* b2 ) |
| { |
| return assignNew( 'B', mce, Ity_I32, binop(Iop_Max32U, b1, b2) ); |
| } |
| |
| static IRAtom* gen_load_b ( MCEnv* mce, Int szB, |
| IRAtom* baseaddr, Int offset ) |
| { |
| void* hFun; |
| HChar* hName; |
| IRTemp bTmp; |
| IRDirty* di; |
| IRType aTy = typeOfIRExpr( mce->bb->tyenv, baseaddr ); |
| IROp opAdd = aTy == Ity_I32 ? Iop_Add32 : Iop_Add64; |
| IRAtom* ea = baseaddr; |
| if (offset != 0) { |
| IRAtom* off = aTy == Ity_I32 ? mkU32( offset ) |
| : mkU64( (Long)(Int)offset ); |
| ea = assignNew( 'B', mce, aTy, binop(opAdd, ea, off)); |
| } |
| bTmp = newIRTemp(mce->bb->tyenv, mce->hWordTy); |
| |
| switch (szB) { |
| case 1: hFun = (void*)&MC_(helperc_b_load1); |
| hName = "MC_(helperc_b_load1)"; |
| break; |
| case 2: hFun = (void*)&MC_(helperc_b_load2); |
| hName = "MC_(helperc_b_load2)"; |
| break; |
| case 4: hFun = (void*)&MC_(helperc_b_load4); |
| hName = "MC_(helperc_b_load4)"; |
| break; |
| case 8: hFun = (void*)&MC_(helperc_b_load8); |
| hName = "MC_(helperc_b_load8)"; |
| break; |
| case 16: hFun = (void*)&MC_(helperc_b_load16); |
| hName = "MC_(helperc_b_load16)"; |
| break; |
| default: |
| VG_(printf)("mc_translate.c: gen_load_b: unhandled szB == %d\n", szB); |
| tl_assert(0); |
| } |
| di = unsafeIRDirty_1_N( |
| bTmp, 1/*regparms*/, hName, VG_(fnptr_to_fnentry)( hFun ), |
| mkIRExprVec_1( ea ) |
| ); |
| /* no need to mess with any annotations. This call accesses |
| neither guest state nor guest memory. */ |
| stmt( 'B', mce, IRStmt_Dirty(di) ); |
| if (mce->hWordTy == Ity_I64) { |
| /* 64-bit host */ |
| IRTemp bTmp32 = newIRTemp(mce->bb->tyenv, Ity_I32); |
| assign( 'B', mce, bTmp32, unop(Iop_64to32, mkexpr(bTmp)) ); |
| return mkexpr(bTmp32); |
| } else { |
| /* 32-bit host */ |
| return mkexpr(bTmp); |
| } |
| } |
| static void gen_store_b ( MCEnv* mce, Int szB, |
| IRAtom* baseaddr, Int offset, IRAtom* dataB ) |
| { |
| void* hFun; |
| HChar* hName; |
| IRDirty* di; |
| IRType aTy = typeOfIRExpr( mce->bb->tyenv, baseaddr ); |
| IROp opAdd = aTy == Ity_I32 ? Iop_Add32 : Iop_Add64; |
| IRAtom* ea = baseaddr; |
| if (offset != 0) { |
| IRAtom* off = aTy == Ity_I32 ? mkU32( offset ) |
| : mkU64( (Long)(Int)offset ); |
| ea = assignNew( 'B', mce, aTy, binop(opAdd, ea, off)); |
| } |
| if (mce->hWordTy == Ity_I64) |
| dataB = assignNew( 'B', mce, Ity_I64, unop(Iop_32Uto64, dataB)); |
| |
| switch (szB) { |
| case 1: hFun = (void*)&MC_(helperc_b_store1); |
| hName = "MC_(helperc_b_store1)"; |
| break; |
| case 2: hFun = (void*)&MC_(helperc_b_store2); |
| hName = "MC_(helperc_b_store2)"; |
| break; |
| case 4: hFun = (void*)&MC_(helperc_b_store4); |
| hName = "MC_(helperc_b_store4)"; |
| break; |
| case 8: hFun = (void*)&MC_(helperc_b_store8); |
| hName = "MC_(helperc_b_store8)"; |
| break; |
| case 16: hFun = (void*)&MC_(helperc_b_store16); |
| hName = "MC_(helperc_b_store16)"; |
| break; |
| default: |
| tl_assert(0); |
| } |
| di = unsafeIRDirty_0_N( 2/*regparms*/, |
| hName, VG_(fnptr_to_fnentry)( hFun ), |
| mkIRExprVec_2( ea, dataB ) |
| ); |
| /* no need to mess with any annotations. This call accesses |
| neither guest state nor guest memory. */ |
| stmt( 'B', mce, IRStmt_Dirty(di) ); |
| } |
| |
| static IRAtom* narrowTo32 ( MCEnv* mce, IRAtom* e ) { |
| IRType eTy = typeOfIRExpr(mce->bb->tyenv, e); |
| if (eTy == Ity_I64) |
| return assignNew( 'B', mce, Ity_I32, unop(Iop_64to32, e) ); |
| if (eTy == Ity_I32) |
| return e; |
| tl_assert(0); |
| } |
| |
| static IRAtom* zWidenFrom32 ( MCEnv* mce, IRType dstTy, IRAtom* e ) { |
| IRType eTy = typeOfIRExpr(mce->bb->tyenv, e); |
| tl_assert(eTy == Ity_I32); |
| if (dstTy == Ity_I64) |
| return assignNew( 'B', mce, Ity_I64, unop(Iop_32Uto64, e) ); |
| tl_assert(0); |
| } |
| |
| static IRAtom* schemeE ( MCEnv* mce, IRExpr* e ) |
| { |
| tl_assert(MC_(clo_mc_level) == 3); |
| |
| switch (e->tag) { |
| |
| case Iex_GetI: { |
| IRRegArray* descr_b; |
| IRAtom *t1, *t2, *t3, *t4; |
| IRRegArray* descr = e->Iex.GetI.descr; |
| IRType equivIntTy |
| = MC_(get_otrack_reg_array_equiv_int_type)(descr); |
| /* If this array is unshadowable for whatever reason, use the |
| usual approximation. */ |
| if (equivIntTy == Ity_INVALID) |
| return mkU32(0); |
| tl_assert(sizeofIRType(equivIntTy) >= 4); |
| tl_assert(sizeofIRType(equivIntTy) == sizeofIRType(descr->elemTy)); |
| descr_b = mkIRRegArray( descr->base + 2*mce->layout->total_sizeB, |
| equivIntTy, descr->nElems ); |
| /* Do a shadow indexed get of the same size, giving t1. Take |
| the bottom 32 bits of it, giving t2. Compute into t3 the |
| origin for the index (almost certainly zero, but there's |
| no harm in being completely general here, since iropt will |
| remove any useless code), and fold it in, giving a final |
| value t4. */ |
| t1 = assignNew( 'B', mce, equivIntTy, |
| IRExpr_GetI( descr_b, e->Iex.GetI.ix, |
| e->Iex.GetI.bias )); |
| t2 = narrowTo32( mce, t1 ); |
| t3 = schemeE( mce, e->Iex.GetI.ix ); |
| t4 = gen_maxU32( mce, t2, t3 ); |
| return t4; |
| } |
| case Iex_CCall: { |
| Int i; |
| IRAtom* here; |
| IRExpr** args = e->Iex.CCall.args; |
| IRAtom* curr = mkU32(0); |
| for (i = 0; args[i]; i++) { |
| tl_assert(i < 32); |
| tl_assert(isOriginalAtom(mce, args[i])); |
| /* Only take notice of this arg if the callee's |
| mc-exclusion mask does not say it is to be excluded. */ |
| if (e->Iex.CCall.cee->mcx_mask & (1<<i)) { |
| /* the arg is to be excluded from definedness checking. |
| Do nothing. */ |
| if (0) VG_(printf)("excluding %s(%d)\n", |
| e->Iex.CCall.cee->name, i); |
| } else { |
| /* calculate the arg's definedness, and pessimistically |
| merge it in. */ |
| here = schemeE( mce, args[i] ); |
| curr = gen_maxU32( mce, curr, here ); |
| } |
| } |
| return curr; |
| } |
| case Iex_Load: { |
| Int dszB; |
| dszB = sizeofIRType(e->Iex.Load.ty); |
| /* assert that the B value for the address is already |
| available (somewhere) */ |
| tl_assert(isIRAtom(e->Iex.Load.addr)); |
| tl_assert(mce->hWordTy == Ity_I32 || mce->hWordTy == Ity_I64); |
| return gen_load_b( mce, dszB, e->Iex.Load.addr, 0 ); |
| } |
| case Iex_Mux0X: { |
| IRAtom* b1 = schemeE( mce, e->Iex.Mux0X.cond ); |
| IRAtom* b2 = schemeE( mce, e->Iex.Mux0X.expr0 ); |
| IRAtom* b3 = schemeE( mce, e->Iex.Mux0X.exprX ); |
| return gen_maxU32( mce, b1, gen_maxU32( mce, b2, b3 )); |
| } |
| case Iex_Qop: { |
| IRAtom* b1 = schemeE( mce, e->Iex.Qop.arg1 ); |
| IRAtom* b2 = schemeE( mce, e->Iex.Qop.arg2 ); |
| IRAtom* b3 = schemeE( mce, e->Iex.Qop.arg3 ); |
| IRAtom* b4 = schemeE( mce, e->Iex.Qop.arg4 ); |
| return gen_maxU32( mce, gen_maxU32( mce, b1, b2 ), |
| gen_maxU32( mce, b3, b4 ) ); |
| } |
| case Iex_Triop: { |
| IRAtom* b1 = schemeE( mce, e->Iex.Triop.arg1 ); |
| IRAtom* b2 = schemeE( mce, e->Iex.Triop.arg2 ); |
| IRAtom* b3 = schemeE( mce, e->Iex.Triop.arg3 ); |
| return gen_maxU32( mce, b1, gen_maxU32( mce, b2, b3 ) ); |
| } |
| case Iex_Binop: { |
| IRAtom* b1 = schemeE( mce, e->Iex.Binop.arg1 ); |
| IRAtom* b2 = schemeE( mce, e->Iex.Binop.arg2 ); |
| return gen_maxU32( mce, b1, b2 ); |
| } |
| case Iex_Unop: { |
| IRAtom* b1 = schemeE( mce, e->Iex.Unop.arg ); |
| return b1; |
| } |
| case Iex_Const: |
| return mkU32(0); |
| case Iex_RdTmp: |
| return mkexpr( findShadowTmpB( mce, e->Iex.RdTmp.tmp )); |
| case Iex_Get: { |
| Int b_offset = MC_(get_otrack_shadow_offset)( |
| e->Iex.Get.offset, |
| sizeofIRType(e->Iex.Get.ty) |
| ); |
| tl_assert(b_offset >= -1 |
| && b_offset <= mce->layout->total_sizeB -4); |
| if (b_offset >= 0) { |
| /* FIXME: this isn't an atom! */ |
| return IRExpr_Get( b_offset + 2*mce->layout->total_sizeB, |
| Ity_I32 ); |
| } |
| return mkU32(0); |
| } |
| default: |
| VG_(printf)("mc_translate.c: schemeE: unhandled: "); |
| ppIRExpr(e); |
| VG_(tool_panic)("memcheck:schemeE"); |
| } |
| } |
| |
| static void do_origins_Dirty ( MCEnv* mce, IRDirty* d ) |
| { |
| // This is a hacked version of do_shadow_Dirty |
| Int i, n, toDo, gSz, gOff; |
| IRAtom *here, *curr; |
| IRTemp dst; |
| |
| /* First check the guard. */ |
| curr = schemeE( mce, d->guard ); |
| |
| /* Now round up all inputs and maxU32 over them. */ |
| |
| /* Inputs: unmasked args */ |
| for (i = 0; d->args[i]; i++) { |
| if (d->cee->mcx_mask & (1<<i)) { |
| /* ignore this arg */ |
| } else { |
| here = schemeE( mce, d->args[i] ); |
| curr = gen_maxU32( mce, curr, here ); |
| } |
| } |
| |
| /* Inputs: guest state that we read. */ |
| for (i = 0; i < d->nFxState; i++) { |
| tl_assert(d->fxState[i].fx != Ifx_None); |
| if (d->fxState[i].fx == Ifx_Write) |
| continue; |
| |
| /* Ignore any sections marked as 'always defined'. */ |
| if (isAlwaysDefd(mce, d->fxState[i].offset, d->fxState[i].size )) { |
| if (0) |
| VG_(printf)("memcheck: Dirty gst: ignored off %d, sz %d\n", |
| d->fxState[i].offset, d->fxState[i].size ); |
| continue; |
| } |
| |
| /* This state element is read or modified. So we need to |
| consider it. If larger than 4 bytes, deal with it in 4-byte |
| chunks. */ |
| gSz = d->fxState[i].size; |
| gOff = d->fxState[i].offset; |
| tl_assert(gSz > 0); |
| while (True) { |
| Int b_offset; |
| if (gSz == 0) break; |
| n = gSz <= 4 ? gSz : 4; |
| /* update 'curr' with maxU32 of the state slice |
| gOff .. gOff+n-1 */ |
| b_offset = MC_(get_otrack_shadow_offset)(gOff, 4); |
| if (b_offset != -1) { |
| here = assignNew( 'B',mce, |
| Ity_I32, |
| IRExpr_Get(b_offset + 2*mce->layout->total_sizeB, |
| Ity_I32)); |
| curr = gen_maxU32( mce, curr, here ); |
| } |
| gSz -= n; |
| gOff += n; |
| } |
| |
| } |
| |
| /* Inputs: memory */ |
| |
| if (d->mFx != Ifx_None) { |
| /* Because we may do multiple shadow loads/stores from the same |
| base address, it's best to do a single test of its |
| definedness right now. Post-instrumentation optimisation |
| should remove all but this test. */ |
| tl_assert(d->mAddr); |
| here = schemeE( mce, d->mAddr ); |
| curr = gen_maxU32( mce, curr, here ); |
| } |
| |
| /* Deal with memory inputs (reads or modifies) */ |
| if (d->mFx == Ifx_Read || d->mFx == Ifx_Modify) { |
| toDo = d->mSize; |
| /* chew off 32-bit chunks. We don't care about the endianness |
| since it's all going to be condensed down to a single bit, |
| but nevertheless choose an endianness which is hopefully |
| native to the platform. */ |
| while (toDo >= 4) { |
| here = gen_load_b( mce, 4, d->mAddr, d->mSize - toDo ); |
| curr = gen_maxU32( mce, curr, here ); |
| toDo -= 4; |
| } |
| /* handle possible 16-bit excess */ |
| while (toDo >= 2) { |
| here = gen_load_b( mce, 2, d->mAddr, d->mSize - toDo ); |
| curr = gen_maxU32( mce, curr, here ); |
| toDo -= 2; |
| } |
| tl_assert(toDo == 0); /* also need to handle 1-byte excess */ |
| } |
| |
| /* Whew! So curr is a 32-bit B-value which should give an origin |
| of some use if any of the inputs to the helper are undefined. |
| Now we need to re-distribute the results to all destinations. */ |
| |
| /* Outputs: the destination temporary, if there is one. */ |
| if (d->tmp != IRTemp_INVALID) { |
| dst = findShadowTmpB(mce, d->tmp); |
| assign( 'V', mce, dst, curr ); |
| } |
| |
| /* Outputs: guest state that we write or modify. */ |
| for (i = 0; i < d->nFxState; i++) { |
| tl_assert(d->fxState[i].fx != Ifx_None); |
| if (d->fxState[i].fx == Ifx_Read) |
| continue; |
| |
| /* Ignore any sections marked as 'always defined'. */ |
| if (isAlwaysDefd(mce, d->fxState[i].offset, d->fxState[i].size )) |
| continue; |
| |
| /* This state element is written or modified. So we need to |
| consider it. If larger than 4 bytes, deal with it in 4-byte |
| chunks. */ |
| gSz = d->fxState[i].size; |
| gOff = d->fxState[i].offset; |
| tl_assert(gSz > 0); |
| while (True) { |
| Int b_offset; |
| if (gSz == 0) break; |
| n = gSz <= 4 ? gSz : 4; |
| /* Write 'curr' to the state slice gOff .. gOff+n-1 */ |
| b_offset = MC_(get_otrack_shadow_offset)(gOff, 4); |
| if (b_offset != -1) { |
| stmt( 'B', mce, IRStmt_Put(b_offset + 2*mce->layout->total_sizeB, |
| curr )); |
| } |
| gSz -= n; |
| gOff += n; |
| } |
| } |
| |
| /* Outputs: memory that we write or modify. Same comments about |
| endianness as above apply. */ |
| if (d->mFx == Ifx_Write || d->mFx == Ifx_Modify) { |
| toDo = d->mSize; |
| /* chew off 32-bit chunks */ |
| while (toDo >= 4) { |
| gen_store_b( mce, 4, d->mAddr, d->mSize - toDo, curr ); |
| toDo -= 4; |
| } |
| /* handle possible 16-bit excess */ |
| while (toDo >= 2) { |
| gen_store_b( mce, 2, d->mAddr, d->mSize - toDo, curr ); |
| toDo -= 2; |
| } |
| tl_assert(toDo == 0); /* also need to handle 1-byte excess */ |
| } |
| } |
| |
| static void schemeS ( MCEnv* mce, IRStmt* st ) |
| { |
| tl_assert(MC_(clo_mc_level) == 3); |
| |
| switch (st->tag) { |
| |
| case Ist_AbiHint: |
| /* The value-check instrumenter handles this - by arranging |
| to pass the address of the next instruction to |
| MC_(helperc_MAKE_STACK_UNINIT). This is all that needs to |
| happen for origin tracking w.r.t. AbiHints. So there is |
| nothing to do here. */ |
| break; |
| |
| case Ist_PutI: { |
| IRRegArray* descr_b; |
| IRAtom *t1, *t2, *t3, *t4; |
| IRRegArray* descr = st->Ist.PutI.descr; |
| IRType equivIntTy |
| = MC_(get_otrack_reg_array_equiv_int_type)(descr); |
| /* If this array is unshadowable for whatever reason, |
| generate no code. */ |
| if (equivIntTy == Ity_INVALID) |
| break; |
| tl_assert(sizeofIRType(equivIntTy) >= 4); |
| tl_assert(sizeofIRType(equivIntTy) == sizeofIRType(descr->elemTy)); |
| descr_b |
| = mkIRRegArray( descr->base + 2*mce->layout->total_sizeB, |
| equivIntTy, descr->nElems ); |
| /* Compute a value to Put - the conjoinment of the origin for |
| the data to be Put-ted (obviously) and of the index value |
| (not so obviously). */ |
| t1 = schemeE( mce, st->Ist.PutI.data ); |
| t2 = schemeE( mce, st->Ist.PutI.ix ); |
| t3 = gen_maxU32( mce, t1, t2 ); |
| t4 = zWidenFrom32( mce, equivIntTy, t3 ); |
| stmt( 'B', mce, IRStmt_PutI( descr_b, st->Ist.PutI.ix, |
| st->Ist.PutI.bias, t4 )); |
| break; |
| } |
| case Ist_Dirty: |
| do_origins_Dirty( mce, st->Ist.Dirty.details ); |
| break; |
| case Ist_Store: { |
| Int dszB; |
| IRAtom* dataB; |
| /* assert that the B value for the address is already |
| available (somewhere) */ |
| tl_assert(isIRAtom(st->Ist.Store.addr)); |
| dszB = sizeofIRType( |
| typeOfIRExpr(mce->bb->tyenv, st->Ist.Store.data )); |
| dataB = schemeE( mce, st->Ist.Store.data ); |
| gen_store_b( mce, dszB, st->Ist.Store.addr, 0/*offset*/, dataB ); |
| break; |
| } |
| case Ist_Put: { |
| Int b_offset |
| = MC_(get_otrack_shadow_offset)( |
| st->Ist.Put.offset, |
| sizeofIRType(typeOfIRExpr(mce->bb->tyenv, st->Ist.Put.data)) |
| ); |
| if (b_offset >= 0) { |
| /* FIXME: this isn't an atom! */ |
| stmt( 'B', mce, IRStmt_Put(b_offset + 2*mce->layout->total_sizeB, |
| schemeE( mce, st->Ist.Put.data )) ); |
| } |
| break; |
| } |
| case Ist_WrTmp: |
| assign( 'B', mce, findShadowTmpB(mce, st->Ist.WrTmp.tmp), |
| schemeE(mce, st->Ist.WrTmp.data) ); |
| break; |
| case Ist_MBE: |
| case Ist_NoOp: |
| case Ist_Exit: |
| case Ist_IMark: |
| break; |
| default: |
| VG_(printf)("mc_translate.c: schemeS: unhandled: "); |
| ppIRStmt(st); |
| VG_(tool_panic)("memcheck:schemeS"); |
| } |
| } |
| |
| |
| /*--------------------------------------------------------------------*/ |
| /*--- end mc_translate.c ---*/ |
| /*--------------------------------------------------------------------*/ |