blob: a94434fd7bd5955f8d2a1336f84e2f1948784f36 [file] [log] [blame]
-- A program for extracting strongly connected components from a .dot
-- file created by auxprogs/gen-mdg.
-- How to use: one of the following:
-- compile to an exe: ghc -o dottoscc DotToScc.hs
-- and then ./dottoscc name_of_file.dot
-- or interpret with runhugs:
-- runhugs DotToScc.hs name_of_file.dot
-- or run within hugs:
-- hugs DotToScc.hs
-- Main> imain "name_of_file.dot"
module Main where
import System
import List ( sort, nub )
usage :: IO ()
usage = putStrLn "usage: dottoscc <name_of_file.dot>"
main :: IO ()
main = do args <- getArgs
if length args /= 1
then usage
else imain (head args)
imain :: String -> IO ()
imain dot_file_name
= do edges <- read_dot_file dot_file_name
let sccs = gen_sccs edges
let pretty = showPrettily sccs
putStrLn pretty
where
showPrettily :: [[String]] -> String
showPrettily = unlines . concatMap showScc
showScc elems
= let n = length elems
in
[""]
++ (if n > 1 then [" -- "
++ show n ++ " modules in cycle"]
else [])
++ map (" " ++) elems
-- Read a .dot file and return a list of edges
read_dot_file :: String{-filename-} -> IO [(String,String)]
read_dot_file dot_file_name
= do bytes <- readFile dot_file_name
let linez = lines bytes
let edges = [(s,d) | Just (s,d) <- map maybe_mk_edge linez]
return edges
where
-- identify lines of the form "text1 -> text2" and return
-- text1 and text2
maybe_mk_edge :: String -> Maybe (String, String)
maybe_mk_edge str
= case words str of
[text1, "->", text2] -> Just (text1, text2)
other -> Nothing
-- Take the list of edges and return a topologically sorted list of
-- sccs
gen_sccs :: [(String,String)] -> [[String]]
gen_sccs raw_edges
= let clean_edges = sort (nub raw_edges)
nodes = nub (concatMap (\(s,d) -> [s,d]) clean_edges)
ins v = [u | (u,w) <- clean_edges, v==w]
outs v = [w | (u,w) <- clean_edges, v==u]
components = map (sort.utSetToList) (deScc ins outs nodes)
in
components
--------------------------------------------------------------------
--------------------------------------------------------------------
--------------------------------------------------------------------
-- Graph-theoretic stuff that does the interesting stuff.
-- ==========================================================--
--
deScc :: (Ord a) =>
(a -> [a]) -> -- The "ins" map
(a -> [a]) -> -- The "outs" map
[a] -> -- The root vertices
[Set a] -- The topologically sorted components
deScc ins outs
= spanning . depthFirst
where depthFirst = snd . deDepthFirstSearch outs (utSetEmpty, [])
spanning = snd . deSpanningSearch ins (utSetEmpty, [])
-- =========================================================--
--
deDepthFirstSearch :: (Ord a) =>
(a -> [a]) -> -- The map,
(Set a, [a]) -> -- state: visited set,
-- current sequence of vertices
[a] -> -- input vertices sequence
(Set a, [a]) -- final state
deDepthFirstSearch
= foldl . search
where
search relation (visited, sequence) vertex
| utSetElementOf vertex visited = (visited, sequence )
| otherwise = (visited', vertex: sequence')
where
(visited', sequence')
= deDepthFirstSearch relation
(utSetUnion visited (utSetSingleton vertex), sequence)
(relation vertex)
-- ==========================================================--
--
deSpanningSearch :: (Ord a) =>
(a -> [a]) -> -- The map
(Set a, [Set a]) -> -- Current state: visited set,
-- current sequence of vertice sets
[a] -> -- Input sequence of vertices
(Set a, [Set a]) -- Final state
deSpanningSearch
= foldl . search
where
search relation (visited, utSetSequence) vertex
| utSetElementOf vertex visited = (visited, utSetSequence )
| otherwise = (visited', utSetFromList (vertex: sequence): utSetSequence)
where
(visited', sequence)
= deDepthFirstSearch relation
(utSetUnion visited (utSetSingleton vertex), [])
(relation vertex)
--------------------------------------------------------------------
--------------------------------------------------------------------
--------------------------------------------------------------------
-- Most of this set stuff isn't needed.
-- ====================================--
-- === set ===--
-- ====================================--
data Set e = MkSet [e]
-- ==========================================================--
--
unMkSet :: (Ord a) => Set a -> [a]
unMkSet (MkSet s) = s
-- ==========================================================--
--
utSetEmpty :: (Ord a) => Set a
utSetEmpty = MkSet []
-- ==========================================================--
--
utSetIsEmpty :: (Ord a) => Set a -> Bool
utSetIsEmpty (MkSet s) = s == []
-- ==========================================================--
--
utSetSingleton :: (Ord a) => a -> Set a
utSetSingleton x = MkSet [x]
-- ==========================================================--
--
utSetFromList :: (Ord a) => [a] -> Set a
utSetFromList x = (MkSet . rmdup . sort) x
where rmdup [] = []
rmdup [x] = [x]
rmdup (x:y:xs) | x==y = rmdup (y:xs)
| otherwise = x: rmdup (y:xs)
-- ==========================================================--
--
utSetToList :: (Ord a) => Set a -> [a]
utSetToList (MkSet xs) = xs
-- ==========================================================--
--
utSetUnion :: (Ord a) => Set a -> Set a -> Set a
utSetUnion (MkSet []) (MkSet []) = (MkSet [])
utSetUnion (MkSet []) (MkSet (b:bs)) = (MkSet (b:bs))
utSetUnion (MkSet (a:as)) (MkSet []) = (MkSet (a:as))
utSetUnion (MkSet (a:as)) (MkSet (b:bs))
| a < b = MkSet (a: (unMkSet (utSetUnion (MkSet as) (MkSet (b:bs)))))
| a == b = MkSet (a: (unMkSet (utSetUnion (MkSet as) (MkSet bs))))
| a > b = MkSet (b: (unMkSet (utSetUnion (MkSet (a:as)) (MkSet bs))))
-- ==========================================================--
--
utSetIntersection :: (Ord a) => Set a -> Set a -> Set a
utSetIntersection (MkSet []) (MkSet []) = (MkSet [])
utSetIntersection (MkSet []) (MkSet (b:bs)) = (MkSet [])
utSetIntersection (MkSet (a:as)) (MkSet []) = (MkSet [])
utSetIntersection (MkSet (a:as)) (MkSet (b:bs))
| a < b = utSetIntersection (MkSet as) (MkSet (b:bs))
| a == b = MkSet (a: (unMkSet (utSetIntersection (MkSet as) (MkSet bs))))
| a > b = utSetIntersection (MkSet (a:as)) (MkSet bs)
-- ==========================================================--
--
utSetSubtraction :: (Ord a) => Set a -> Set a -> Set a
utSetSubtraction (MkSet []) (MkSet []) = (MkSet [])
utSetSubtraction (MkSet []) (MkSet (b:bs)) = (MkSet [])
utSetSubtraction (MkSet (a:as)) (MkSet []) = (MkSet (a:as))
utSetSubtraction (MkSet (a:as)) (MkSet (b:bs))
| a < b = MkSet (a: (unMkSet (utSetSubtraction (MkSet as) (MkSet (b:bs)))))
| a == b = utSetSubtraction (MkSet as) (MkSet bs)
| a > b = utSetSubtraction (MkSet (a:as)) (MkSet bs)
-- ==========================================================--
--
utSetElementOf :: (Ord a) => a -> Set a -> Bool
utSetElementOf x (MkSet []) = False
utSetElementOf x (MkSet (y:ys)) = x==y || (x>y && utSetElementOf x (MkSet ys))
-- ==========================================================--
--
utSetSubsetOf :: (Ord a) => Set a -> Set a -> Bool
utSetSubsetOf (MkSet []) (MkSet bs) = True
utSetSubsetOf (MkSet (a:as)) (MkSet bs)
= utSetElementOf a (MkSet bs) && utSetSubsetOf (MkSet as) (MkSet bs)
-- ==========================================================--
--
utSetUnionList :: (Ord a) => [Set a] -> Set a
utSetUnionList setList = foldl utSetUnion utSetEmpty setList