blob: eaaf21beac91b491c39ea3bc87579c38689be7ed [file] [log] [blame]
##------------------------------------------------------------##
#
# The multiple-architecture stuff in this file is pretty
# cryptic. Read docs/internals/multiple-architectures.txt
# for at least a partial explanation of what is going on.
#
##------------------------------------------------------------##
# Process this file with autoconf to produce a configure script.
AC_INIT(Valgrind, 3.7.0.SVN, valgrind-users@lists.sourceforge.net)
AC_CONFIG_SRCDIR(coregrind/m_main.c)
AM_CONFIG_HEADER(config.h)
AM_INIT_AUTOMAKE([foreign])
AM_MAINTAINER_MODE
#----------------------------------------------------------------------------
# Checks for various programs.
#----------------------------------------------------------------------------
CFLAGS="-Wno-long-long $CFLAGS"
AC_PROG_LN_S
AC_PROG_CC
AM_PROG_CC_C_O
AC_PROG_CPP
AC_PROG_CXX
# AC_PROG_OBJC apparently causes problems on older Linux distros (eg. with
# autoconf 2.59). If we ever have any Objective-C code in the Valgrind code
# base (eg. most likely as Darwin-specific tests) we'll need one of the
# following:
# - put AC_PROG_OBJC in a Darwin-specific part of this file
# - Use AC_PROG_OBJC here and up the minimum autoconf version
# - Use the following, which is apparently equivalent:
# m4_ifdef([AC_PROG_OBJC],
# [AC_PROG_OBJC],
# [AC_CHECK_TOOL([OBJC], [gcc])
# AC_SUBST([OBJC])
# AC_SUBST([OBJCFLAGS])
# ])
AC_PROG_RANLIB
# provide a very basic definition for AC_PROG_SED if it's not provided by
# autoconf (as e.g. in autoconf 2.59).
m4_ifndef([AC_PROG_SED],
[AC_DEFUN([AC_PROG_SED],
[AC_ARG_VAR([SED])
AC_CHECK_PROGS([SED],[gsed sed])])])
AC_PROG_SED
# If no AR variable was specified, look up the name of the archiver. Otherwise
# do not touch the AR variable.
if test "x$AR" = "x"; then
AC_PATH_PROGS([AR], [`echo $LD | $SED 's/ld$/ar/'` "ar"], [ar])
fi
AC_ARG_VAR([AR],[Archiver command])
# Check for the compiler support
if test "${GCC}" != "yes" ; then
AC_MSG_ERROR([Valgrind relies on GCC to be compiled])
fi
# figure out where perl lives
AC_PATH_PROG(PERL, perl)
# figure out where gdb lives
AC_PATH_PROG(GDB, gdb, "/no/gdb/was/found/at/configure/time")
AC_DEFINE_UNQUOTED(GDB_PATH, "$GDB", [path to GDB])
# some older automake's don't have it so try something on our own
ifdef([AM_PROG_AS],[AM_PROG_AS],
[
AS="${CC}"
AC_SUBST(AS)
ASFLAGS=""
AC_SUBST(ASFLAGS)
])
# Check if 'diff' supports -u (universal diffs) and use it if possible.
AC_MSG_CHECKING([for diff -u])
AC_SUBST(DIFF)
# Comparing two identical files results in 0.
tmpfile="tmp-xxx-yyy-zzz"
touch $tmpfile;
if diff -u $tmpfile $tmpfile ; then
AC_MSG_RESULT([yes])
DIFF="diff -u"
else
AC_MSG_RESULT([no])
DIFF="diff"
fi
rm $tmpfile
# We don't want gcc < 3.0
AC_MSG_CHECKING([for a supported version of gcc])
[gcc_version=`${CC} --version | head -n 1 | $SED 's/^[^0-9]*\([0-9.]*\).*$/\1/'`]
case "${gcc_version}" in
2.*)
AC_MSG_RESULT([no (${gcc_version})])
AC_MSG_ERROR([please use a recent (>= gcc-3.0) version of gcc])
;;
*)
AC_MSG_RESULT([ok (${gcc_version})])
;;
esac
#----------------------------------------------------------------------------
# Arch/OS/platform tests.
#----------------------------------------------------------------------------
# We create a number of arch/OS/platform-related variables. We prefix them
# all with "VGCONF_" which indicates that they are defined at
# configure-time, and distinguishes them from the VGA_*/VGO_*/VGP_*
# variables used when compiling C files.
AC_CANONICAL_HOST
AC_MSG_CHECKING([for a supported CPU])
# ARCH_MAX reflects the most that this CPU can do: for example if it
# is a 64-bit capable PowerPC, then it must be set to ppc64 and not ppc32.
# Ditto for amd64. It is used for more configuration below, but is not used
# outside this file.
case "${host_cpu}" in
i?86)
AC_MSG_RESULT([ok (${host_cpu})])
ARCH_MAX="x86"
;;
x86_64)
AC_MSG_RESULT([ok (${host_cpu})])
ARCH_MAX="amd64"
;;
powerpc64)
AC_MSG_RESULT([ok (${host_cpu})])
ARCH_MAX="ppc64"
;;
powerpc)
# On Linux this means only a 32-bit capable CPU.
AC_MSG_RESULT([ok (${host_cpu})])
ARCH_MAX="ppc32"
;;
s390x)
AC_MSG_RESULT([ok (${host_cpu})])
ARCH_MAX="s390x"
;;
armv7*)
AC_MSG_RESULT([ok (${host_cpu})])
ARCH_MAX="arm"
;;
*)
AC_MSG_RESULT([no (${host_cpu})])
AC_MSG_ERROR([Unsupported host architecture. Sorry])
;;
esac
#----------------------------------------------------------------------------
# Sometimes it's convenient to subvert the bi-arch build system and
# just have a single build even though the underlying platform is
# capable of both. Hence handle --enable-only64bit and
# --enable-only32bit. Complain if both are issued :-)
# [Actually, if either of these options are used, I think both get built,
# but only one gets installed. So if you use an in-place build, both can be
# used. --njn]
# Check if a 64-bit only build has been requested
AC_CACHE_CHECK([for a 64-bit only build], vg_cv_only64bit,
[AC_ARG_ENABLE(only64bit,
[ --enable-only64bit do a 64-bit only build],
[vg_cv_only64bit=$enableval],
[vg_cv_only64bit=no])])
# Check if a 32-bit only build has been requested
AC_CACHE_CHECK([for a 32-bit only build], vg_cv_only32bit,
[AC_ARG_ENABLE(only32bit,
[ --enable-only32bit do a 32-bit only build],
[vg_cv_only32bit=$enableval],
[vg_cv_only32bit=no])])
# Stay sane
if test x$vg_cv_only64bit = xyes -a x$vg_cv_only32bit = xyes; then
AC_MSG_ERROR(
[Nonsensical: both --enable-only64bit and --enable-only32bit.])
fi
#----------------------------------------------------------------------------
# VGCONF_OS is the primary build OS, eg. "linux". It is passed in to
# compilation of many C files via -VGO_$(VGCONF_OS) and
# -VGP_$(VGCONF_ARCH_PRI)_$(VGCONF_OS).
AC_MSG_CHECKING([for a supported OS])
AC_SUBST(VGCONF_OS)
DEFAULT_SUPP=""
case "${host_os}" in
*linux*)
AC_MSG_RESULT([ok (${host_os})])
VGCONF_OS="linux"
# Ok, this is linux. Check the kernel version
AC_MSG_CHECKING([for the kernel version])
kernel=`uname -r`
case "${kernel}" in
2.6.*|3.*)
AC_MSG_RESULT([2.6.x/3.x family (${kernel})])
AC_DEFINE([KERNEL_2_6], 1, [Define to 1 if you're using Linux 2.6.x or Linux 3.x])
;;
2.4.*)
AC_MSG_RESULT([2.4 family (${kernel})])
AC_DEFINE([KERNEL_2_4], 1, [Define to 1 if you're using Linux 2.4.x])
;;
*)
AC_MSG_RESULT([unsupported (${kernel})])
AC_MSG_ERROR([Valgrind works on kernels 2.4, 2.6])
;;
esac
;;
*darwin*)
AC_MSG_RESULT([ok (${host_os})])
VGCONF_OS="darwin"
AC_DEFINE([DARWIN_10_5], 100500, [DARWIN_VERS value for Mac OS X 10.5])
AC_DEFINE([DARWIN_10_6], 100600, [DARWIN_VERS value for Mac OS X 10.6])
AC_DEFINE([DARWIN_10_7], 100700, [DARWIN_VERS value for Mac OS X 10.7])
AC_MSG_CHECKING([for the kernel version])
kernel=`uname -r`
# Nb: for Darwin we set DEFAULT_SUPP here. That's because Darwin
# has only one relevant version, the OS version. The `uname` check
# is a good way to get that version (i.e. "Darwin 9.6.0" is Mac OS
# X 10.5.6, and "Darwin 10.x" is Mac OS X 10.6.x Snow Leopard),
# and we don't know of an macros similar to __GLIBC__ to get that info.
#
# XXX: `uname -r` won't do the right thing for cross-compiles, but
# that's not a problem yet.
case "${kernel}" in
9.*)
AC_MSG_RESULT([Darwin 9.x (${kernel}) / Mac OS X 10.5 Leopard])
AC_DEFINE([DARWIN_VERS], DARWIN_10_5, [Darwin / Mac OS X version])
DEFAULT_SUPP="darwin9.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="darwin9-drd.supp ${DEFAULT_SUPP}"
;;
10.*)
AC_MSG_RESULT([Darwin 10.x (${kernel}) / Mac OS X 10.6 Snow Leopard])
AC_DEFINE([DARWIN_VERS], DARWIN_10_6, [Darwin / Mac OS X version])
DEFAULT_SUPP="darwin10.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="darwin10-drd.supp ${DEFAULT_SUPP}"
;;
*)
AC_MSG_RESULT([unsupported (${kernel})])
AC_MSG_ERROR([Valgrind works on Darwin 9.x and 10.x (Mac OS X 10.5 and 10.6)])
;;
esac
;;
*)
AC_MSG_RESULT([no (${host_os})])
AC_MSG_ERROR([Valgrind is operating system specific. Sorry.])
;;
esac
#----------------------------------------------------------------------------
# If we are building on a 64 bit platform test to see if the system
# supports building 32 bit programs and disable 32 bit support if it
# does not support building 32 bit programs
case "$ARCH_MAX-$VGCONF_OS" in
amd64-linux|ppc64-linux)
AC_MSG_CHECKING([for 32 bit build support])
safe_CFLAGS=$CFLAGS
CFLAGS="-m32"
AC_TRY_LINK(, [
return 0;
],
[
AC_MSG_RESULT([yes])
], [
vg_cv_only64bit="yes"
AC_MSG_RESULT([no])
])
CFLAGS=$safe_CFLAGS;;
esac
if test x$vg_cv_only64bit = xyes -a x$vg_cv_only32bit = xyes; then
AC_MSG_ERROR(
[--enable-only32bit was specified but system does not support 32 bit builds])
fi
#----------------------------------------------------------------------------
# VGCONF_ARCH_PRI is the arch for the primary build target, eg. "amd64". By
# default it's the same as ARCH_MAX. But if, say, we do a build on an amd64
# machine, but --enable-only32bit has been requested, then ARCH_MAX (see
# above) will be "amd64" since that reflects the most that this cpu can do,
# but VGCONF_ARCH_PRI will be downgraded to "x86", since that reflects the
# arch corresponding to the primary build (VGCONF_PLATFORM_PRI_CAPS). It is
# passed in to compilation of many C files via -VGA_$(VGCONF_ARCH_PRI) and
# -VGP_$(VGCONF_ARCH_PRI)_$(VGCONF_OS).
AC_SUBST(VGCONF_ARCH_PRI)
# VGCONF_ARCH_SEC is the arch for the secondary build target, eg. "x86".
# It is passed in to compilation of many C files via -VGA_$(VGCONF_ARCH_SEC)
# and -VGP_$(VGCONF_ARCH_SEC)_$(VGCONF_OS), if there is a secondary target.
# It is empty if there is no secondary target.
AC_SUBST(VGCONF_ARCH_SEC)
# VGCONF_PLATFORM_PRI_CAPS is the primary build target, eg. "AMD64_LINUX".
# The entire system, including regression and performance tests, will be
# built for this target. The "_CAPS" indicates that the name is in capital
# letters, and it also uses '_' rather than '-' as a separator, because it's
# used to create various Makefile variables, which are all in caps by
# convention and cannot contain '-' characters. This is in contrast to
# VGCONF_ARCH_PRI and VGCONF_OS which are not in caps.
AC_SUBST(VGCONF_PLATFORM_PRI_CAPS)
# VGCONF_PLATFORM_SEC_CAPS is the secondary build target, if there is one.
# Valgrind and tools will also be built for this target, but not the
# regression or performance tests.
#
# By default, the primary arch is the same as the "max" arch, as commented
# above (at the definition of ARCH_MAX). We may choose to downgrade it in
# the big case statement just below here, in the case where we're building
# on a 64 bit machine but have been requested only to do a 32 bit build.
AC_SUBST(VGCONF_PLATFORM_SEC_CAPS)
AC_MSG_CHECKING([for a supported CPU/OS combination])
# NB. The load address for a given platform may be specified in more
# than one place, in some cases, depending on whether we're doing a biarch,
# 32-bit only or 64-bit only build. eg see case for amd64-linux below.
# Be careful to give consistent values in all subcases. Also, all four
# valt_load_addres_{pri,sec}_{norml,inner} values must always be set,
# even if it is to "0xUNSET".
#
case "$ARCH_MAX-$VGCONF_OS" in
x86-linux)
VGCONF_ARCH_PRI="x86"
VGCONF_ARCH_SEC=""
VGCONF_PLATFORM_PRI_CAPS="X86_LINUX"
VGCONF_PLATFORM_SEC_CAPS=""
valt_load_address_pri_norml="0x38000000"
valt_load_address_pri_inner="0x28000000"
valt_load_address_sec_norml="0xUNSET"
valt_load_address_sec_inner="0xUNSET"
AC_MSG_RESULT([ok (${ARCH_MAX}-${VGCONF_OS})])
;;
amd64-linux)
valt_load_address_sec_norml="0xUNSET"
valt_load_address_sec_inner="0xUNSET"
if test x$vg_cv_only64bit = xyes; then
VGCONF_ARCH_PRI="amd64"
VGCONF_ARCH_SEC=""
VGCONF_PLATFORM_PRI_CAPS="AMD64_LINUX"
VGCONF_PLATFORM_SEC_CAPS=""
valt_load_address_pri_norml="0x38000000"
valt_load_address_pri_inner="0x28000000"
elif test x$vg_cv_only32bit = xyes; then
VGCONF_ARCH_PRI="x86"
VGCONF_ARCH_SEC=""
VGCONF_PLATFORM_PRI_CAPS="X86_LINUX"
VGCONF_PLATFORM_SEC_CAPS=""
valt_load_address_pri_norml="0x38000000"
valt_load_address_pri_inner="0x28000000"
else
VGCONF_ARCH_PRI="amd64"
VGCONF_ARCH_SEC="x86"
VGCONF_PLATFORM_PRI_CAPS="AMD64_LINUX"
VGCONF_PLATFORM_SEC_CAPS="X86_LINUX"
valt_load_address_pri_norml="0x38000000"
valt_load_address_pri_inner="0x28000000"
valt_load_address_sec_norml="0x38000000"
valt_load_address_sec_inner="0x28000000"
fi
AC_MSG_RESULT([ok (${ARCH_MAX}-${VGCONF_OS})])
;;
ppc32-linux)
VGCONF_ARCH_PRI="ppc32"
VGCONF_ARCH_SEC=""
VGCONF_PLATFORM_PRI_CAPS="PPC32_LINUX"
VGCONF_PLATFORM_SEC_CAPS=""
valt_load_address_pri_norml="0x38000000"
valt_load_address_pri_inner="0x28000000"
valt_load_address_sec_norml="0xUNSET"
valt_load_address_sec_inner="0xUNSET"
AC_MSG_RESULT([ok (${ARCH_MAX}-${VGCONF_OS})])
;;
ppc64-linux)
valt_load_address_sec_norml="0xUNSET"
valt_load_address_sec_inner="0xUNSET"
if test x$vg_cv_only64bit = xyes; then
VGCONF_ARCH_PRI="ppc64"
VGCONF_ARCH_SEC=""
VGCONF_PLATFORM_PRI_CAPS="PPC64_LINUX"
VGCONF_PLATFORM_SEC_CAPS=""
valt_load_address_pri_norml="0x38000000"
valt_load_address_pri_inner="0x28000000"
elif test x$vg_cv_only32bit = xyes; then
VGCONF_ARCH_PRI="ppc32"
VGCONF_ARCH_SEC=""
VGCONF_PLATFORM_PRI_CAPS="PPC32_LINUX"
VGCONF_PLATFORM_SEC_CAPS=""
valt_load_address_pri_norml="0x38000000"
valt_load_address_pri_inner="0x28000000"
else
VGCONF_ARCH_PRI="ppc64"
VGCONF_ARCH_SEC="ppc32"
VGCONF_PLATFORM_PRI_CAPS="PPC64_LINUX"
VGCONF_PLATFORM_SEC_CAPS="PPC32_LINUX"
valt_load_address_pri_norml="0x38000000"
valt_load_address_pri_inner="0x28000000"
valt_load_address_sec_norml="0x38000000"
valt_load_address_sec_inner="0x28000000"
fi
AC_MSG_RESULT([ok (${ARCH_MAX}-${VGCONF_OS})])
;;
# Darwin gets identified as 32-bit even when it supports 64-bit.
# (Not sure why, possibly because 'uname' returns "i386"?) Just about
# all Macs support both 32-bit and 64-bit, so we just build both. If
# someone has a really old 32-bit only machine they can (hopefully?)
# build with --enable-only32bit. See bug 243362.
x86-darwin|amd64-darwin)
ARCH_MAX="amd64"
valt_load_address_sec_norml="0xUNSET"
valt_load_address_sec_inner="0xUNSET"
if test x$vg_cv_only64bit = xyes; then
VGCONF_ARCH_PRI="amd64"
VGCONF_ARCH_SEC=""
VGCONF_PLATFORM_PRI_CAPS="AMD64_DARWIN"
VGCONF_PLATFORM_SEC_CAPS=""
valt_load_address_pri_norml="0x138000000"
valt_load_address_pri_inner="0x128000000"
elif test x$vg_cv_only32bit = xyes; then
VGCONF_ARCH_PRI="x86"
VGCONF_ARCH_SEC=""
VGCONF_PLATFORM_PRI_CAPS="X86_DARWIN"
VGCONF_PLATFORM_SEC_CAPS=""
VGCONF_ARCH_PRI_CAPS="x86"
valt_load_address_pri_norml="0x38000000"
valt_load_address_pri_inner="0x28000000"
else
VGCONF_ARCH_PRI="amd64"
VGCONF_ARCH_SEC="x86"
VGCONF_PLATFORM_PRI_CAPS="AMD64_DARWIN"
VGCONF_PLATFORM_SEC_CAPS="X86_DARWIN"
valt_load_address_pri_norml="0x138000000"
valt_load_address_pri_inner="0x128000000"
valt_load_address_sec_norml="0x38000000"
valt_load_address_sec_inner="0x28000000"
fi
AC_MSG_RESULT([ok (${ARCH_MAX}-${VGCONF_OS})])
;;
arm-linux)
VGCONF_ARCH_PRI="arm"
VGCONF_PLATFORM_PRI_CAPS="ARM_LINUX"
VGCONF_PLATFORM_SEC_CAPS=""
valt_load_address_pri_norml="0x38000000"
valt_load_address_pri_inner="0x28000000"
valt_load_address_sec_norml="0xUNSET"
valt_load_address_sec_inner="0xUNSET"
AC_MSG_RESULT([ok (${host_cpu}-${host_os})])
;;
s390x-linux)
VGCONF_ARCH_PRI="s390x"
VGCONF_ARCH_SEC=""
VGCONF_PLATFORM_PRI_CAPS="S390X_LINUX"
VGCONF_PLATFORM_SEC_CAPS=""
# we want to have the generated code close to the dispatcher
valt_load_address_pri_norml="0x401000000"
valt_load_address_pri_inner="0x410000000"
valt_load_address_sec_norml="0xUNSET"
valt_load_address_sec_inner="0xUNSET"
AC_MSG_RESULT([ok (${ARCH_MAX}-${VGCONF_OS})])
;;
*)
VGCONF_ARCH_PRI="unknown"
VGCONF_ARCH_SEC="unknown"
VGCONF_PLATFORM_PRI_CAPS="UNKNOWN"
VGCONF_PLATFORM_SEC_CAPS="UNKNOWN"
valt_load_address_pri_norml="0xUNSET"
valt_load_address_pri_inner="0xUNSET"
valt_load_address_sec_norml="0xUNSET"
valt_load_address_sec_inner="0xUNSET"
AC_MSG_RESULT([no (${ARCH_MAX}-${VGCONF_OS})])
AC_MSG_ERROR([Valgrind is platform specific. Sorry. Please consider doing a port.])
;;
esac
#----------------------------------------------------------------------------
# Set up VGCONF_ARCHS_INCLUDE_<arch>. Either one or two of these become
# defined.
AM_CONDITIONAL(VGCONF_ARCHS_INCLUDE_X86,
test x$VGCONF_PLATFORM_PRI_CAPS = xX86_LINUX \
-o x$VGCONF_PLATFORM_SEC_CAPS = xX86_LINUX \
-o x$VGCONF_PLATFORM_PRI_CAPS = xX86_DARWIN \
-o x$VGCONF_PLATFORM_SEC_CAPS = xX86_DARWIN )
AM_CONDITIONAL(VGCONF_ARCHS_INCLUDE_AMD64,
test x$VGCONF_PLATFORM_PRI_CAPS = xAMD64_LINUX \
-o x$VGCONF_PLATFORM_PRI_CAPS = xAMD64_DARWIN )
AM_CONDITIONAL(VGCONF_ARCHS_INCLUDE_PPC32,
test x$VGCONF_PLATFORM_PRI_CAPS = xPPC32_LINUX \
-o x$VGCONF_PLATFORM_SEC_CAPS = xPPC32_LINUX )
AM_CONDITIONAL(VGCONF_ARCHS_INCLUDE_PPC64,
test x$VGCONF_PLATFORM_PRI_CAPS = xPPC64_LINUX )
AM_CONDITIONAL(VGCONF_ARCHS_INCLUDE_ARM,
test x$VGCONF_PLATFORM_PRI_CAPS = xARM_LINUX )
AM_CONDITIONAL(VGCONF_ARCHS_INCLUDE_S390X,
test x$VGCONF_PLATFORM_PRI_CAPS = xS390X_LINUX )
# Set up VGCONF_PLATFORMS_INCLUDE_<platform>. Either one or two of these
# become defined.
AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_X86_LINUX,
test x$VGCONF_PLATFORM_PRI_CAPS = xX86_LINUX \
-o x$VGCONF_PLATFORM_SEC_CAPS = xX86_LINUX)
AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_AMD64_LINUX,
test x$VGCONF_PLATFORM_PRI_CAPS = xAMD64_LINUX)
AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_PPC32_LINUX,
test x$VGCONF_PLATFORM_PRI_CAPS = xPPC32_LINUX \
-o x$VGCONF_PLATFORM_SEC_CAPS = xPPC32_LINUX)
AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_PPC64_LINUX,
test x$VGCONF_PLATFORM_PRI_CAPS = xPPC64_LINUX)
AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_ARM_LINUX,
test x$VGCONF_PLATFORM_PRI_CAPS = xARM_LINUX)
AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_S390X_LINUX,
test x$VGCONF_PLATFORM_PRI_CAPS = xS390X_LINUX \
-o x$VGCONF_PLATFORM_SEC_CAPS = xS390X_LINUX)
AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_X86_DARWIN,
test x$VGCONF_PLATFORM_PRI_CAPS = xX86_DARWIN \
-o x$VGCONF_PLATFORM_SEC_CAPS = xX86_DARWIN)
AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_AMD64_DARWIN,
test x$VGCONF_PLATFORM_PRI_CAPS = xAMD64_DARWIN)
# Similarly, set up VGCONF_OS_IS_<os>. Exactly one of these becomes defined.
# Relies on the assumption that the primary and secondary targets are
# for the same OS, so therefore only necessary to test the primary.
AM_CONDITIONAL(VGCONF_OS_IS_LINUX,
test x$VGCONF_PLATFORM_PRI_CAPS = xX86_LINUX \
-o x$VGCONF_PLATFORM_PRI_CAPS = xAMD64_LINUX \
-o x$VGCONF_PLATFORM_PRI_CAPS = xPPC32_LINUX \
-o x$VGCONF_PLATFORM_PRI_CAPS = xPPC64_LINUX \
-o x$VGCONF_PLATFORM_PRI_CAPS = xARM_LINUX \
-o x$VGCONF_PLATFORM_PRI_CAPS = xS390X_LINUX)
AM_CONDITIONAL(VGCONF_OS_IS_DARWIN,
test x$VGCONF_PLATFORM_PRI_CAPS = xX86_DARWIN \
-o x$VGCONF_PLATFORM_PRI_CAPS = xAMD64_DARWIN)
# Sometimes, in the Makefile.am files, it's useful to know whether or not
# there is a secondary target.
AM_CONDITIONAL(VGCONF_HAVE_PLATFORM_SEC,
test x$VGCONF_PLATFORM_SEC_CAPS != x)
#----------------------------------------------------------------------------
# Inner Valgrind?
#----------------------------------------------------------------------------
# Check if this should be built as an inner Valgrind, to be run within
# another Valgrind. Choose the load address accordingly.
AC_SUBST(VALT_LOAD_ADDRESS_PRI)
AC_SUBST(VALT_LOAD_ADDRESS_SEC)
AC_CACHE_CHECK([for use as an inner Valgrind], vg_cv_inner,
[AC_ARG_ENABLE(inner,
[ --enable-inner enables self-hosting],
[vg_cv_inner=$enableval],
[vg_cv_inner=no])])
if test "$vg_cv_inner" = yes; then
AC_DEFINE([ENABLE_INNER], 1, [configured to run as an inner Valgrind])
VALT_LOAD_ADDRESS_PRI=$valt_load_address_pri_inner
VALT_LOAD_ADDRESS_SEC=$valt_load_address_sec_inner
else
VALT_LOAD_ADDRESS_PRI=$valt_load_address_pri_norml
VALT_LOAD_ADDRESS_SEC=$valt_load_address_sec_norml
fi
#----------------------------------------------------------------------------
# Extra fine-tuning of installation directories
#----------------------------------------------------------------------------
AC_ARG_WITH(tmpdir,
[ --with-tmpdir=PATH Specify path for temporary files],
tmpdir="$withval",
tmpdir="/tmp")
AC_DEFINE_UNQUOTED(VG_TMPDIR, "$tmpdir", [Temporary files directory])
#----------------------------------------------------------------------------
# Libc and suppressions
#----------------------------------------------------------------------------
# This variable will collect the suppression files to be used.
AC_SUBST(DEFAULT_SUPP)
AC_CHECK_HEADER([features.h])
if test x$ac_cv_header_features_h = xyes; then
rm -f conftest.$ac_ext
cat <<_ACEOF >conftest.$ac_ext
#include <features.h>
#if defined(__GNU_LIBRARY__) && defined(__GLIBC__) && defined(__GLIBC_MINOR__)
glibc version is: __GLIBC__ __GLIBC_MINOR__
#endif
_ACEOF
GLIBC_VERSION="`$CPP conftest.$ac_ext | $SED -n 's/^glibc version is: //p' | $SED 's/ /./g'`"
fi
# not really a version check
AC_EGREP_CPP([DARWIN_LIBC], [
#include <sys/cdefs.h>
#if defined(__DARWIN_VERS_1050)
DARWIN_LIBC
#endif
],
GLIBC_VERSION="darwin")
# not really a version check
AC_EGREP_CPP([BIONIC_LIBC], [
#if defined(__ANDROID__)
BIONIC_LIBC
#endif
],
GLIBC_VERSION="bionic")
AC_MSG_CHECKING([the GLIBC_VERSION version])
case "${GLIBC_VERSION}" in
2.2)
AC_MSG_RESULT(2.2 family)
AC_DEFINE([GLIBC_2_2], 1, [Define to 1 if you're using glibc 2.2.x])
DEFAULT_SUPP="glibc-2.2.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.2-LinuxThreads-helgrind.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.X-drd.supp ${DEFAULT_SUPP}"
;;
2.3)
AC_MSG_RESULT(2.3 family)
AC_DEFINE([GLIBC_2_3], 1, [Define to 1 if you're using glibc 2.3.x])
DEFAULT_SUPP="glibc-2.3.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.34567-NPTL-helgrind.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.X-drd.supp ${DEFAULT_SUPP}"
;;
2.4)
AC_MSG_RESULT(2.4 family)
AC_DEFINE([GLIBC_2_4], 1, [Define to 1 if you're using glibc 2.4.x])
DEFAULT_SUPP="glibc-2.4.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.34567-NPTL-helgrind.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.X-drd.supp ${DEFAULT_SUPP}"
;;
2.5)
AC_MSG_RESULT(2.5 family)
AC_DEFINE([GLIBC_2_5], 1, [Define to 1 if you're using glibc 2.5.x])
DEFAULT_SUPP="glibc-2.5.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.34567-NPTL-helgrind.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.X-drd.supp ${DEFAULT_SUPP}"
;;
2.6)
AC_MSG_RESULT(2.6 family)
AC_DEFINE([GLIBC_2_6], 1, [Define to 1 if you're using glibc 2.6.x])
DEFAULT_SUPP="glibc-2.6.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.34567-NPTL-helgrind.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.X-drd.supp ${DEFAULT_SUPP}"
;;
2.7)
AC_MSG_RESULT(2.7 family)
AC_DEFINE([GLIBC_2_7], 1, [Define to 1 if you're using glibc 2.7.x])
DEFAULT_SUPP="glibc-2.X.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.34567-NPTL-helgrind.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.X-drd.supp ${DEFAULT_SUPP}"
;;
2.8)
AC_MSG_RESULT(2.8 family)
AC_DEFINE([GLIBC_2_8], 1, [Define to 1 if you're using glibc 2.8.x])
DEFAULT_SUPP="glibc-2.X.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.34567-NPTL-helgrind.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.X-drd.supp ${DEFAULT_SUPP}"
;;
2.9)
AC_MSG_RESULT(2.9 family)
AC_DEFINE([GLIBC_2_9], 1, [Define to 1 if you're using glibc 2.9.x])
DEFAULT_SUPP="glibc-2.X.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.34567-NPTL-helgrind.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.X-drd.supp ${DEFAULT_SUPP}"
;;
2.10)
AC_MSG_RESULT(2.10 family)
AC_DEFINE([GLIBC_2_10], 1, [Define to 1 if you're using glibc 2.10.x])
DEFAULT_SUPP="glibc-2.X.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.34567-NPTL-helgrind.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.X-drd.supp ${DEFAULT_SUPP}"
;;
2.11)
AC_MSG_RESULT(2.11 family)
AC_DEFINE([GLIBC_2_11], 1, [Define to 1 if you're using glibc 2.11.x])
DEFAULT_SUPP="glibc-2.X.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.34567-NPTL-helgrind.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.X-drd.supp ${DEFAULT_SUPP}"
;;
2.12)
AC_MSG_RESULT(2.12 family)
AC_DEFINE([GLIBC_2_12], 1, [Define to 1 if you're using glibc 2.12.x])
DEFAULT_SUPP="glibc-2.X.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.34567-NPTL-helgrind.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.X-drd.supp ${DEFAULT_SUPP}"
;;
2.13)
AC_MSG_RESULT(2.13 family)
AC_DEFINE([GLIBC_2_13], 1, [Define to 1 if you're using glibc 2.13.x])
DEFAULT_SUPP="glibc-2.X.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.34567-NPTL-helgrind.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.X-drd.supp ${DEFAULT_SUPP}"
;;
2.14)
AC_MSG_RESULT(2.14 family)
AC_DEFINE([GLIBC_2_14], 1, [Define to 1 if you're using glibc 2.14.x])
DEFAULT_SUPP="glibc-2.X.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.34567-NPTL-helgrind.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="glibc-2.X-drd.supp ${DEFAULT_SUPP}"
;;
darwin)
AC_MSG_RESULT(Darwin)
AC_DEFINE([DARWIN_LIBC], 1, [Define to 1 if you're using Darwin])
# DEFAULT_SUPP set by kernel version check above.
;;
bionic)
AC_MSG_RESULT(Bionic)
AC_DEFINE([BIONIC_LIBC], 1, [Define to 1 if you're using Bionic])
DEFAULT_SUPP="bionic.supp ${DEFAULT_SUPP}"
;;
*)
AC_MSG_RESULT([unsupported version ${GLIBC_VERSION}])
AC_MSG_ERROR([Valgrind requires glibc version 2.2 - 2.14])
AC_MSG_ERROR([or Darwin libc])
;;
esac
AC_SUBST(GLIBC_VERSION)
# Add default suppressions for the X client libraries. Make no
# attempt to detect whether such libraries are installed on the
# build machine (or even if any X facilities are present); just
# add the suppressions antidisirregardless.
DEFAULT_SUPP="xfree-4.supp ${DEFAULT_SUPP}"
DEFAULT_SUPP="xfree-3.supp ${DEFAULT_SUPP}"
# Add glibc and X11 suppressions for exp-sgcheck
DEFAULT_SUPP="exp-sgcheck.supp ${DEFAULT_SUPP}"
#----------------------------------------------------------------------------
# Platform variants?
#----------------------------------------------------------------------------
# Normally the PLAT = (ARCH, OS) characterisation of the platform is enough.
# But there are times where we need a bit more control. The motivating
# and currently only case is Android: this is almost identical to arm-linux,
# but not quite. So this introduces the concept of platform variant tags,
# which get passed in the compile as -DVGPV_<arch>_<os>_<variant> along
# with the main -DVGP_<arch>_<os> definition.
#
# In almost all cases, the <variant> bit is "vanilla". But for Android
# it is "android" instead.
#
# Consequently (eg), plain arm-linux would build with
#
# -DVGP_arm_linux -DVGPV_arm_linux_vanilla
#
# whilst an Android build would have
#
# -DVGP_arm_linux -DVGPV_arm_linux_android
#
# The setup of the platform variant is pushed relatively far down this
# file in order that we can inspect any of the variables set above.
# In the normal case ..
VGCONF_PLATVARIANT="vanilla"
# Android on ARM ?
if test "$VGCONF_ARCH_PRI-$VGCONF_OS" = "arm-linux" \
-a "$GLIBC_VERSION" = "bionic";
then
VGCONF_PLATVARIANT="android"
fi
AC_SUBST(VGCONF_PLATVARIANT)
# FIXME: do we also want to define automake variables
# VGCONF_PLATVARIANT_IS_<WHATEVER>, where WHATEVER is (currently)
# VANILLA or ANDROID ? This would be in the style of VGCONF_ARCHS_INCLUDE,
# VGCONF_PLATFORMS_INCLUDE and VGCONF_OS_IS above? Could easily enough
# do that. Problem is that we can't do and-ing in Makefile.am's, but
# that's what we'd need to do to use this, since what we'd want to write
# is something like
#
# VGCONF_PLATFORMS_INCLUDE_ARM_LINUX && VGCONF_PLATVARIANT_IS_ANDROID
#
# Hmm. Can't think of a nice clean solution to this.
AM_CONDITIONAL(VGCONF_PLATVARIANT_IS_VANILLA,
test x$VGCONF_PLATVARIANT = xvanilla)
AM_CONDITIONAL(VGCONF_PLATVARIANT_IS_ANDROID,
test x$VGCONF_PLATVARIANT = xandroid)
#----------------------------------------------------------------------------
# Checking for various library functions and other definitions
#----------------------------------------------------------------------------
# Check for CLOCK_MONOTONIC
AC_MSG_CHECKING([for CLOCK_MONOTONIC])
AC_TRY_COMPILE(
[
#include <time.h>
], [
struct timespec t;
clock_gettime(CLOCK_MONOTONIC, &t);
return 0;
],
[
AC_MSG_RESULT([yes])
AC_DEFINE([HAVE_CLOCK_MONOTONIC], 1,
[Define to 1 if you have the `CLOCK_MONOTONIC' constant.])
], [
AC_MSG_RESULT([no])
])
# Check for PTHREAD_RWLOCK_T
AC_MSG_CHECKING([for pthread_rwlock_t])
AC_TRY_COMPILE(
[
#define _GNU_SOURCE
#include <pthread.h>
], [
pthread_rwlock_t rwl;
],
[
AC_MSG_RESULT([yes])
AC_DEFINE([HAVE_PTHREAD_RWLOCK_T], 1,
[Define to 1 if you have the `pthread_rwlock_t' type.])
], [
AC_MSG_RESULT([no])
])
# Check for PTHREAD_MUTEX_ADAPTIVE_NP
AC_MSG_CHECKING([for PTHREAD_MUTEX_ADAPTIVE_NP])
AC_TRY_COMPILE(
[
#define _GNU_SOURCE
#include <pthread.h>
], [
return (PTHREAD_MUTEX_ADAPTIVE_NP);
],
[
AC_MSG_RESULT([yes])
AC_DEFINE([HAVE_PTHREAD_MUTEX_ADAPTIVE_NP], 1,
[Define to 1 if you have the `PTHREAD_MUTEX_ADAPTIVE_NP' constant.])
], [
AC_MSG_RESULT([no])
])
# Check for PTHREAD_MUTEX_ERRORCHECK_NP
AC_MSG_CHECKING([for PTHREAD_MUTEX_ERRORCHECK_NP])
AC_TRY_COMPILE(
[
#define _GNU_SOURCE
#include <pthread.h>
], [
return (PTHREAD_MUTEX_ERRORCHECK_NP);
],
[
AC_MSG_RESULT([yes])
AC_DEFINE([HAVE_PTHREAD_MUTEX_ERRORCHECK_NP], 1,
[Define to 1 if you have the `PTHREAD_MUTEX_ERRORCHECK_NP' constant.])
], [
AC_MSG_RESULT([no])
])
# Check for PTHREAD_MUTEX_RECURSIVE_NP
AC_MSG_CHECKING([for PTHREAD_MUTEX_RECURSIVE_NP])
AC_TRY_COMPILE(
[
#define _GNU_SOURCE
#include <pthread.h>
], [
return (PTHREAD_MUTEX_RECURSIVE_NP);
],
[
AC_MSG_RESULT([yes])
AC_DEFINE([HAVE_PTHREAD_MUTEX_RECURSIVE_NP], 1,
[Define to 1 if you have the `PTHREAD_MUTEX_RECURSIVE_NP' constant.])
], [
AC_MSG_RESULT([no])
])
# Check for PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP
AC_MSG_CHECKING([for PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP])
AC_TRY_COMPILE(
[
#define _GNU_SOURCE
#include <pthread.h>
], [
pthread_mutex_t m = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
return 0;
],
[
AC_MSG_RESULT([yes])
AC_DEFINE([HAVE_PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP], 1,
[Define to 1 if you have the `PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP' constant.])
], [
AC_MSG_RESULT([no])
])
# Check whether pthread_mutex_t has a member called __m_kind.
AC_CHECK_MEMBER([pthread_mutex_t.__m_kind],
[AC_DEFINE([HAVE_PTHREAD_MUTEX_T__M_KIND],
1,
[Define to 1 if pthread_mutex_t has a member called __m_kind.])
],
[],
[#include <pthread.h>])
# Check whether pthread_mutex_t has a member called __data.__kind.
AC_CHECK_MEMBER([pthread_mutex_t.__data.__kind],
[AC_DEFINE([HAVE_PTHREAD_MUTEX_T__DATA__KIND],
1,
[Define to 1 if pthread_mutex_t has a member __data.__kind.])
],
[],
[#include <pthread.h>])
# does this compiler support -maltivec and does it have the include file
# <altivec.h> ?
AC_MSG_CHECKING([for Altivec])
safe_CFLAGS=$CFLAGS
CFLAGS="-maltivec"
AC_TRY_COMPILE(
[
#include <altivec.h>
], [
vector unsigned int v;
],
[
ac_have_altivec=yes
AC_MSG_RESULT([yes])
AC_DEFINE([HAS_ALTIVEC], 1,
[Define to 1 if gcc/as can do Altivec.])
], [
ac_have_altivec=no
AC_MSG_RESULT([no])
])
CFLAGS=$safe_CFLAGS
AM_CONDITIONAL([HAS_ALTIVEC], [test x$ac_have_altivec = xyes])
# Check that both: the compiler supports -mvsx and that the assembler
# understands VSX instructions. If either of those doesn't work,
# conclude that we can't do VSX. NOTE: basically this is a kludge
# in that it conflates two things that should be separate -- whether
# the compiler understands the flag vs whether the assembler
# understands the opcodes. This really ought to be cleaned up
# and done properly, like it is for x86/x86_64.
AC_MSG_CHECKING([for VSX])
safe_CFLAGS=$CFLAGS
CFLAGS="-mvsx"
AC_TRY_COMPILE(
[
#include <altivec.h>
], [
vector unsigned int v;
__asm__ __volatile__("xsmaddadp 32, 32, 33" ::: "memory","cc");
],
[
ac_have_vsx=yes
AC_MSG_RESULT([yes])
], [
ac_have_vsx=no
AC_MSG_RESULT([no])
])
CFLAGS=$safe_CFLAGS
AM_CONDITIONAL(HAS_VSX, test x$ac_have_vsx = xyes)
# Check for pthread_create@GLIBC2.0
AC_MSG_CHECKING([for pthread_create@GLIBC2.0()])
safe_CFLAGS=$CFLAGS
CFLAGS="-lpthread"
AC_TRY_LINK(
[
extern int pthread_create_glibc_2_0(void*, const void*,
void *(*)(void*), void*);
__asm__(".symver pthread_create_glibc_2_0, pthread_create@GLIBC_2.0");
], [
#ifdef __powerpc__
/*
* Apparently on PowerPC linking this program succeeds and generates an
* executable with the undefined symbol pthread_create@GLIBC_2.0.
*/
#error This test does not work properly on PowerPC.
#else
pthread_create_glibc_2_0(0, 0, 0, 0);
#endif
return 0;
],
[
ac_have_pthread_create_glibc_2_0=yes
AC_MSG_RESULT([yes])
AC_DEFINE([HAVE_PTHREAD_CREATE_GLIBC_2_0], 1,
[Define to 1 if you have the `pthread_create@glibc2.0' function.])
], [
ac_have_pthread_create_glibc_2_0=no
AC_MSG_RESULT([no])
])
CFLAGS=$safe_CFLAGS
AM_CONDITIONAL(HAVE_PTHREAD_CREATE_GLIBC_2_0,
test x$ac_have_pthread_create_glibc_2_0 = xyes)
# Check for eventfd_t, eventfd() and eventfd_read()
AC_MSG_CHECKING([for eventfd()])
AC_TRY_LINK(
[
#include <sys/eventfd.h>
], [
eventfd_t ev;
int fd;
fd = eventfd(5, 0);
eventfd_read(fd, &ev);
return 0;
],
[
AC_MSG_RESULT([yes])
AC_DEFINE([HAVE_EVENTFD], 1,
[Define to 1 if you have the `eventfd' function.])
AC_DEFINE([HAVE_EVENTFD_READ], 1,
[Define to 1 if you have the `eventfd_read' function.])
], [
AC_MSG_RESULT([no])
])
#----------------------------------------------------------------------------
# Checking for supported compiler flags.
#----------------------------------------------------------------------------
# does this compiler support -m32 ?
AC_MSG_CHECKING([if gcc accepts -m32])
safe_CFLAGS=$CFLAGS
CFLAGS="-m32"
AC_TRY_COMPILE(, [
return 0;
],
[
FLAG_M32="-m32"
AC_MSG_RESULT([yes])
], [
FLAG_M32=""
AC_MSG_RESULT([no])
])
CFLAGS=$safe_CFLAGS
AC_SUBST(FLAG_M32)
# does this compiler support -m64 ?
AC_MSG_CHECKING([if gcc accepts -m64])
safe_CFLAGS=$CFLAGS
CFLAGS="-m64"
AC_TRY_COMPILE(, [
return 0;
],
[
FLAG_M64="-m64"
AC_MSG_RESULT([yes])
], [
FLAG_M64=""
AC_MSG_RESULT([no])
])
CFLAGS=$safe_CFLAGS
AC_SUBST(FLAG_M64)
# does this compiler support -mmmx ?
AC_MSG_CHECKING([if gcc accepts -mmmx])
safe_CFLAGS=$CFLAGS
CFLAGS="-mmmx"
AC_TRY_COMPILE(, [
return 0;
],
[
FLAG_MMMX="-mmmx"
AC_MSG_RESULT([yes])
], [
FLAG_MMMX=""
AC_MSG_RESULT([no])
])
CFLAGS=$safe_CFLAGS
AC_SUBST(FLAG_MMMX)
# does this compiler support -msse ?
AC_MSG_CHECKING([if gcc accepts -msse])
safe_CFLAGS=$CFLAGS
CFLAGS="-msse"
AC_TRY_COMPILE(, [
return 0;
],
[
FLAG_MSSE="-msse"
AC_MSG_RESULT([yes])
], [
FLAG_MSSE=""
AC_MSG_RESULT([no])
])
CFLAGS=$safe_CFLAGS
AC_SUBST(FLAG_MSSE)
# does this compiler support -mpreferred-stack-boundary=2 ?
AC_MSG_CHECKING([if gcc accepts -mpreferred-stack-boundary])
safe_CFLAGS=$CFLAGS
CFLAGS="-mpreferred-stack-boundary=2"
AC_TRY_COMPILE(, [
return 0;
],
[
PREFERRED_STACK_BOUNDARY="-mpreferred-stack-boundary=2"
AC_MSG_RESULT([yes])
], [
PREFERRED_STACK_BOUNDARY=""
AC_MSG_RESULT([no])
])
CFLAGS=$safe_CFLAGS
AC_SUBST(PREFERRED_STACK_BOUNDARY)
# does this compiler support -Wno-pointer-sign ?
AC_MSG_CHECKING([if gcc accepts -Wno-pointer-sign])
safe_CFLAGS=$CFLAGS
CFLAGS="-Wno-pointer-sign"
AC_TRY_COMPILE(, [
return 0;
],
[
no_pointer_sign=yes
AC_MSG_RESULT([yes])
], [
no_pointer_sign=no
AC_MSG_RESULT([no])
])
CFLAGS=$safe_CFLAGS
if test x$no_pointer_sign = xyes; then
CFLAGS="$CFLAGS -Wno-pointer-sign"
fi
# does this compiler support -Wno-empty-body ?
AC_MSG_CHECKING([if gcc accepts -Wno-empty-body])
safe_CFLAGS=$CFLAGS
CFLAGS="-Wno-empty-body"
AC_TRY_COMPILE(
[ ],
[
return 0;
],
[
AC_SUBST([FLAG_W_NO_EMPTY_BODY], [-Wno-empty-body])
AC_MSG_RESULT([yes])
],
[
AC_SUBST([FLAG_W_NO_EMPTY_BODY], [])
AC_MSG_RESULT([no])
])
CFLAGS=$safe_CFLAGS
# does this compiler support -Wno-format-zero-length ?
AC_MSG_CHECKING([if gcc accepts -Wno-format-zero-length])
safe_CFLAGS=$CFLAGS
CFLAGS="-Wno-format-zero-length"
AC_TRY_COMPILE(
[ ],
[
return 0;
],
[
AC_SUBST([FLAG_W_NO_FORMAT_ZERO_LENGTH], [-Wno-format-zero-length])
AC_MSG_RESULT([yes])
],
[
AC_SUBST([FLAG_W_NO_FORMAT_ZERO_LENGTH], [])
AC_MSG_RESULT([no])
])
CFLAGS=$safe_CFLAGS
# does this compiler support -Wno-nonnull ?
AC_MSG_CHECKING([if gcc accepts -Wno-nonnull])
safe_CFLAGS=$CFLAGS
CFLAGS="-Wno-nonnull"
AC_TRY_COMPILE(
[ ],
[
return 0;
],
[
AC_SUBST([FLAG_W_NO_NONNULL], [-Wno-nonnull])
AC_MSG_RESULT([yes])
],
[
AC_SUBST([FLAG_W_NO_NONNULL], [])
AC_MSG_RESULT([no])
])
CFLAGS=$safe_CFLAGS
# does this compiler support -Wno-overflow ?
AC_MSG_CHECKING([if gcc accepts -Wno-overflow])
safe_CFLAGS=$CFLAGS
CFLAGS="-Wno-overflow"
AC_TRY_COMPILE(
[ ],
[
return 0;
],
[
AC_SUBST([FLAG_W_NO_OVERFLOW], [-Wno-overflow])
AC_MSG_RESULT([yes])
],
[
AC_SUBST([FLAG_W_NO_OVERFLOW], [])
AC_MSG_RESULT([no])
])
CFLAGS=$safe_CFLAGS
# does this compiler support -Wno-uninitialized ?
AC_MSG_CHECKING([if gcc accepts -Wno-uninitialized])
safe_CFLAGS=$CFLAGS
CFLAGS="-Wno-uninitialized"
AC_TRY_COMPILE(
[ ],
[
return 0;
],
[
AC_SUBST([FLAG_W_NO_UNINITIALIZED], [-Wno-uninitialized])
AC_MSG_RESULT([yes])
],
[
AC_SUBST([FLAG_W_NO_UNINITIALIZED], [])
AC_MSG_RESULT([no])
])
CFLAGS=$safe_CFLAGS
# does this compiler support -Wextra or the older -W ?
AC_MSG_CHECKING([if gcc accepts -Wextra or -W])
safe_CFLAGS=$CFLAGS
CFLAGS="-Wextra"
AC_TRY_COMPILE(
[ ],
[
return 0;
],
[
AC_SUBST([FLAG_W_EXTRA], [-Wextra])
AC_MSG_RESULT([-Wextra])
], [
CFLAGS="-W"
AC_TRY_COMPILE(
[ ],
[
return 0;
],
[
AC_SUBST([FLAG_W_EXTRA], [-W])
AC_MSG_RESULT([-W])
], [
AC_SUBST([FLAG_W_EXTRA], [])
AC_MSG_RESULT([not supported])
])
])
CFLAGS=$safe_CFLAGS
# does this compiler support -fno-stack-protector ?
AC_MSG_CHECKING([if gcc accepts -fno-stack-protector])
safe_CFLAGS=$CFLAGS
CFLAGS="-fno-stack-protector"
AC_TRY_COMPILE(, [
return 0;
],
[
no_stack_protector=yes
FLAG_FNO_STACK_PROTECTOR="-fno-stack-protector"
AC_MSG_RESULT([yes])
], [
no_stack_protector=no
FLAG_FNO_STACK_PROTECTOR=""
AC_MSG_RESULT([no])
])
CFLAGS=$safe_CFLAGS
AC_SUBST(FLAG_FNO_STACK_PROTECTOR)
if test x$no_stack_protector = xyes; then
CFLAGS="$CFLAGS -fno-stack-protector"
fi
# does this compiler support --param inline-unit-growth=... ?
AC_MSG_CHECKING([if gcc accepts --param inline-unit-growth])
safe_CFLAGS=$CFLAGS
CFLAGS="--param inline-unit-growth=900"
AC_TRY_COMPILE(
[ ],
[
return 0;
],
[
AC_SUBST([FLAG_UNLIMITED_INLINE_UNIT_GROWTH],
["--param inline-unit-growth=900"])
AC_MSG_RESULT([yes])
], [
AC_SUBST([FLAG_UNLIMITED_INLINE_UNIT_GROWTH], [""])
AC_MSG_RESULT([no])
])
CFLAGS=$safe_CFLAGS
# does the linker support -Wl,--build-id=none ? Note, it's
# important that we test indirectly via whichever C compiler
# is selected, rather than testing /usr/bin/ld or whatever
# directly.
AC_MSG_CHECKING([if the linker accepts -Wl,--build-id=none])
safe_CFLAGS=$CFLAGS
CFLAGS="-Wl,--build-id=none"
AC_LINK_IFELSE(
[AC_LANG_PROGRAM([ ], [return 0;])],
[
AC_SUBST([FLAG_NO_BUILD_ID], ["-Wl,--build-id=none"])
AC_MSG_RESULT([yes])
], [
AC_SUBST([FLAG_NO_BUILD_ID], [""])
AC_MSG_RESULT([no])
])
CFLAGS=$safe_CFLAGS
# does the ppc assembler support "mtocrf" et al?
AC_MSG_CHECKING([if ppc32/64 as supports mtocrf/mfocrf])
AC_TRY_COMPILE(, [
__asm__ __volatile__("mtocrf 4,0");
__asm__ __volatile__("mfocrf 0,4");
],
[
ac_have_as_ppc_mftocrf=yes
AC_MSG_RESULT([yes])
], [
ac_have_as_ppc_mftocrf=no
AC_MSG_RESULT([no])
])
if test x$ac_have_as_ppc_mftocrf = xyes ; then
AC_DEFINE(HAVE_AS_PPC_MFTOCRF, 1, [Define to 1 if as supports mtocrf/mfocrf.])
fi
CFLAGS=$safe_CFLAGS
# does the x86/amd64 assembler understand SSE3 instructions?
# Note, this doesn't generate a C-level symbol. It generates a
# automake-level symbol (BUILD_SSE3_TESTS), used in test Makefile.am's
AC_MSG_CHECKING([if x86/amd64 assembler speaks SSE3])
AC_TRY_COMPILE(, [
do { long long int x;
__asm__ __volatile__("fisttpq (%0)" : :"r"(&x) ); }
while (0)
],
[
ac_have_as_sse3=yes
AC_MSG_RESULT([yes])
], [
ac_have_as_sse3=no
AC_MSG_RESULT([no])
])
AM_CONDITIONAL(BUILD_SSE3_TESTS, test x$ac_have_as_sse3 = xyes)
# Ditto for SSSE3 instructions (note extra S)
# Note, this doesn't generate a C-level symbol. It generates a
# automake-level symbol (BUILD_SSSE3_TESTS), used in test Makefile.am's
AC_MSG_CHECKING([if x86/amd64 assembler speaks SSSE3])
AC_TRY_COMPILE(, [
do { long long int x;
__asm__ __volatile__(
"pabsb (%0),%%xmm7" : : "r"(&x) : "xmm7" ); }
while (0)
],
[
ac_have_as_ssse3=yes
AC_MSG_RESULT([yes])
], [
ac_have_as_ssse3=no
AC_MSG_RESULT([no])
])
AM_CONDITIONAL(BUILD_SSSE3_TESTS, test x$ac_have_as_ssse3 = xyes)
# does the x86/amd64 assembler understand the PCLMULQDQ instruction?
# Note, this doesn't generate a C-level symbol. It generates a
# automake-level symbol (BUILD_PCLMULQDQ_TESTS), used in test Makefile.am's
AC_MSG_CHECKING([if x86/amd64 assembler supports 'pclmulqdq'])
AC_TRY_COMPILE(, [
do {
__asm__ __volatile__(
"pclmulqdq \$17,%%xmm6,%%xmm7" : : : "xmm6", "xmm7" ); }
while (0)
],
[
ac_have_as_pclmulqdq=yes
AC_MSG_RESULT([yes])
], [
ac_have_as_pclmulqdq=no
AC_MSG_RESULT([no])
])
AM_CONDITIONAL(BUILD_PCLMULQDQ_TESTS, test x$ac_have_as_pclmulqdq = xyes)
# does the x86/amd64 assembler understand the LZCNT instruction?
# Note, this doesn't generate a C-level symbol. It generates a
# automake-level symbol (BUILD_LZCNT_TESTS), used in test Makefile.am's
AC_MSG_CHECKING([if x86/amd64 assembler supports 'lzcnt'])
AC_TRY_COMPILE([], [
do {
__asm__ __volatile__("lzcnt %rax,%rax");
} while (0)
],
[
ac_have_as_lzcnt=yes
AC_MSG_RESULT([yes])
], [
ac_have_as_lzcnt=no
AC_MSG_RESULT([no])
])
AM_CONDITIONAL([BUILD_LZCNT_TESTS], [test x$ac_have_as_lzcnt = xyes])
# does the x86/amd64 assembler understand SSE 4.2 instructions?
# Note, this doesn't generate a C-level symbol. It generates a
# automake-level symbol (BUILD_SSE42_TESTS), used in test Makefile.am's
AC_MSG_CHECKING([if x86/amd64 assembler speaks SSE4.2])
AC_TRY_COMPILE(, [
do { long long int x;
__asm__ __volatile__(
"crc32q %%r15,%%r15" : : : "r15" ); }
while (0)
],
[
ac_have_as_sse42=yes
AC_MSG_RESULT([yes])
], [
ac_have_as_sse42=no
AC_MSG_RESULT([no])
])
AM_CONDITIONAL(BUILD_SSE42_TESTS, test x$ac_have_as_sse42 = xyes)
# XXX JRS 2010 Oct 13: what is this for? For sure, we don't need this
# when building the tool executables. I think we should get rid of it.
#
# Check for TLS support in the compiler and linker
if test "x${cross_compiling}" = "xno"; then
# Native compilation: check whether running a program using TLS succeeds.
# Linking only is not sufficient -- e.g. on Red Hat 7.3 linking TLS programs
# succeeds but running programs using TLS fails.
AC_CACHE_CHECK([for TLS support], vg_cv_tls,
[AC_ARG_ENABLE(tls, [ --enable-tls platform supports TLS],
[vg_cv_tls=$enableval],
[AC_RUN_IFELSE([AC_LANG_PROGRAM([[static __thread int foo;]],
[[return foo;]])],
[vg_cv_tls=yes],
[vg_cv_tls=no])])])
else
# Cross-compiling: check whether linking a program using TLS succeeds.
AC_CACHE_CHECK([for TLS support], vg_cv_tls,
[AC_ARG_ENABLE(tls, [ --enable-tls platform supports TLS],
[vg_cv_tls=$enableval],
[AC_LINK_IFELSE([AC_LANG_PROGRAM([[static __thread int foo;]],
[[return foo;]])],
[vg_cv_tls=yes],
[vg_cv_tls=no])])])
fi
if test "$vg_cv_tls" = yes; then
AC_DEFINE([HAVE_TLS], 1, [can use __thread to define thread-local variables])
fi
#----------------------------------------------------------------------------
# Checks for C header files.
#----------------------------------------------------------------------------
AC_HEADER_STDC
AC_CHECK_HEADERS([ \
asm/unistd.h \
endian.h \
mqueue.h \
sys/endian.h \
sys/epoll.h \
sys/eventfd.h \
sys/klog.h \
sys/poll.h \
sys/signal.h \
sys/signalfd.h \
sys/syscall.h \
sys/time.h \
sys/types.h \
])
#----------------------------------------------------------------------------
# Checks for typedefs, structures, and compiler characteristics.
#----------------------------------------------------------------------------
AC_TYPE_UID_T
AC_TYPE_OFF_T
AC_TYPE_SIZE_T
AC_HEADER_TIME
#----------------------------------------------------------------------------
# Checks for library functions.
#----------------------------------------------------------------------------
AC_FUNC_MEMCMP
AC_FUNC_MMAP
AC_TYPE_SIGNAL
AC_CHECK_LIB([pthread], [pthread_create])
AC_CHECK_LIB([rt], [clock_gettime])
AC_CHECK_FUNCS([ \
clock_gettime\
epoll_create \
epoll_pwait \
klogctl \
mallinfo \
memchr \
memset \
mkdir \
mremap \
ppoll \
pthread_barrier_init \
pthread_condattr_setclock \
pthread_mutex_timedlock \
pthread_rwlock_timedrdlock \
pthread_rwlock_timedwrlock \
pthread_spin_lock \
pthread_yield \
readlinkat \
semtimedop \
signalfd \
sigwaitinfo \
strchr \
strdup \
strpbrk \
strrchr \
strstr \
syscall \
utimensat \
])
# AC_CHECK_LIB adds any library found to the variable LIBS, and links these
# libraries with any shared object and/or executable. This is NOT what we
# want for e.g. vgpreload_core-x86-linux.so
LIBS=""
AM_CONDITIONAL([HAVE_PTHREAD_BARRIER],
[test x$ac_cv_func_pthread_barrier_init = xyes])
AM_CONDITIONAL([HAVE_PTHREAD_MUTEX_TIMEDLOCK],
[test x$ac_cv_func_pthread_mutex_timedlock = xyes])
AM_CONDITIONAL([HAVE_PTHREAD_SPINLOCK],
[test x$ac_cv_func_pthread_spin_lock = xyes])
#----------------------------------------------------------------------------
# MPI checks
#----------------------------------------------------------------------------
# Do we have a useable MPI setup on the primary and/or secondary targets?
# On Linux, by default, assumes mpicc and -m32/-m64
# Note: this is a kludge in that it assumes the specified mpicc
# understands -m32/-m64 regardless of what is specified using
# --with-mpicc=.
MPI_CC="mpicc"
mflag_primary=
if test x$VGCONF_PLATFORM_PRI_CAPS = xX86_LINUX \
-o x$VGCONF_PLATFORM_PRI_CAPS = xPPC32_LINUX \
-o x$VGCONF_PLATFORM_PRI_CAPS = xARM_LINUX ; then
mflag_primary=$FLAG_M32
elif test x$VGCONF_PLATFORM_PRI_CAPS = xAMD64_LINUX \
-o x$VGCONF_PLATFORM_PRI_CAPS = xPPC64_LINUX \
-o x$VGCONF_PLATFORM_PRI_CAPS = xS390X_LINUX ; then
mflag_primary=$FLAG_M64
fi
mflag_secondary=
if test x$VGCONF_PLATFORM_SEC_CAPS = xX86_LINUX \
-o x$VGCONF_PLATFORM_SEC_CAPS = xPPC32_LINUX ; then
mflag_secondary=$FLAG_M32
fi
AC_ARG_WITH(mpicc,
[ --with-mpicc= Specify name of MPI2-ised C compiler],
MPI_CC=$withval
)
AC_SUBST(MPI_CC)
## See if MPI_CC works for the primary target
##
AC_MSG_CHECKING([primary target for usable MPI2-compliant C compiler and mpi.h])
saved_CC=$CC
saved_CFLAGS=$CFLAGS
CC=$MPI_CC
CFLAGS=$mflag_primary
AC_TRY_LINK([
#include <mpi.h>
#include <stdio.h>
],[
int r = MPI_Init(NULL,NULL);
r |= MPI_Type_get_contents( MPI_INT, 0,0,0, NULL,NULL,NULL );
return r;
], [
ac_have_mpi2_pri=yes
AC_MSG_RESULT([yes, $MPI_CC])
], [
ac_have_mpi2_pri=no
AC_MSG_RESULT([no])
])
CC=$saved_CC
CFLAGS=$saved_CFLAGS
AM_CONDITIONAL(BUILD_MPIWRAP_PRI, test x$ac_have_mpi2_pri = xyes)
## See if MPI_CC works for the secondary target. Complication: what if
## there is no secondary target? We need this to then fail.
## Kludge this by making MPI_CC something which will surely fail in
## such a case.
##
AC_MSG_CHECKING([secondary target for usable MPI2-compliant C compiler and mpi.h])
saved_CC=$CC
saved_CFLAGS=$CFLAGS
if test x$VGCONF_PLATFORM_SEC_CAPS = x ; then
CC="$MPI_CC this will surely fail"
else
CC=$MPI_CC
fi
CFLAGS=$mflag_secondary
AC_TRY_LINK([
#include <mpi.h>
#include <stdio.h>
],[
int r = MPI_Init(NULL,NULL);
r |= MPI_Type_get_contents( MPI_INT, 0,0,0, NULL,NULL,NULL );
return r;
], [
ac_have_mpi2_sec=yes
AC_MSG_RESULT([yes, $MPI_CC])
], [
ac_have_mpi2_sec=no
AC_MSG_RESULT([no])
])
CC=$saved_CC
CFLAGS=$saved_CFLAGS
AM_CONDITIONAL(BUILD_MPIWRAP_SEC, test x$ac_have_mpi2_sec = xyes)
#----------------------------------------------------------------------------
# Other library checks
#----------------------------------------------------------------------------
# There now follow some tests for Boost, and OpenMP. These
# tests are present because Drd has some regression tests that use
# these packages. All regression test programs all compiled only
# for the primary target. And so it is important that the configure
# checks that follow, use the correct -m32 or -m64 flag for the
# primary target (called $mflag_primary). Otherwise, we can end up
# in a situation (eg) where, on amd64-linux, the test for Boost checks
# for usable 64-bit Boost facilities, but because we are doing a 32-bit
# only build (meaning, the primary target is x86-linux), the build
# of the regtest programs that use Boost fails, because they are
# build as 32-bit (IN THIS EXAMPLE).
#
# Hence: ALWAYS USE $mflag_primary FOR CONFIGURE TESTS FOR FACILITIES
# NEEDED BY THE REGRESSION TEST PROGRAMS.
# Check whether the boost library 1.35 or later has been installed.
# The Boost.Threads library has undergone a major rewrite in version 1.35.0.
AC_MSG_CHECKING([for boost])
AC_LANG(C++)
safe_CXXFLAGS=$CXXFLAGS
CXXFLAGS="-lboost_thread-mt $mflag_primary"
AC_LINK_IFELSE([AC_LANG_SOURCE([
#include <boost/thread.hpp>
static void thread_func(void)
{ }
int main(int argc, char** argv)
{
boost::thread t(thread_func);
return 0;
}
])],
[
ac_have_boost_1_35=yes
AC_SUBST([BOOST_CFLAGS], [])
AC_SUBST([BOOST_LIBS], ["${CXXFLAGS}"])
AC_MSG_RESULT([yes])
], [
ac_have_boost_1_35=no
AC_MSG_RESULT([no])
])
CXXFLAGS=$safe_CXXFLAGS
AC_LANG(C)
AM_CONDITIONAL([HAVE_BOOST_1_35], [test x$ac_have_boost_1_35 = xyes])
# does this compiler support -fopenmp, does it have the include file
# <omp.h> and does it have libgomp ?
AC_MSG_CHECKING([for OpenMP])
safe_CFLAGS=$CFLAGS
CFLAGS="-fopenmp $mflag_primary"
AC_LINK_IFELSE([AC_LANG_SOURCE([
#include <omp.h>
int main(int argc, char** argv)
{
omp_set_dynamic(0);
return 0;
}
])],
[
ac_have_openmp=yes
AC_MSG_RESULT([yes])
], [
ac_have_openmp=no
AC_MSG_RESULT([no])
])
CFLAGS=$safe_CFLAGS
AM_CONDITIONAL([HAVE_OPENMP], [test x$ac_have_openmp = xyes])
# does this compiler have built-in functions for atomic memory access ?
AC_MSG_CHECKING([if gcc supports __sync_bool_compare_and_swap])
safe_CFLAGS=$CFLAGS
CFLAGS="$mflag_primary"
AC_TRY_LINK(,
[
int variable = 1;
return (__sync_bool_compare_and_swap(&variable, 1, 2)
&& __sync_add_and_fetch(&variable, 1) ? 1 : 0)
],
[
ac_have_builtin_atomic=yes
AC_MSG_RESULT([yes])
AC_DEFINE(HAVE_BUILTIN_ATOMIC, 1, [Define to 1 if gcc supports __sync_bool_compare_and_swap() and __sync_add_and_fetch()])
],
[
ac_have_builtin_atomic=no
AC_MSG_RESULT([no])
])
CFLAGS=$safe_CFLAGS
AM_CONDITIONAL([HAVE_BUILTIN_ATOMIC], [test x$ac_have_builtin_atomic = xyes])
# does g++ have built-in functions for atomic memory access ?
AC_MSG_CHECKING([if g++ supports __sync_bool_compare_and_swap])
safe_CXXFLAGS=$CXXFLAGS
CXXFLAGS="$mflag_primary"
AC_LANG_PUSH(C++)
AC_TRY_LINK(,
[
int variable = 1;
return (__sync_bool_compare_and_swap(&variable, 1, 2)
&& __sync_add_and_fetch(&variable, 1) ? 1 : 0)
],
[
ac_have_builtin_atomic_cxx=yes
AC_MSG_RESULT([yes])
AC_DEFINE(HAVE_BUILTIN_ATOMIC_CXX, 1, [Define to 1 if g++ supports __sync_bool_compare_and_swap() and __sync_add_and_fetch()])
],
[
ac_have_builtin_atomic_cxx=no
AC_MSG_RESULT([no])
])
AC_LANG_POP(C++)
CXXFLAGS=$safe_CXXFLAGS
AM_CONDITIONAL([HAVE_BUILTIN_ATOMIC_CXX], [test x$ac_have_builtin_atomic_cxx = xyes])
#----------------------------------------------------------------------------
# Ok. We're done checking.
#----------------------------------------------------------------------------
# Nb: VEX/Makefile is generated from Makefile.vex.in.
AC_CONFIG_FILES([
Makefile
VEX/Makefile:Makefile.vex.in
valgrind.spec
valgrind.pc
glibc-2.X.supp
docs/Makefile
tests/Makefile
tests/vg_regtest
perf/Makefile
perf/vg_perf
gdbserver_tests/Makefile
include/Makefile
auxprogs/Makefile
mpi/Makefile
coregrind/Makefile
memcheck/Makefile
memcheck/tests/Makefile
memcheck/tests/amd64/Makefile
memcheck/tests/x86/Makefile
memcheck/tests/linux/Makefile
memcheck/tests/darwin/Makefile
memcheck/tests/amd64-linux/Makefile
memcheck/tests/x86-linux/Makefile
memcheck/tests/ppc32/Makefile
memcheck/tests/ppc64/Makefile
memcheck/perf/Makefile
cachegrind/Makefile
cachegrind/tests/Makefile
cachegrind/tests/x86/Makefile
cachegrind/cg_annotate
cachegrind/cg_diff
callgrind/Makefile
callgrind/callgrind_annotate
callgrind/callgrind_control
callgrind/tests/Makefile
helgrind/Makefile
helgrind/tests/Makefile
massif/Makefile
massif/tests/Makefile
massif/perf/Makefile
massif/ms_print
lackey/Makefile
lackey/tests/Makefile
none/Makefile
none/tests/Makefile
none/tests/amd64/Makefile
none/tests/ppc32/Makefile
none/tests/ppc64/Makefile
none/tests/x86/Makefile
none/tests/arm/Makefile
none/tests/s390x/Makefile
none/tests/linux/Makefile
none/tests/darwin/Makefile
none/tests/x86-linux/Makefile
exp-sgcheck/Makefile
exp-sgcheck/tests/Makefile
drd/Makefile
drd/scripts/download-and-build-splash2
drd/tests/Makefile
exp-bbv/Makefile
exp-bbv/tests/Makefile
exp-bbv/tests/x86/Makefile
exp-bbv/tests/x86-linux/Makefile
exp-bbv/tests/amd64-linux/Makefile
exp-bbv/tests/ppc32-linux/Makefile
exp-bbv/tests/arm-linux/Makefile
exp-dhat/Makefile
exp-dhat/tests/Makefile
])
AC_CONFIG_FILES([coregrind/link_tool_exe_linux],
[chmod +x coregrind/link_tool_exe_linux])
AC_CONFIG_FILES([coregrind/link_tool_exe_darwin],
[chmod +x coregrind/link_tool_exe_darwin])
AC_OUTPUT
cat<<EOF
Maximum build arch: ${ARCH_MAX}
Primary build arch: ${VGCONF_ARCH_PRI}
Secondary build arch: ${VGCONF_ARCH_SEC}
Build OS: ${VGCONF_OS}
Primary build target: ${VGCONF_PLATFORM_PRI_CAPS}
Secondary build target: ${VGCONF_PLATFORM_SEC_CAPS}
Platform variant: ${VGCONF_PLATVARIANT}
Primary -DVGPV string: -DVGPV_${VGCONF_ARCH_PRI}_${VGCONF_OS}_${VGCONF_PLATVARIANT}=1
Default supp files: ${DEFAULT_SUPP}
EOF