| |
| /*--------------------------------------------------------------------*/ |
| /*--- The JITter proper: register allocation & code improvement ---*/ |
| /*--- vg_translate.c ---*/ |
| /*--------------------------------------------------------------------*/ |
| |
| /* |
| This file is part of Valgrind, an x86 protected-mode emulator |
| designed for debugging and profiling binaries on x86-Unixes. |
| |
| Copyright (C) 2000-2002 Julian Seward |
| jseward@acm.org |
| |
| This program is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public License as |
| published by the Free Software Foundation; either version 2 of the |
| License, or (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
| 02111-1307, USA. |
| |
| The GNU General Public License is contained in the file LICENSE. |
| */ |
| |
| #include "vg_include.h" |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Renamings of frequently-used global functions. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| #define uInstr1 VG_(newUInstr1) |
| #define uInstr2 VG_(newUInstr2) |
| #define uInstr3 VG_(newUInstr3) |
| #define dis VG_(disassemble) |
| #define nameIReg VG_(nameOfIntReg) |
| #define nameISize VG_(nameOfIntSize) |
| #define uLiteral VG_(setLiteralField) |
| #define newTemp VG_(getNewTemp) |
| #define newShadow VG_(getNewShadow) |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Memory management for the translater. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| #define N_JITBLOCKS 4 |
| #define N_JITBLOCK_SZ 5000 |
| |
| static UChar jitstorage[N_JITBLOCKS][N_JITBLOCK_SZ]; |
| static Bool jitstorage_inuse[N_JITBLOCKS]; |
| static Bool jitstorage_initdone = False; |
| |
| static __inline__ void jitstorage_initialise ( void ) |
| { |
| Int i; |
| if (jitstorage_initdone) return; |
| jitstorage_initdone = True; |
| for (i = 0; i < N_JITBLOCKS; i++) |
| jitstorage_inuse[i] = False; |
| } |
| |
| void* VG_(jitmalloc) ( Int nbytes ) |
| { |
| Int i; |
| jitstorage_initialise(); |
| if (nbytes > N_JITBLOCK_SZ) { |
| /* VG_(printf)("too large: %d\n", nbytes); */ |
| return VG_(malloc)(VG_AR_PRIVATE, nbytes); |
| } |
| for (i = 0; i < N_JITBLOCKS; i++) { |
| if (!jitstorage_inuse[i]) { |
| jitstorage_inuse[i] = True; |
| /* VG_(printf)("alloc %d -> %d\n", nbytes, i ); */ |
| return & jitstorage[i][0]; |
| } |
| } |
| VG_(panic)("out of slots in vg_jitmalloc\n"); |
| return VG_(malloc)(VG_AR_PRIVATE, nbytes); |
| } |
| |
| void VG_(jitfree) ( void* ptr ) |
| { |
| Int i; |
| jitstorage_initialise(); |
| for (i = 0; i < N_JITBLOCKS; i++) { |
| if (ptr == & jitstorage[i][0]) { |
| vg_assert(jitstorage_inuse[i]); |
| jitstorage_inuse[i] = False; |
| return; |
| } |
| } |
| VG_(free)(VG_AR_PRIVATE, ptr); |
| } |
| |
| /*------------------------------------------------------------*/ |
| /*--- Basics ---*/ |
| /*------------------------------------------------------------*/ |
| |
| UCodeBlock* VG_(allocCodeBlock) ( void ) |
| { |
| UCodeBlock* cb = VG_(malloc)(VG_AR_PRIVATE, sizeof(UCodeBlock)); |
| cb->used = cb->size = cb->nextTemp = 0; |
| cb->instrs = NULL; |
| return cb; |
| } |
| |
| |
| void VG_(freeCodeBlock) ( UCodeBlock* cb ) |
| { |
| if (cb->instrs) VG_(free)(VG_AR_PRIVATE, cb->instrs); |
| VG_(free)(VG_AR_PRIVATE, cb); |
| } |
| |
| |
| /* Ensure there's enough space in a block to add one uinstr. */ |
| static __inline__ |
| void ensureUInstr ( UCodeBlock* cb ) |
| { |
| if (cb->used == cb->size) { |
| if (cb->instrs == NULL) { |
| vg_assert(cb->size == 0); |
| vg_assert(cb->used == 0); |
| cb->size = 8; |
| cb->instrs = VG_(malloc)(VG_AR_PRIVATE, 8 * sizeof(UInstr)); |
| } else { |
| Int i; |
| UInstr* instrs2 = VG_(malloc)(VG_AR_PRIVATE, |
| 2 * sizeof(UInstr) * cb->size); |
| for (i = 0; i < cb->used; i++) |
| instrs2[i] = cb->instrs[i]; |
| cb->size *= 2; |
| VG_(free)(VG_AR_PRIVATE, cb->instrs); |
| cb->instrs = instrs2; |
| } |
| } |
| |
| vg_assert(cb->used < cb->size); |
| } |
| |
| |
| __inline__ |
| void VG_(emptyUInstr) ( UInstr* u ) |
| { |
| u->val1 = u->val2 = u->val3 = 0; |
| u->tag1 = u->tag2 = u->tag3 = NoValue; |
| u->flags_r = u->flags_w = FlagsEmpty; |
| u->jmpkind = JmpBoring; |
| u->smc_check = u->signed_widen = False; |
| u->lit32 = 0; |
| u->opcode = 0; |
| u->size = 0; |
| u->cond = 0; |
| u->extra4b = 0; |
| } |
| |
| |
| /* Add an instruction to a ucode block, and return the index of the |
| instruction. */ |
| __inline__ |
| void VG_(newUInstr3) ( UCodeBlock* cb, Opcode opcode, Int sz, |
| Tag tag1, UInt val1, |
| Tag tag2, UInt val2, |
| Tag tag3, UInt val3 ) |
| { |
| UInstr* ui; |
| ensureUInstr(cb); |
| ui = & cb->instrs[cb->used]; |
| cb->used++; |
| VG_(emptyUInstr)(ui); |
| ui->val1 = val1; |
| ui->val2 = val2; |
| ui->val3 = val3; |
| ui->opcode = opcode; |
| ui->tag1 = tag1; |
| ui->tag2 = tag2; |
| ui->tag3 = tag3; |
| ui->size = sz; |
| if (tag1 == TempReg) vg_assert(val1 != INVALID_TEMPREG); |
| if (tag2 == TempReg) vg_assert(val2 != INVALID_TEMPREG); |
| if (tag3 == TempReg) vg_assert(val3 != INVALID_TEMPREG); |
| } |
| |
| |
| __inline__ |
| void VG_(newUInstr2) ( UCodeBlock* cb, Opcode opcode, Int sz, |
| Tag tag1, UInt val1, |
| Tag tag2, UInt val2 ) |
| { |
| UInstr* ui; |
| ensureUInstr(cb); |
| ui = & cb->instrs[cb->used]; |
| cb->used++; |
| VG_(emptyUInstr)(ui); |
| ui->val1 = val1; |
| ui->val2 = val2; |
| ui->opcode = opcode; |
| ui->tag1 = tag1; |
| ui->tag2 = tag2; |
| ui->size = sz; |
| if (tag1 == TempReg) vg_assert(val1 != INVALID_TEMPREG); |
| if (tag2 == TempReg) vg_assert(val2 != INVALID_TEMPREG); |
| } |
| |
| |
| __inline__ |
| void VG_(newUInstr1) ( UCodeBlock* cb, Opcode opcode, Int sz, |
| Tag tag1, UInt val1 ) |
| { |
| UInstr* ui; |
| ensureUInstr(cb); |
| ui = & cb->instrs[cb->used]; |
| cb->used++; |
| VG_(emptyUInstr)(ui); |
| ui->val1 = val1; |
| ui->opcode = opcode; |
| ui->tag1 = tag1; |
| ui->size = sz; |
| if (tag1 == TempReg) vg_assert(val1 != INVALID_TEMPREG); |
| } |
| |
| |
| __inline__ |
| void VG_(newUInstr0) ( UCodeBlock* cb, Opcode opcode, Int sz ) |
| { |
| UInstr* ui; |
| ensureUInstr(cb); |
| ui = & cb->instrs[cb->used]; |
| cb->used++; |
| VG_(emptyUInstr)(ui); |
| ui->opcode = opcode; |
| ui->size = sz; |
| } |
| |
| /* Copy an instruction into the given codeblock. */ |
| __inline__ |
| void VG_(copyUInstr) ( UCodeBlock* cb, UInstr* instr ) |
| { |
| ensureUInstr(cb); |
| cb->instrs[cb->used] = *instr; |
| cb->used++; |
| } |
| |
| /* Copy auxiliary info from one uinstr to another. */ |
| static __inline__ |
| void copyAuxInfoFromTo ( UInstr* src, UInstr* dst ) |
| { |
| dst->cond = src->cond; |
| dst->extra4b = src->extra4b; |
| dst->smc_check = src->smc_check; |
| dst->signed_widen = src->signed_widen; |
| dst->jmpkind = src->jmpkind; |
| dst->flags_r = src->flags_r; |
| dst->flags_w = src->flags_w; |
| } |
| |
| |
| /* Set the flag R/W sets on a uinstr. */ |
| void VG_(setFlagRW) ( UInstr* u, FlagSet fr, FlagSet fw ) |
| { |
| /* VG_(ppUInstr)(-1,u); */ |
| vg_assert(fr == (fr & FlagsALL)); |
| vg_assert(fw == (fw & FlagsALL)); |
| u->flags_r = fr; |
| u->flags_w = fw; |
| } |
| |
| |
| /* Set the lit32 field of the most recent uinsn. */ |
| void VG_(setLiteralField) ( UCodeBlock* cb, UInt lit32 ) |
| { |
| LAST_UINSTR(cb).lit32 = lit32; |
| } |
| |
| |
| Bool VG_(anyFlagUse) ( UInstr* u ) |
| { |
| return (u->flags_r != FlagsEmpty |
| || u->flags_w != FlagsEmpty); |
| } |
| |
| |
| |
| |
| /* Convert a rank in the range 0 .. VG_MAX_REALREGS-1 into an Intel |
| register number. This effectively defines the order in which real |
| registers are allocated. %ebp is excluded since it is permanently |
| reserved for pointing at VG_(baseBlock). %edi is a general spare |
| temp used for Left4 and various misc tag ops. |
| |
| Important! If you change the set of allocatable registers from |
| %eax, %ebx, %ecx, %edx, %esi you must change the |
| save/restore sequences in various places to match! |
| */ |
| __inline__ Int VG_(rankToRealRegNo) ( Int rank ) |
| { |
| switch (rank) { |
| # if 1 |
| /* Probably the best allocation ordering. */ |
| case 0: return R_EAX; |
| case 1: return R_EBX; |
| case 2: return R_ECX; |
| case 3: return R_EDX; |
| case 4: return R_ESI; |
| # else |
| /* Contrary; probably the worst. Helpful for debugging, tho. */ |
| case 4: return R_EAX; |
| case 3: return R_EBX; |
| case 2: return R_ECX; |
| case 1: return R_EDX; |
| case 0: return R_ESI; |
| # endif |
| default: VG_(panic)("rankToRealRegNo"); |
| } |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Sanity checking uinstrs. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* This seems as good a place as any to record some important stuff |
| about ucode semantics. |
| |
| * TempRegs are 32 bits wide. LOADs of 8/16 bit values into a |
| TempReg are defined to zero-extend the loaded value to 32 bits. |
| This is needed to make the translation of movzbl et al work |
| properly. |
| |
| * Similarly, GETs of a 8/16 bit ArchRegs are zero-extended. |
| |
| * Arithmetic on TempRegs is at the specified size. For example, |
| SUBW t1, t2 has to result in a real 16 bit x86 subtraction |
| being emitted -- not a 32 bit one. |
| |
| * On some insns we allow the cc bit to be set. If so, the |
| intention is that the simulated machine's %eflags register |
| is copied into that of the real machine before the insn, |
| and copied back again afterwards. This means that the |
| code generated for that insn must be very careful only to |
| update %eflags in the intended way. This is particularly |
| important for the routines referenced by CALL insns. |
| */ |
| |
| /* Meaning of operand kinds is as follows: |
| |
| ArchReg is a register of the simulated CPU, stored in memory, |
| in vg_m_state.m_eax .. m_edi. These values are stored |
| using the Intel register encoding. |
| |
| RealReg is a register of the real CPU. There are VG_MAX_REALREGS |
| available for allocation. As with ArchRegs, these values |
| are stored using the Intel register encoding. |
| |
| TempReg is a temporary register used to express the results of |
| disassembly. There is an unlimited supply of them -- |
| register allocation and spilling eventually assigns them |
| to RealRegs. |
| |
| SpillNo is a spill slot number. The number of required spill |
| slots is VG_MAX_PSEUDOS, in general. Only allowed |
| as the ArchReg operand of GET and PUT. |
| |
| Lit16 is a signed 16-bit literal value. |
| |
| Literal is a 32-bit literal value. Each uinstr can only hold |
| one of these. |
| |
| The disassembled code is expressed purely in terms of ArchReg, |
| TempReg and Literal operands. Eventually, register allocation |
| removes all the TempRegs, giving a result using ArchRegs, RealRegs, |
| and Literals. New x86 code can easily be synthesised from this. |
| There are carefully designed restrictions on which insns can have |
| which operands, intended to make it possible to generate x86 code |
| from the result of register allocation on the ucode efficiently and |
| without need of any further RealRegs. |
| |
| Restrictions on insns (as generated by the disassembler) are as |
| follows: |
| |
| A=ArchReg S=SpillNo T=TempReg L=Literal R=RealReg |
| N=NoValue |
| |
| GETF T N N |
| PUTF T N N |
| |
| GET A,S T N |
| PUT T A,S N |
| LOAD T T N |
| STORE T T N |
| MOV T,L T N |
| CMOV T T N |
| WIDEN T N N |
| JMP T,L N N |
| CALLM L N N |
| CALLM_S N N N |
| CALLM_E N N N |
| PUSH,POP T N N |
| CLEAR L N N |
| |
| AND, OR |
| T T N |
| |
| ADD, ADC, XOR, SUB, SBB |
| A,L,T T N |
| |
| SHL, SHR, SAR, ROL, ROR, RCL, RCR |
| L,T T N |
| |
| NOT, NEG, INC, DEC, CC2VAL, BSWAP |
| T N N |
| |
| JIFZ T L N |
| |
| FPU_R L T N |
| FPU_W L T N |
| FPU L T N |
| |
| LEA1 T T (const in a seperate field) |
| LEA2 T T T (const & shift ditto) |
| |
| INCEIP L N N |
| |
| and for instrumentation insns: |
| |
| LOADV T T N |
| STOREV T,L T N |
| GETV A T N |
| PUTV T,L A N |
| GETVF T N N |
| PUTVF T N N |
| WIDENV T N N |
| TESTV A,T N N |
| SETV A,T N N |
| TAG1 T N N |
| TAG2 T T N |
| |
| Before register allocation, S operands should not appear anywhere. |
| After register allocation, all T operands should have been |
| converted into Rs, and S operands are allowed in GET and PUT -- |
| denoting spill saves/restores. |
| |
| The size field should be 0 for insns for which it is meaningless, |
| ie those which do not directly move/operate on data. |
| */ |
| Bool VG_(saneUInstr) ( Bool beforeRA, UInstr* u ) |
| { |
| # define TR1 (beforeRA ? (u->tag1 == TempReg) : (u->tag1 == RealReg)) |
| # define TR2 (beforeRA ? (u->tag2 == TempReg) : (u->tag2 == RealReg)) |
| # define TR3 (beforeRA ? (u->tag3 == TempReg) : (u->tag3 == RealReg)) |
| # define A1 (u->tag1 == ArchReg) |
| # define A2 (u->tag2 == ArchReg) |
| # define AS1 ((u->tag1 == ArchReg) || ((!beforeRA && (u->tag1 == SpillNo)))) |
| # define AS2 ((u->tag2 == ArchReg) || ((!beforeRA && (u->tag2 == SpillNo)))) |
| # define AS3 ((u->tag3 == ArchReg) || ((!beforeRA && (u->tag3 == SpillNo)))) |
| # define L1 (u->tag1 == Literal && u->val1 == 0) |
| # define L2 (u->tag2 == Literal && u->val2 == 0) |
| # define Ls1 (u->tag1 == Lit16) |
| # define Ls3 (u->tag3 == Lit16) |
| # define N1 (u->tag1 == NoValue) |
| # define N2 (u->tag2 == NoValue) |
| # define N3 (u->tag3 == NoValue) |
| # define SZ4 (u->size == 4) |
| # define SZ2 (u->size == 2) |
| # define SZ1 (u->size == 1) |
| # define SZ0 (u->size == 0) |
| # define CC0 (u->flags_r == FlagsEmpty && u->flags_w == FlagsEmpty) |
| # define FLG_RD (u->flags_r == FlagsALL && u->flags_w == FlagsEmpty) |
| # define FLG_WR (u->flags_r == FlagsEmpty && u->flags_w == FlagsALL) |
| # define FLG_RD_WR_MAYBE \ |
| ((u->flags_r == FlagsEmpty && u->flags_w == FlagsEmpty) \ |
| || (u->flags_r == FlagsEmpty && u->flags_w == FlagsZCP) \ |
| || (u->flags_r == FlagsZCP && u->flags_w == FlagsEmpty)) |
| # define CC1 (!(CC0)) |
| # define SZ4_IF_TR1 ((u->tag1 == TempReg || u->tag1 == RealReg) \ |
| ? (u->size == 4) : True) |
| |
| Int n_lits = 0; |
| if (u->tag1 == Literal) n_lits++; |
| if (u->tag2 == Literal) n_lits++; |
| if (u->tag3 == Literal) n_lits++; |
| if (n_lits > 1) |
| return False; |
| |
| switch (u->opcode) { |
| case GETF: |
| return (SZ2 || SZ4) && TR1 && N2 && N3 && FLG_RD; |
| case PUTF: |
| return (SZ2 || SZ4) && TR1 && N2 && N3 && FLG_WR; |
| case CALLM_S: case CALLM_E: |
| return SZ0 && N1 && N2 && N3; |
| case INCEIP: |
| return SZ0 && CC0 && Ls1 && N2 && N3; |
| case LEA1: |
| return CC0 && TR1 && TR2 && N3 && SZ4; |
| case LEA2: |
| return CC0 && TR1 && TR2 && TR3 && SZ4; |
| case NOP: |
| return SZ0 && CC0 && N1 && N2 && N3; |
| case GET: |
| return CC0 && AS1 && TR2 && N3; |
| case PUT: |
| return CC0 && TR1 && AS2 && N3; |
| case LOAD: case STORE: |
| return CC0 && TR1 && TR2 && N3; |
| case MOV: |
| return CC0 && (TR1 || L1) && TR2 && N3 && SZ4_IF_TR1; |
| case CMOV: |
| return CC1 && TR1 && TR2 && N3 && SZ4; |
| case JMP: |
| return (u->cond==CondAlways ? CC0 : CC1) |
| && (TR1 || L1) && N2 && SZ0 && N3; |
| case CLEAR: |
| return CC0 && Ls1 && N2 && SZ0 && N3; |
| case CALLM: |
| return SZ0 && Ls1 && N2 && N3; |
| case PUSH: case POP: |
| return CC0 && TR1 && N2 && N3; |
| case AND: case OR: |
| return TR1 && TR2 && N3; |
| case ADD: case ADC: case XOR: case SUB: case SBB: |
| return (A1 || TR1 || L1) && TR2 && N3; |
| case SHL: case SHR: case SAR: case ROL: case ROR: case RCL: case RCR: |
| return (TR1 || L1) && TR2 && N3; |
| case NOT: case NEG: case INC: case DEC: |
| return TR1 && N2 && N3; |
| case BSWAP: |
| return TR1 && N2 && N3 && CC0 && SZ4; |
| case CC2VAL: |
| return CC1 && SZ1 && TR1 && N2 && N3; |
| case JIFZ: |
| return CC0 && SZ4 && TR1 && L2 && N3; |
| case FPU_R: case FPU_W: |
| return CC0 && Ls1 && TR2 && N3; |
| case FPU: |
| return SZ0 && FLG_RD_WR_MAYBE && Ls1 && N2 && N3; |
| case LOADV: |
| return CC0 && TR1 && TR2 && N3; |
| case STOREV: |
| return CC0 && (TR1 || L1) && TR2 && N3; |
| case GETV: |
| return CC0 && A1 && TR2 && N3; |
| case PUTV: |
| return CC0 && (TR1 || L1) && A2 && N3; |
| case GETVF: |
| return CC0 && TR1 && N2 && N3 && SZ0; |
| case PUTVF: |
| return CC0 && TR1 && N2 && N3 && SZ0; |
| case WIDEN: |
| return CC0 && TR1 && N2 && N3; |
| case TESTV: |
| return CC0 && (A1 || TR1) && N2 && N3; |
| case SETV: |
| return CC0 && (A1 || TR1) && N2 && N3; |
| case TAG1: |
| return CC0 && TR1 && N2 && Ls3 && SZ0; |
| case TAG2: |
| return CC0 && TR1 && TR2 && Ls3 && SZ0; |
| default: |
| VG_(panic)("vg_saneUInstr: unhandled opcode"); |
| } |
| # undef SZ4_IF_TR1 |
| # undef CC0 |
| # undef CC1 |
| # undef SZ4 |
| # undef SZ2 |
| # undef SZ1 |
| # undef SZ0 |
| # undef TR1 |
| # undef TR2 |
| # undef TR3 |
| # undef A1 |
| # undef A2 |
| # undef AS1 |
| # undef AS2 |
| # undef AS3 |
| # undef L1 |
| # undef Ls1 |
| # undef L2 |
| # undef Ls3 |
| # undef N1 |
| # undef N2 |
| # undef N3 |
| # undef FLG_RD |
| # undef FLG_WR |
| # undef FLG_RD_WR_MAYBE |
| } |
| |
| |
| /* Sanity checks to do with CALLMs in UCodeBlocks. */ |
| Bool VG_(saneUCodeBlock) ( UCodeBlock* cb ) |
| { |
| Int callm = 0; |
| Int callm_s = 0; |
| Int callm_e = 0; |
| Int callm_ptr, calls_ptr; |
| Int i, j, t; |
| Bool incall = False; |
| |
| /* Ensure the number of CALLM, CALLM_S and CALLM_E are the same. */ |
| |
| for (i = 0; i < cb->used; i++) { |
| switch (cb->instrs[i].opcode) { |
| case CALLM: |
| if (!incall) return False; |
| callm++; |
| break; |
| case CALLM_S: |
| if (incall) return False; |
| incall = True; |
| callm_s++; |
| break; |
| case CALLM_E: |
| if (!incall) return False; |
| incall = False; |
| callm_e++; |
| break; |
| case PUSH: case POP: case CLEAR: |
| if (!incall) return False; |
| break; |
| default: |
| break; |
| } |
| } |
| if (incall) return False; |
| if (callm != callm_s || callm != callm_e) return False; |
| |
| /* Check the sections between CALLM_S and CALLM's. Ensure that no |
| PUSH uinsn pushes any TempReg that any other PUSH in the same |
| section pushes. Ie, check that the TempReg args to PUSHes in |
| the section are unique. If not, the instrumenter generates |
| incorrect code for CALLM insns. */ |
| |
| callm_ptr = 0; |
| |
| find_next_CALLM: |
| /* Search for the next interval, making calls_ptr .. callm_ptr |
| bracket it. */ |
| while (callm_ptr < cb->used |
| && cb->instrs[callm_ptr].opcode != CALLM) |
| callm_ptr++; |
| if (callm_ptr == cb->used) |
| return True; |
| vg_assert(cb->instrs[callm_ptr].opcode == CALLM); |
| |
| calls_ptr = callm_ptr - 1; |
| while (cb->instrs[calls_ptr].opcode != CALLM_S) |
| calls_ptr--; |
| vg_assert(cb->instrs[calls_ptr].opcode == CALLM_S); |
| vg_assert(calls_ptr >= 0); |
| |
| /* VG_(printf)("interval from %d to %d\n", calls_ptr, callm_ptr ); */ |
| |
| /* For each PUSH insn in the interval ... */ |
| for (i = calls_ptr + 1; i < callm_ptr; i++) { |
| if (cb->instrs[i].opcode != PUSH) continue; |
| t = cb->instrs[i].val1; |
| /* Ensure no later PUSH insns up to callm_ptr push the same |
| TempReg. Return False if any such are found. */ |
| for (j = i+1; j < callm_ptr; j++) { |
| if (cb->instrs[j].opcode == PUSH && |
| cb->instrs[j].val1 == t) |
| return False; |
| } |
| } |
| |
| /* This interval is clean. Keep going ... */ |
| callm_ptr++; |
| goto find_next_CALLM; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Printing uinstrs. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| Char* VG_(nameCondcode) ( Condcode cond ) |
| { |
| switch (cond) { |
| case CondO: return "o"; |
| case CondNO: return "no"; |
| case CondB: return "b"; |
| case CondNB: return "nb"; |
| case CondZ: return "z"; |
| case CondNZ: return "nz"; |
| case CondBE: return "be"; |
| case CondNBE: return "nbe"; |
| case CondS: return "s"; |
| case ConsNS: return "ns"; |
| case CondP: return "p"; |
| case CondNP: return "np"; |
| case CondL: return "l"; |
| case CondNL: return "nl"; |
| case CondLE: return "le"; |
| case CondNLE: return "nle"; |
| case CondAlways: return "MP"; /* hack! */ |
| default: VG_(panic)("nameCondcode"); |
| } |
| } |
| |
| |
| static void vg_ppFlagSet ( Char* prefix, FlagSet set ) |
| { |
| VG_(printf)("%s", prefix); |
| if (set & FlagD) VG_(printf)("D"); |
| if (set & FlagO) VG_(printf)("O"); |
| if (set & FlagS) VG_(printf)("S"); |
| if (set & FlagZ) VG_(printf)("Z"); |
| if (set & FlagA) VG_(printf)("A"); |
| if (set & FlagC) VG_(printf)("C"); |
| if (set & FlagP) VG_(printf)("P"); |
| } |
| |
| |
| static void ppTempReg ( Int tt ) |
| { |
| if ((tt & 1) == 0) |
| VG_(printf)("t%d", tt); |
| else |
| VG_(printf)("q%d", tt-1); |
| } |
| |
| |
| static void ppUOperand ( UInstr* u, Int operandNo, Int sz, Bool parens ) |
| { |
| UInt tag, val; |
| switch (operandNo) { |
| case 1: tag = u->tag1; val = u->val1; break; |
| case 2: tag = u->tag2; val = u->val2; break; |
| case 3: tag = u->tag3; val = u->val3; break; |
| default: VG_(panic)("ppUOperand(1)"); |
| } |
| if (tag == Literal) val = u->lit32; |
| |
| if (parens) VG_(printf)("("); |
| switch (tag) { |
| case TempReg: ppTempReg(val); break; |
| case RealReg: VG_(printf)("%s",nameIReg(sz==0 ? 4 : sz,val)); break; |
| case Literal: VG_(printf)("$0x%x", val); break; |
| case Lit16: VG_(printf)("$0x%x", val); break; |
| case NoValue: VG_(printf)("NoValue"); break; |
| case ArchReg: VG_(printf)("%S",nameIReg(sz,val)); break; |
| case SpillNo: VG_(printf)("spill%d", val); break; |
| default: VG_(panic)("ppUOperand(2)"); |
| } |
| if (parens) VG_(printf)(")"); |
| } |
| |
| |
| Char* VG_(nameUOpcode) ( Bool upper, Opcode opc ) |
| { |
| switch (opc) { |
| case ADD: return (upper ? "ADD" : "add"); |
| case ADC: return (upper ? "ADC" : "adc"); |
| case AND: return (upper ? "AND" : "and"); |
| case OR: return (upper ? "OR" : "or"); |
| case XOR: return (upper ? "XOR" : "xor"); |
| case SUB: return (upper ? "SUB" : "sub"); |
| case SBB: return (upper ? "SBB" : "sbb"); |
| case SHL: return (upper ? "SHL" : "shl"); |
| case SHR: return (upper ? "SHR" : "shr"); |
| case SAR: return (upper ? "SAR" : "sar"); |
| case ROL: return (upper ? "ROL" : "rol"); |
| case ROR: return (upper ? "ROR" : "ror"); |
| case RCL: return (upper ? "RCL" : "rcl"); |
| case RCR: return (upper ? "RCR" : "rcr"); |
| case NOT: return (upper ? "NOT" : "not"); |
| case NEG: return (upper ? "NEG" : "neg"); |
| case INC: return (upper ? "INC" : "inc"); |
| case DEC: return (upper ? "DEC" : "dec"); |
| case BSWAP: return (upper ? "BSWAP" : "bswap"); |
| default: break; |
| } |
| if (!upper) VG_(panic)("vg_nameUOpcode: invalid !upper"); |
| switch (opc) { |
| case GETVF: return "GETVF"; |
| case PUTVF: return "PUTVF"; |
| case TAG1: return "TAG1"; |
| case TAG2: return "TAG2"; |
| case CALLM_S: return "CALLM_S"; |
| case CALLM_E: return "CALLM_E"; |
| case INCEIP: return "INCEIP"; |
| case LEA1: return "LEA1"; |
| case LEA2: return "LEA2"; |
| case NOP: return "NOP"; |
| case GET: return "GET"; |
| case PUT: return "PUT"; |
| case GETF: return "GETF"; |
| case PUTF: return "PUTF"; |
| case LOAD: return "LD" ; |
| case STORE: return "ST" ; |
| case MOV: return "MOV"; |
| case CMOV: return "CMOV"; |
| case WIDEN: return "WIDEN"; |
| case JMP: return "J" ; |
| case JIFZ: return "JIFZ" ; |
| case CALLM: return "CALLM"; |
| case PUSH: return "PUSH" ; |
| case POP: return "POP" ; |
| case CLEAR: return "CLEAR"; |
| case CC2VAL: return "CC2VAL"; |
| case FPU_R: return "FPU_R"; |
| case FPU_W: return "FPU_W"; |
| case FPU: return "FPU" ; |
| case LOADV: return "LOADV"; |
| case STOREV: return "STOREV"; |
| case GETV: return "GETV"; |
| case PUTV: return "PUTV"; |
| case TESTV: return "TESTV"; |
| case SETV: return "SETV"; |
| default: VG_(panic)("nameUOpcode: unhandled case"); |
| } |
| } |
| |
| |
| void VG_(ppUInstr) ( Int instrNo, UInstr* u ) |
| { |
| VG_(printf)("\t%4d: %s", instrNo, |
| VG_(nameUOpcode)(True, u->opcode)); |
| if (u->opcode == JMP || u->opcode == CC2VAL) |
| VG_(printf)("%s", VG_(nameCondcode(u->cond))); |
| |
| switch (u->size) { |
| case 0: VG_(printf)("o"); break; |
| case 1: VG_(printf)("B"); break; |
| case 2: VG_(printf)("W"); break; |
| case 4: VG_(printf)("L"); break; |
| case 8: VG_(printf)("Q"); break; |
| default: VG_(printf)("%d", (Int)u->size); break; |
| } |
| |
| switch (u->opcode) { |
| |
| case TAG1: |
| VG_(printf)("\t"); |
| ppUOperand(u, 1, 4, False); |
| VG_(printf)(" = %s ( ", VG_(nameOfTagOp)( u->val3 )); |
| ppUOperand(u, 1, 4, False); |
| VG_(printf)(" )"); |
| break; |
| |
| case TAG2: |
| VG_(printf)("\t"); |
| ppUOperand(u, 2, 4, False); |
| VG_(printf)(" = %s ( ", VG_(nameOfTagOp)( u->val3 )); |
| ppUOperand(u, 1, 4, False); |
| VG_(printf)(", "); |
| ppUOperand(u, 2, 4, False); |
| VG_(printf)(" )"); |
| break; |
| |
| case CALLM_S: case CALLM_E: |
| break; |
| |
| case INCEIP: |
| VG_(printf)("\t$%d", u->val1); |
| break; |
| |
| case LEA2: |
| VG_(printf)("\t%d(" , u->lit32); |
| ppUOperand(u, 1, 4, False); |
| VG_(printf)(","); |
| ppUOperand(u, 2, 4, False); |
| VG_(printf)(",%d), ", (Int)u->extra4b); |
| ppUOperand(u, 3, 4, False); |
| break; |
| |
| case LEA1: |
| VG_(printf)("\t%d" , u->lit32); |
| ppUOperand(u, 1, 4, True); |
| VG_(printf)(", "); |
| ppUOperand(u, 2, 4, False); |
| break; |
| |
| case NOP: |
| break; |
| |
| case FPU_W: |
| VG_(printf)("\t0x%x:0x%x, ", |
| (u->val1 >> 8) & 0xFF, u->val1 & 0xFF ); |
| ppUOperand(u, 2, 4, True); |
| break; |
| |
| case FPU_R: |
| VG_(printf)("\t"); |
| ppUOperand(u, 2, 4, True); |
| VG_(printf)(", 0x%x:0x%x", |
| (u->val1 >> 8) & 0xFF, u->val1 & 0xFF ); |
| break; |
| |
| case FPU: |
| VG_(printf)("\t0x%x:0x%x", |
| (u->val1 >> 8) & 0xFF, u->val1 & 0xFF ); |
| break; |
| |
| case STOREV: case LOADV: |
| case GET: case PUT: case MOV: case LOAD: case STORE: case CMOV: |
| VG_(printf)("\t"); |
| ppUOperand(u, 1, u->size, u->opcode==LOAD || u->opcode==LOADV); |
| VG_(printf)(", "); |
| ppUOperand(u, 2, u->size, u->opcode==STORE || u->opcode==STOREV); |
| break; |
| |
| case GETF: case PUTF: |
| VG_(printf)("\t"); |
| ppUOperand(u, 1, u->size, False); |
| break; |
| |
| case JMP: case CC2VAL: |
| case PUSH: case POP: case CLEAR: case CALLM: |
| if (u->opcode == JMP) { |
| switch (u->jmpkind) { |
| case JmpCall: VG_(printf)("-c"); break; |
| case JmpRet: VG_(printf)("-r"); break; |
| case JmpSyscall: VG_(printf)("-sys"); break; |
| case JmpClientReq: VG_(printf)("-cli"); break; |
| default: break; |
| } |
| } |
| VG_(printf)("\t"); |
| ppUOperand(u, 1, u->size, False); |
| break; |
| |
| case JIFZ: |
| VG_(printf)("\t"); |
| ppUOperand(u, 1, u->size, False); |
| VG_(printf)(", "); |
| ppUOperand(u, 2, u->size, False); |
| break; |
| |
| case PUTVF: case GETVF: |
| VG_(printf)("\t"); |
| ppUOperand(u, 1, 0, False); |
| break; |
| |
| case NOT: case NEG: case INC: case DEC: case BSWAP: |
| VG_(printf)("\t"); |
| ppUOperand(u, 1, u->size, False); |
| break; |
| |
| case ADD: case ADC: case AND: case OR: |
| case XOR: case SUB: case SBB: |
| case SHL: case SHR: case SAR: |
| case ROL: case ROR: case RCL: case RCR: |
| VG_(printf)("\t"); |
| ppUOperand(u, 1, u->size, False); |
| VG_(printf)(", "); |
| ppUOperand(u, 2, u->size, False); |
| break; |
| |
| case GETV: case PUTV: |
| VG_(printf)("\t"); |
| ppUOperand(u, 1, u->opcode==PUTV ? 4 : u->size, False); |
| VG_(printf)(", "); |
| ppUOperand(u, 2, u->opcode==GETV ? 4 : u->size, False); |
| break; |
| |
| case WIDEN: |
| VG_(printf)("_%c%c", VG_(toupper)(nameISize(u->extra4b)), |
| u->signed_widen?'s':'z'); |
| VG_(printf)("\t"); |
| ppUOperand(u, 1, u->size, False); |
| break; |
| |
| case TESTV: case SETV: |
| VG_(printf)("\t"); |
| ppUOperand(u, 1, u->size, False); |
| break; |
| |
| default: VG_(panic)("ppUInstr: unhandled opcode"); |
| } |
| |
| if (u->flags_r != FlagsEmpty || u->flags_w != FlagsEmpty) { |
| VG_(printf)(" ("); |
| if (u->flags_r != FlagsEmpty) |
| vg_ppFlagSet("-r", u->flags_r); |
| if (u->flags_w != FlagsEmpty) |
| vg_ppFlagSet("-w", u->flags_w); |
| VG_(printf)(")"); |
| } |
| VG_(printf)("\n"); |
| } |
| |
| |
| void VG_(ppUCodeBlock) ( UCodeBlock* cb, Char* title ) |
| { |
| Int i; |
| VG_(printf)("\n%s\n", title); |
| for (i = 0; i < cb->used; i++) |
| if (0 || cb->instrs[i].opcode != NOP) |
| VG_(ppUInstr) ( i, &cb->instrs[i] ); |
| VG_(printf)("\n"); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- uinstr helpers for register allocation ---*/ |
| /*--- and code improvement. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* A structure for communicating temp uses, and for indicating |
| temp->real register mappings for patchUInstr. */ |
| typedef |
| struct { |
| Int realNo; |
| Int tempNo; |
| Bool isWrite; |
| } |
| TempUse; |
| |
| |
| /* Get the temp use of a uinstr, parking them in an array supplied by |
| the caller, which is assumed to be big enough. Return the number |
| of entries. Insns which read _and_ write a register wind up |
| mentioning it twice. Entries are placed in the array in program |
| order, so that if a reg is read-modified-written, it appears first |
| as a read and then as a write. |
| */ |
| static __inline__ |
| Int getTempUsage ( UInstr* u, TempUse* arr ) |
| { |
| |
| # define RD(ono) \ |
| if (mycat(u->tag,ono) == TempReg) \ |
| { arr[n].tempNo = mycat(u->val,ono); \ |
| arr[n].isWrite = False; n++; } |
| # define WR(ono) \ |
| if (mycat(u->tag,ono) == TempReg) \ |
| { arr[n].tempNo = mycat(u->val,ono); \ |
| arr[n].isWrite = True; n++; } |
| |
| Int n = 0; |
| switch (u->opcode) { |
| case LEA1: RD(1); WR(2); break; |
| case LEA2: RD(1); RD(2); WR(3); break; |
| |
| case NOP: case FPU: case INCEIP: case CALLM_S: case CALLM_E: break; |
| case FPU_R: case FPU_W: RD(2); break; |
| |
| case GETF: WR(1); break; |
| case PUTF: RD(1); break; |
| |
| case GET: WR(2); break; |
| case PUT: RD(1); break; |
| case LOAD: RD(1); WR(2); break; |
| case STORE: RD(1); RD(2); break; |
| case MOV: RD(1); WR(2); break; |
| |
| case JMP: RD(1); break; |
| case CLEAR: case CALLM: break; |
| |
| case PUSH: RD(1); break; |
| case POP: WR(1); break; |
| |
| case TAG2: |
| case CMOV: |
| case ADD: case ADC: case AND: case OR: |
| case XOR: case SUB: case SBB: |
| RD(1); RD(2); WR(2); break; |
| |
| case SHL: case SHR: case SAR: |
| case ROL: case ROR: case RCL: case RCR: |
| RD(1); RD(2); WR(2); break; |
| |
| case NOT: case NEG: case INC: case DEC: case TAG1: case BSWAP: |
| RD(1); WR(1); break; |
| |
| case WIDEN: RD(1); WR(1); break; |
| |
| case CC2VAL: WR(1); break; |
| case JIFZ: RD(1); break; |
| |
| /* These sizes are only ever consulted when the instrumentation |
| code is being added, so the following can return |
| manifestly-bogus sizes. */ |
| case LOADV: RD(1); WR(2); break; |
| case STOREV: RD(1); RD(2); break; |
| case GETV: WR(2); break; |
| case PUTV: RD(1); break; |
| case TESTV: RD(1); break; |
| case SETV: WR(1); break; |
| case PUTVF: RD(1); break; |
| case GETVF: WR(1); break; |
| |
| default: VG_(panic)("getTempUsage: unhandled opcode"); |
| } |
| return n; |
| |
| # undef RD |
| # undef WR |
| } |
| |
| |
| /* Change temp regs in u into real regs, as directed by tmap. */ |
| static __inline__ |
| void patchUInstr ( UInstr* u, TempUse* tmap, Int n_tmap ) |
| { |
| Int i; |
| if (u->tag1 == TempReg) { |
| for (i = 0; i < n_tmap; i++) |
| if (tmap[i].tempNo == u->val1) break; |
| if (i == n_tmap) VG_(panic)("patchUInstr(1)"); |
| u->tag1 = RealReg; |
| u->val1 = tmap[i].realNo; |
| } |
| if (u->tag2 == TempReg) { |
| for (i = 0; i < n_tmap; i++) |
| if (tmap[i].tempNo == u->val2) break; |
| if (i == n_tmap) VG_(panic)("patchUInstr(2)"); |
| u->tag2 = RealReg; |
| u->val2 = tmap[i].realNo; |
| } |
| if (u->tag3 == TempReg) { |
| for (i = 0; i < n_tmap; i++) |
| if (tmap[i].tempNo == u->val3) break; |
| if (i == n_tmap) VG_(panic)("patchUInstr(3)"); |
| u->tag3 = RealReg; |
| u->val3 = tmap[i].realNo; |
| } |
| } |
| |
| |
| /* Tedious x86-specific hack which compensates for the fact that the |
| register numbers for %ah .. %dh do not correspond to those for %eax |
| .. %edx. It maps a (reg size, reg no) pair to the number of the |
| containing 32-bit reg. */ |
| static __inline__ |
| Int containingArchRegOf ( Int sz, Int aregno ) |
| { |
| switch (sz) { |
| case 4: return aregno; |
| case 2: return aregno; |
| case 1: return aregno >= 4 ? aregno-4 : aregno; |
| default: VG_(panic)("containingArchRegOf"); |
| } |
| } |
| |
| |
| /* If u reads an ArchReg, return the number of the containing arch |
| reg. Otherwise return -1. Used in redundant-PUT elimination. */ |
| static __inline__ |
| Int maybe_uinstrReadsArchReg ( UInstr* u ) |
| { |
| switch (u->opcode) { |
| case GET: |
| case ADD: case ADC: case AND: case OR: |
| case XOR: case SUB: case SBB: |
| case SHL: case SHR: case SAR: case ROL: |
| case ROR: case RCL: case RCR: |
| if (u->tag1 == ArchReg) |
| return containingArchRegOf ( u->size, u->val1 ); |
| else |
| return -1; |
| |
| case GETF: case PUTF: |
| case CALLM_S: case CALLM_E: |
| case INCEIP: |
| case LEA1: |
| case LEA2: |
| case NOP: |
| case PUT: |
| case LOAD: |
| case STORE: |
| case MOV: |
| case CMOV: |
| case JMP: |
| case CALLM: case CLEAR: case PUSH: case POP: |
| case NOT: case NEG: case INC: case DEC: case BSWAP: |
| case CC2VAL: |
| case JIFZ: |
| case FPU: case FPU_R: case FPU_W: |
| case WIDEN: |
| return -1; |
| |
| default: |
| VG_(ppUInstr)(0,u); |
| VG_(panic)("maybe_uinstrReadsArchReg: unhandled opcode"); |
| } |
| } |
| |
| static __inline__ |
| Bool uInstrMentionsTempReg ( UInstr* u, Int tempreg ) |
| { |
| Int i, k; |
| TempUse tempUse[3]; |
| k = getTempUsage ( u, &tempUse[0] ); |
| for (i = 0; i < k; i++) |
| if (tempUse[i].tempNo == tempreg) |
| return True; |
| return False; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- ucode improvement. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Improve the code in cb by doing |
| -- Redundant ArchReg-fetch elimination |
| -- Redundant PUT elimination |
| -- Redundant cond-code restore/save elimination |
| The overall effect of these is to allow target registers to be |
| cached in host registers over multiple target insns. |
| */ |
| static void vg_improve ( UCodeBlock* cb ) |
| { |
| Int i, j, k, m, n, ar, tr, told, actual_areg; |
| Int areg_map[8]; |
| Bool annul_put[8]; |
| TempUse tempUse[3]; |
| UInstr* u; |
| Bool wr; |
| Int* last_live_before; |
| FlagSet future_dead_flags; |
| |
| if (cb->nextTemp > 0) |
| last_live_before = VG_(jitmalloc) ( cb->nextTemp * sizeof(Int) ); |
| else |
| last_live_before = NULL; |
| |
| |
| /* PASS 1: redundant GET elimination. (Actually, more general than |
| that -- eliminates redundant fetches of ArchRegs). */ |
| |
| /* Find the live-range-ends for all temporaries. Duplicates code |
| in the register allocator :-( */ |
| |
| for (i = 0; i < cb->nextTemp; i++) last_live_before[i] = -1; |
| |
| for (i = cb->used-1; i >= 0; i--) { |
| u = &cb->instrs[i]; |
| |
| k = getTempUsage(u, &tempUse[0]); |
| |
| /* For each temp usage ... bwds in program order. */ |
| for (j = k-1; j >= 0; j--) { |
| tr = tempUse[j].tempNo; |
| wr = tempUse[j].isWrite; |
| if (last_live_before[tr] == -1) { |
| vg_assert(tr >= 0 && tr < cb->nextTemp); |
| last_live_before[tr] = wr ? (i+1) : i; |
| } |
| } |
| |
| } |
| |
| # define BIND_ARCH_TO_TEMP(archreg,tempreg)\ |
| { Int q; \ |
| /* Invalidate any old binding(s) to tempreg. */ \ |
| for (q = 0; q < 8; q++) \ |
| if (areg_map[q] == tempreg) areg_map[q] = -1; \ |
| /* Add the new binding. */ \ |
| areg_map[archreg] = (tempreg); \ |
| } |
| |
| /* Set up the A-reg map. */ |
| for (i = 0; i < 8; i++) areg_map[i] = -1; |
| |
| /* Scan insns. */ |
| for (i = 0; i < cb->used; i++) { |
| u = &cb->instrs[i]; |
| if (u->opcode == GET && u->size == 4) { |
| /* GET; see if it can be annulled. */ |
| vg_assert(u->tag1 == ArchReg); |
| vg_assert(u->tag2 == TempReg); |
| ar = u->val1; |
| tr = u->val2; |
| told = areg_map[ar]; |
| if (told != -1 && last_live_before[told] <= i) { |
| /* ar already has an old mapping to told, but that runs |
| out here. Annul this GET, rename tr to told for the |
| rest of the block, and extend told's live range to that |
| of tr. */ |
| u->opcode = NOP; |
| u->tag1 = u->tag2 = NoValue; |
| n = last_live_before[tr] + 1; |
| if (n > cb->used) n = cb->used; |
| last_live_before[told] = last_live_before[tr]; |
| last_live_before[tr] = i-1; |
| if (VG_(disassemble)) |
| VG_(printf)( |
| "at %d: delete GET, rename t%d to t%d in (%d .. %d)\n", |
| i, tr, told,i+1, n-1); |
| for (m = i+1; m < n; m++) { |
| if (cb->instrs[m].tag1 == TempReg |
| && cb->instrs[m].val1 == tr) |
| cb->instrs[m].val1 = told; |
| if (cb->instrs[m].tag2 == TempReg |
| && cb->instrs[m].val2 == tr) |
| cb->instrs[m].val2 = told; |
| } |
| BIND_ARCH_TO_TEMP(ar,told); |
| } |
| else |
| BIND_ARCH_TO_TEMP(ar,tr); |
| } |
| else if (u->opcode == GET && u->size != 4) { |
| /* Invalidate any mapping for this archreg. */ |
| actual_areg = containingArchRegOf ( u->size, u->val1 ); |
| areg_map[actual_areg] = -1; |
| } |
| else if (u->opcode == PUT && u->size == 4) { |
| /* PUT; re-establish t -> a binding */ |
| vg_assert(u->tag1 == TempReg); |
| vg_assert(u->tag2 == ArchReg); |
| BIND_ARCH_TO_TEMP(u->val2, u->val1); |
| } |
| else if (u->opcode == PUT && u->size != 4) { |
| /* Invalidate any mapping for this archreg. */ |
| actual_areg = containingArchRegOf ( u->size, u->val2 ); |
| areg_map[actual_areg] = -1; |
| } else { |
| |
| /* see if insn has an archreg as a read operand; if so try to |
| map it. */ |
| if (u->tag1 == ArchReg && u->size == 4 |
| && areg_map[u->val1] != -1) { |
| switch (u->opcode) { |
| case ADD: case SUB: case AND: case OR: case XOR: |
| case ADC: case SBB: |
| case SHL: case SHR: case SAR: case ROL: case ROR: |
| case RCL: case RCR: |
| if (VG_(disassemble)) |
| VG_(printf)( |
| "at %d: change ArchReg %S to TempReg t%d\n", |
| i, nameIReg(4,u->val1), areg_map[u->val1]); |
| u->tag1 = TempReg; |
| u->val1 = areg_map[u->val1]; |
| /* Remember to extend the live range of the TempReg, |
| if necessary. */ |
| if (last_live_before[u->val1] < i) |
| last_live_before[u->val1] = i; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* boring insn; invalidate any mappings to temps it writes */ |
| k = getTempUsage(u, &tempUse[0]); |
| |
| for (j = 0; j < k; j++) { |
| wr = tempUse[j].isWrite; |
| if (!wr) continue; |
| tr = tempUse[j].tempNo; |
| for (m = 0; m < 8; m++) |
| if (areg_map[m] == tr) areg_map[m] = -1; |
| } |
| } |
| |
| } |
| |
| # undef BIND_ARCH_TO_TEMP |
| |
| /* PASS 2: redundant PUT elimination. Don't annul (delay) puts of |
| %ESP, since the memory check machinery always requires the |
| in-memory value of %ESP to be up to date. Although this isn't |
| actually required by other analyses (cache simulation), it's |
| simplest to be consistent for all end-uses. */ |
| for (j = 0; j < 8; j++) |
| annul_put[j] = False; |
| |
| for (i = cb->used-1; i >= 0; i--) { |
| u = &cb->instrs[i]; |
| if (u->opcode == NOP) continue; |
| |
| if (u->opcode == PUT && u->size == 4) { |
| vg_assert(u->tag2 == ArchReg); |
| actual_areg = containingArchRegOf ( 4, u->val2 ); |
| if (annul_put[actual_areg]) { |
| vg_assert(actual_areg != R_ESP); |
| u->opcode = NOP; |
| u->tag1 = u->tag2 = NoValue; |
| if (VG_(disassemble)) |
| VG_(printf)("at %d: delete PUT\n", i ); |
| } else { |
| if (actual_areg != R_ESP) |
| annul_put[actual_areg] = True; |
| } |
| } |
| else if (u->opcode == PUT && u->size != 4) { |
| actual_areg = containingArchRegOf ( u->size, u->val2 ); |
| annul_put[actual_areg] = False; |
| } |
| else if (u->opcode == JMP || u->opcode == JIFZ |
| || u->opcode == CALLM) { |
| for (j = 0; j < 8; j++) |
| annul_put[j] = False; |
| } |
| else { |
| /* If an instruction reads an ArchReg, the immediately |
| preceding PUT cannot be annulled. */ |
| actual_areg = maybe_uinstrReadsArchReg ( u ); |
| if (actual_areg != -1) |
| annul_put[actual_areg] = False; |
| } |
| } |
| |
| /* PASS 2a: redundant-move elimination. Given MOV t1, t2 and t1 is |
| dead after this point, annul the MOV insn and rename t2 to t1. |
| Further modifies the last_live_before map. */ |
| |
| # if 0 |
| VG_(ppUCodeBlock)(cb, "Before MOV elimination" ); |
| for (i = 0; i < cb->nextTemp; i++) |
| VG_(printf)("llb[t%d]=%d ", i, last_live_before[i]); |
| VG_(printf)("\n"); |
| # endif |
| |
| for (i = 0; i < cb->used-1; i++) { |
| u = &cb->instrs[i]; |
| if (u->opcode != MOV) continue; |
| if (u->tag1 == Literal) continue; |
| vg_assert(u->tag1 == TempReg); |
| vg_assert(u->tag2 == TempReg); |
| if (last_live_before[u->val1] == i) { |
| if (VG_(disassemble)) |
| VG_(printf)( |
| "at %d: delete MOV, rename t%d to t%d in (%d .. %d)\n", |
| i, u->val2, u->val1, i+1, last_live_before[u->val2] ); |
| for (j = i+1; j <= last_live_before[u->val2]; j++) { |
| if (cb->instrs[j].tag1 == TempReg |
| && cb->instrs[j].val1 == u->val2) |
| cb->instrs[j].val1 = u->val1; |
| if (cb->instrs[j].tag2 == TempReg |
| && cb->instrs[j].val2 == u->val2) |
| cb->instrs[j].val2 = u->val1; |
| } |
| last_live_before[u->val1] = last_live_before[u->val2]; |
| last_live_before[u->val2] = i-1; |
| u->opcode = NOP; |
| u->tag1 = u->tag2 = NoValue; |
| } |
| } |
| |
| /* PASS 3: redundant condition-code restore/save elimination. |
| Scan backwards from the end. future_dead_flags records the set |
| of flags which are dead at this point, that is, will be written |
| before they are next read. Earlier uinsns which write flags |
| already in future_dead_flags can have their writes annulled. |
| */ |
| future_dead_flags = FlagsEmpty; |
| |
| for (i = cb->used-1; i >= 0; i--) { |
| u = &cb->instrs[i]; |
| |
| /* We might never make it to insns beyond this one, so be |
| conservative. */ |
| if (u->opcode == JIFZ || u->opcode == JMP) { |
| future_dead_flags = FlagsEmpty; |
| continue; |
| } |
| |
| /* We can annul the flags written by this insn if it writes a |
| subset (or eq) of the set of flags known to be dead after |
| this insn. If not, just record the flags also written by |
| this insn.*/ |
| if (u->flags_w != FlagsEmpty |
| && VG_IS_FLAG_SUBSET(u->flags_w, future_dead_flags)) { |
| if (VG_(disassemble)) { |
| VG_(printf)("at %d: annul flag write ", i); |
| vg_ppFlagSet("", u->flags_w); |
| VG_(printf)(" due to later "); |
| vg_ppFlagSet("", future_dead_flags); |
| VG_(printf)("\n"); |
| } |
| u->flags_w = FlagsEmpty; |
| } else { |
| future_dead_flags |
| = VG_UNION_FLAG_SETS ( u->flags_w, future_dead_flags ); |
| } |
| |
| /* If this insn also reads flags, empty out future_dead_flags so |
| as to force preceding writes not to be annulled. */ |
| if (u->flags_r != FlagsEmpty) |
| future_dead_flags = FlagsEmpty; |
| } |
| |
| if (last_live_before) |
| VG_(jitfree) ( last_live_before ); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- The new register allocator. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| typedef |
| struct { |
| /* Becomes live for the first time after this insn ... */ |
| Int live_after; |
| /* Becomes dead for the last time after this insn ... */ |
| Int dead_before; |
| /* The "home" spill slot, if needed. Never changes. */ |
| Int spill_no; |
| /* Where is it? VG_NOVALUE==in a spill slot; else in reg. */ |
| Int real_no; |
| } |
| TempInfo; |
| |
| |
| /* Take a ucode block and allocate its TempRegs to RealRegs, or put |
| them in spill locations, and add spill code, if there are not |
| enough real regs. The usual register allocation deal, in short. |
| |
| Important redundancy of representation: |
| |
| real_to_temp maps real reg ranks (RRRs) to TempReg nos, or |
| to VG_NOVALUE if the real reg has no currently assigned TempReg. |
| |
| The .real_no field of a TempInfo gives the current RRR for |
| this TempReg, or VG_NOVALUE if the TempReg is currently |
| in memory, in which case it is in the SpillNo denoted by |
| spillno. |
| |
| These pieces of information (a fwds-bwds mapping, really) must |
| be kept consistent! |
| |
| This allocator uses the so-called Second Chance Bin Packing |
| algorithm, as described in "Quality and Speed in Linear-scan |
| Register Allocation" (Traub, Holloway and Smith, ACM PLDI98, |
| pp142-151). It is simple and fast and remarkably good at |
| minimising the amount of spill code introduced. |
| */ |
| |
| static |
| UCodeBlock* vg_do_register_allocation ( UCodeBlock* c1 ) |
| { |
| TempInfo* temp_info; |
| Int real_to_temp[VG_MAX_REALREGS]; |
| Bool is_spill_cand[VG_MAX_REALREGS]; |
| Int ss_busy_until_before[VG_MAX_SPILLSLOTS]; |
| Int i, j, k, m, r, tno, max_ss_no; |
| Bool wr, defer, isRead, spill_reqd; |
| TempUse tempUse[3]; |
| UCodeBlock* c2; |
| |
| /* Used to denote ... well, "no value" in this fn. */ |
| # define VG_NOTHING (-2) |
| |
| /* Initialise the TempReg info. */ |
| if (c1->nextTemp > 0) |
| temp_info = VG_(jitmalloc)(c1->nextTemp * sizeof(TempInfo) ); |
| else |
| temp_info = NULL; |
| |
| for (i = 0; i < c1->nextTemp; i++) { |
| temp_info[i].live_after = VG_NOTHING; |
| temp_info[i].dead_before = VG_NOTHING; |
| temp_info[i].spill_no = VG_NOTHING; |
| /* temp_info[i].real_no is not yet relevant. */ |
| } |
| |
| spill_reqd = False; |
| |
| /* Scan fwds to establish live ranges. */ |
| |
| for (i = 0; i < c1->used; i++) { |
| k = getTempUsage(&c1->instrs[i], &tempUse[0]); |
| vg_assert(k >= 0 && k <= 3); |
| |
| /* For each temp usage ... fwds in program order */ |
| for (j = 0; j < k; j++) { |
| tno = tempUse[j].tempNo; |
| wr = tempUse[j].isWrite; |
| if (wr) { |
| /* Writes hold a reg live until after this insn. */ |
| if (temp_info[tno].live_after == VG_NOTHING) |
| temp_info[tno].live_after = i; |
| if (temp_info[tno].dead_before < i + 1) |
| temp_info[tno].dead_before = i + 1; |
| } else { |
| /* First use of a tmp should be a write. */ |
| vg_assert(temp_info[tno].live_after != VG_NOTHING); |
| /* Reads only hold it live until before this insn. */ |
| if (temp_info[tno].dead_before < i) |
| temp_info[tno].dead_before = i; |
| } |
| } |
| } |
| |
| # if 0 |
| /* Sanity check on live ranges. Expensive but correct. */ |
| for (i = 0; i < c1->nextTemp; i++) { |
| vg_assert( (temp_info[i].live_after == VG_NOTHING |
| && temp_info[i].dead_before == VG_NOTHING) |
| || (temp_info[i].live_after != VG_NOTHING |
| && temp_info[i].dead_before != VG_NOTHING) ); |
| } |
| # endif |
| |
| /* Do a rank-based allocation of TempRegs to spill slot numbers. |
| We put as few as possible values in spill slots, but |
| nevertheless need to have an assignment to them just in case. */ |
| |
| max_ss_no = -1; |
| |
| for (i = 0; i < VG_MAX_SPILLSLOTS; i++) |
| ss_busy_until_before[i] = 0; |
| |
| for (i = 0; i < c1->nextTemp; i++) { |
| |
| /* True iff this temp is unused. */ |
| if (temp_info[i].live_after == VG_NOTHING) |
| continue; |
| |
| /* Find the lowest-numbered spill slot which is available at the |
| start point of this interval, and assign the interval to |
| it. */ |
| for (j = 0; j < VG_MAX_SPILLSLOTS; j++) |
| if (ss_busy_until_before[j] <= temp_info[i].live_after) |
| break; |
| if (j == VG_MAX_SPILLSLOTS) { |
| VG_(printf)("VG_MAX_SPILLSLOTS is too low; increase and recompile.\n"); |
| VG_(panic)("register allocation failed -- out of spill slots"); |
| } |
| ss_busy_until_before[j] = temp_info[i].dead_before; |
| temp_info[i].spill_no = j; |
| if (j > max_ss_no) |
| max_ss_no = j; |
| } |
| |
| VG_(total_reg_rank) += (max_ss_no+1); |
| |
| /* Show live ranges and assigned spill slot nos. */ |
| |
| if (VG_(disassemble)) { |
| VG_(printf)("Live Range Assignments\n"); |
| |
| for (i = 0; i < c1->nextTemp; i++) { |
| if (temp_info[i].live_after == VG_NOTHING) |
| continue; |
| VG_(printf)( |
| " LR %d is after %d to before %d spillno %d\n", |
| i, |
| temp_info[i].live_after, |
| temp_info[i].dead_before, |
| temp_info[i].spill_no |
| ); |
| } |
| } |
| |
| /* Now that we've established a spill slot number for each used |
| temporary, we can go ahead and do the core of the "Second-chance |
| binpacking" allocation algorithm. */ |
| |
| /* Resulting code goes here. We generate it all in a forwards |
| pass. */ |
| c2 = VG_(allocCodeBlock)(); |
| |
| /* At the start, no TempRegs are assigned to any real register. |
| Correspondingly, all temps claim to be currently resident in |
| their spill slots, as computed by the previous two passes. */ |
| for (i = 0; i < VG_MAX_REALREGS; i++) |
| real_to_temp[i] = VG_NOTHING; |
| for (i = 0; i < c1->nextTemp; i++) |
| temp_info[i].real_no = VG_NOTHING; |
| |
| if (VG_(disassemble)) |
| VG_(printf)("\n"); |
| |
| /* Process each insn in turn. */ |
| for (i = 0; i < c1->used; i++) { |
| |
| if (c1->instrs[i].opcode == NOP) continue; |
| VG_(uinstrs_prealloc)++; |
| |
| # if 0 |
| /* Check map consistency. Expensive but correct. */ |
| for (r = 0; r < VG_MAX_REALREGS; r++) { |
| if (real_to_temp[r] != VG_NOTHING) { |
| tno = real_to_temp[r]; |
| vg_assert(tno >= 0 && tno < c1->nextTemp); |
| vg_assert(temp_info[tno].real_no == r); |
| } |
| } |
| for (tno = 0; tno < c1->nextTemp; tno++) { |
| if (temp_info[tno].real_no != VG_NOTHING) { |
| r = temp_info[tno].real_no; |
| vg_assert(r >= 0 && r < VG_MAX_REALREGS); |
| vg_assert(real_to_temp[r] == tno); |
| } |
| } |
| # endif |
| |
| if (VG_(disassemble)) |
| VG_(ppUInstr)(i, &c1->instrs[i]); |
| |
| /* First, free up enough real regs for this insn. This may |
| generate spill stores since we may have to evict some TempRegs |
| currently in real regs. Also generates spill loads. */ |
| |
| k = getTempUsage(&c1->instrs[i], &tempUse[0]); |
| vg_assert(k >= 0 && k <= 3); |
| |
| /* For each ***different*** temp mentioned in the insn .... */ |
| for (j = 0; j < k; j++) { |
| |
| /* First check if the temp is mentioned again later; if so, |
| ignore this mention. We only want to process each temp |
| used by the insn once, even if it is mentioned more than |
| once. */ |
| defer = False; |
| tno = tempUse[j].tempNo; |
| for (m = j+1; m < k; m++) |
| if (tempUse[m].tempNo == tno) |
| defer = True; |
| if (defer) |
| continue; |
| |
| /* Now we're trying to find a register for tempUse[j].tempNo. |
| First of all, if it already has a register assigned, we |
| don't need to do anything more. */ |
| if (temp_info[tno].real_no != VG_NOTHING) |
| continue; |
| |
| /* No luck. The next thing to do is see if there is a |
| currently unassigned register available. If so, bag it. */ |
| for (r = 0; r < VG_MAX_REALREGS; r++) { |
| if (real_to_temp[r] == VG_NOTHING) |
| break; |
| } |
| if (r < VG_MAX_REALREGS) { |
| real_to_temp[r] = tno; |
| temp_info[tno].real_no = r; |
| continue; |
| } |
| |
| /* Unfortunately, that didn't pan out either. So we'll have |
| to eject some other unfortunate TempReg into a spill slot |
| in order to free up a register. Of course, we need to be |
| careful not to eject some other TempReg needed by this |
| insn. |
| |
| Select r in 0 .. VG_MAX_REALREGS-1 such that |
| real_to_temp[r] is not mentioned in |
| tempUse[0 .. k-1].tempNo, since it would be just plain |
| wrong to eject some other TempReg which we need to use in |
| this insn. |
| |
| It is here that it is important to make a good choice of |
| register to spill. */ |
| |
| /* First, mark those regs which are not spill candidates. */ |
| for (r = 0; r < VG_MAX_REALREGS; r++) { |
| is_spill_cand[r] = True; |
| for (m = 0; m < k; m++) { |
| if (real_to_temp[r] == tempUse[m].tempNo) { |
| is_spill_cand[r] = False; |
| break; |
| } |
| } |
| } |
| |
| /* We can choose any r satisfying is_spill_cand[r]. However, |
| try to make a good choice. First, try and find r such |
| that the associated TempReg is already dead. */ |
| for (r = 0; r < VG_MAX_REALREGS; r++) { |
| if (is_spill_cand[r] && |
| temp_info[real_to_temp[r]].dead_before <= i) |
| goto have_spill_cand; |
| } |
| |
| /* No spill cand is mapped to a dead TempReg. Now we really |
| _do_ have to generate spill code. Choose r so that the |
| next use of its associated TempReg is as far ahead as |
| possible, in the hope that this will minimise the number of |
| consequent reloads required. This is a bit expensive, but |
| we don't have to do it very often. */ |
| { |
| Int furthest_r = VG_MAX_REALREGS; |
| Int furthest = 0; |
| for (r = 0; r < VG_MAX_REALREGS; r++) { |
| if (!is_spill_cand[r]) continue; |
| for (m = i+1; m < c1->used; m++) |
| if (uInstrMentionsTempReg(&c1->instrs[m], |
| real_to_temp[r])) |
| break; |
| if (m > furthest) { |
| furthest = m; |
| furthest_r = r; |
| } |
| } |
| r = furthest_r; |
| goto have_spill_cand; |
| } |
| |
| have_spill_cand: |
| if (r == VG_MAX_REALREGS) |
| VG_(panic)("new reg alloc: out of registers ?!"); |
| |
| /* Eject r. Important refinement: don't bother if the |
| associated TempReg is now dead. */ |
| vg_assert(real_to_temp[r] != VG_NOTHING); |
| vg_assert(real_to_temp[r] != tno); |
| temp_info[real_to_temp[r]].real_no = VG_NOTHING; |
| if (temp_info[real_to_temp[r]].dead_before > i) { |
| uInstr2(c2, PUT, 4, |
| RealReg, VG_(rankToRealRegNo)(r), |
| SpillNo, temp_info[real_to_temp[r]].spill_no); |
| VG_(uinstrs_spill)++; |
| spill_reqd = True; |
| if (VG_(disassemble)) |
| VG_(ppUInstr)(c2->used-1, &LAST_UINSTR(c2)); |
| } |
| |
| /* Decide if tno is read. */ |
| isRead = False; |
| for (m = 0; m < k; m++) |
| if (tempUse[m].tempNo == tno && !tempUse[m].isWrite) |
| isRead = True; |
| |
| /* If so, generate a spill load. */ |
| if (isRead) { |
| uInstr2(c2, GET, 4, |
| SpillNo, temp_info[tno].spill_no, |
| RealReg, VG_(rankToRealRegNo)(r) ); |
| VG_(uinstrs_spill)++; |
| spill_reqd = True; |
| if (VG_(disassemble)) |
| VG_(ppUInstr)(c2->used-1, &LAST_UINSTR(c2)); |
| } |
| |
| /* Update the forwards and backwards maps. */ |
| real_to_temp[r] = tno; |
| temp_info[tno].real_no = r; |
| } |
| |
| /* By this point, all TempRegs mentioned by the insn have been |
| bought into real regs. We now copy the insn to the output |
| and use patchUInstr to convert its rTempRegs into |
| realregs. */ |
| for (j = 0; j < k; j++) |
| tempUse[j].realNo |
| = VG_(rankToRealRegNo)(temp_info[tempUse[j].tempNo].real_no); |
| VG_(copyUInstr)(c2, &c1->instrs[i]); |
| patchUInstr(&LAST_UINSTR(c2), &tempUse[0], k); |
| |
| if (VG_(disassemble)) { |
| VG_(ppUInstr)(c2->used-1, &LAST_UINSTR(c2)); |
| VG_(printf)("\n"); |
| } |
| } |
| |
| if (temp_info != NULL) |
| VG_(jitfree)(temp_info); |
| |
| VG_(freeCodeBlock)(c1); |
| |
| if (spill_reqd) |
| VG_(translations_needing_spill)++; |
| |
| return c2; |
| |
| # undef VG_NOTHING |
| |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- New instrumentation machinery. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static |
| VgTagOp get_VgT_ImproveOR_TQ ( Int sz ) |
| { |
| switch (sz) { |
| case 4: return VgT_ImproveOR4_TQ; |
| case 2: return VgT_ImproveOR2_TQ; |
| case 1: return VgT_ImproveOR1_TQ; |
| default: VG_(panic)("get_VgT_ImproveOR_TQ"); |
| } |
| } |
| |
| |
| static |
| VgTagOp get_VgT_ImproveAND_TQ ( Int sz ) |
| { |
| switch (sz) { |
| case 4: return VgT_ImproveAND4_TQ; |
| case 2: return VgT_ImproveAND2_TQ; |
| case 1: return VgT_ImproveAND1_TQ; |
| default: VG_(panic)("get_VgT_ImproveAND_TQ"); |
| } |
| } |
| |
| |
| static |
| VgTagOp get_VgT_Left ( Int sz ) |
| { |
| switch (sz) { |
| case 4: return VgT_Left4; |
| case 2: return VgT_Left2; |
| case 1: return VgT_Left1; |
| default: VG_(panic)("get_VgT_Left"); |
| } |
| } |
| |
| |
| static |
| VgTagOp get_VgT_UifU ( Int sz ) |
| { |
| switch (sz) { |
| case 4: return VgT_UifU4; |
| case 2: return VgT_UifU2; |
| case 1: return VgT_UifU1; |
| case 0: return VgT_UifU0; |
| default: VG_(panic)("get_VgT_UifU"); |
| } |
| } |
| |
| |
| static |
| VgTagOp get_VgT_DifD ( Int sz ) |
| { |
| switch (sz) { |
| case 4: return VgT_DifD4; |
| case 2: return VgT_DifD2; |
| case 1: return VgT_DifD1; |
| default: VG_(panic)("get_VgT_DifD"); |
| } |
| } |
| |
| |
| static |
| VgTagOp get_VgT_PCast ( Int szs, Int szd ) |
| { |
| if (szs == 4 && szd == 0) return VgT_PCast40; |
| if (szs == 2 && szd == 0) return VgT_PCast20; |
| if (szs == 1 && szd == 0) return VgT_PCast10; |
| if (szs == 0 && szd == 1) return VgT_PCast01; |
| if (szs == 0 && szd == 2) return VgT_PCast02; |
| if (szs == 0 && szd == 4) return VgT_PCast04; |
| if (szs == 1 && szd == 4) return VgT_PCast14; |
| if (szs == 1 && szd == 2) return VgT_PCast12; |
| if (szs == 1 && szd == 1) return VgT_PCast11; |
| VG_(printf)("get_VgT_PCast(%d,%d)\n", szs, szd); |
| VG_(panic)("get_VgT_PCast"); |
| } |
| |
| |
| static |
| VgTagOp get_VgT_Widen ( Bool syned, Int szs, Int szd ) |
| { |
| if (szs == 1 && szd == 2 && syned) return VgT_SWiden12; |
| if (szs == 1 && szd == 2 && !syned) return VgT_ZWiden12; |
| |
| if (szs == 1 && szd == 4 && syned) return VgT_SWiden14; |
| if (szs == 1 && szd == 4 && !syned) return VgT_ZWiden14; |
| |
| if (szs == 2 && szd == 4 && syned) return VgT_SWiden24; |
| if (szs == 2 && szd == 4 && !syned) return VgT_ZWiden24; |
| |
| VG_(printf)("get_VgT_Widen(%d,%d,%d)\n", (Int)syned, szs, szd); |
| VG_(panic)("get_VgT_Widen"); |
| } |
| |
| /* Pessimally cast the spec'd shadow from one size to another. */ |
| static |
| void create_PCast ( UCodeBlock* cb, Int szs, Int szd, Int tempreg ) |
| { |
| if (szs == 0 && szd == 0) |
| return; |
| uInstr3(cb, TAG1, 0, TempReg, tempreg, |
| NoValue, 0, |
| Lit16, get_VgT_PCast(szs,szd)); |
| } |
| |
| |
| /* Create a signed or unsigned widen of the spec'd shadow from one |
| size to another. The only allowed size transitions are 1->2, 1->4 |
| and 2->4. */ |
| static |
| void create_Widen ( UCodeBlock* cb, Bool signed_widen, |
| Int szs, Int szd, Int tempreg ) |
| { |
| if (szs == szd) return; |
| uInstr3(cb, TAG1, 0, TempReg, tempreg, |
| NoValue, 0, |
| Lit16, get_VgT_Widen(signed_widen,szs,szd)); |
| } |
| |
| |
| /* Get the condition codes into a new shadow, at the given size. */ |
| static |
| Int create_GETVF ( UCodeBlock* cb, Int sz ) |
| { |
| Int tt = newShadow(cb); |
| uInstr1(cb, GETVF, 0, TempReg, tt); |
| create_PCast(cb, 0, sz, tt); |
| return tt; |
| } |
| |
| |
| /* Save the condition codes from the spec'd shadow. */ |
| static |
| void create_PUTVF ( UCodeBlock* cb, Int sz, Int tempreg ) |
| { |
| if (sz == 0) { |
| uInstr1(cb, PUTVF, 0, TempReg, tempreg); |
| } else { |
| Int tt = newShadow(cb); |
| uInstr2(cb, MOV, 4, TempReg, tempreg, TempReg, tt); |
| create_PCast(cb, sz, 0, tt); |
| uInstr1(cb, PUTVF, 0, TempReg, tt); |
| } |
| } |
| |
| |
| /* Do Left on the spec'd shadow. */ |
| static |
| void create_Left ( UCodeBlock* cb, Int sz, Int tempreg ) |
| { |
| uInstr3(cb, TAG1, 0, |
| TempReg, tempreg, |
| NoValue, 0, |
| Lit16, get_VgT_Left(sz)); |
| } |
| |
| |
| /* Do UifU on ts and td, putting the result in td. */ |
| static |
| void create_UifU ( UCodeBlock* cb, Int sz, Int ts, Int td ) |
| { |
| uInstr3(cb, TAG2, 0, TempReg, ts, TempReg, td, |
| Lit16, get_VgT_UifU(sz)); |
| } |
| |
| |
| /* Do DifD on ts and td, putting the result in td. */ |
| static |
| void create_DifD ( UCodeBlock* cb, Int sz, Int ts, Int td ) |
| { |
| uInstr3(cb, TAG2, 0, TempReg, ts, TempReg, td, |
| Lit16, get_VgT_DifD(sz)); |
| } |
| |
| |
| /* Do HelpAND on value tval and tag tqqq, putting the result in |
| tqqq. */ |
| static |
| void create_ImproveAND_TQ ( UCodeBlock* cb, Int sz, Int tval, Int tqqq ) |
| { |
| uInstr3(cb, TAG2, 0, TempReg, tval, TempReg, tqqq, |
| Lit16, get_VgT_ImproveAND_TQ(sz)); |
| } |
| |
| |
| /* Do HelpOR on value tval and tag tqqq, putting the result in |
| tqqq. */ |
| static |
| void create_ImproveOR_TQ ( UCodeBlock* cb, Int sz, Int tval, Int tqqq ) |
| { |
| uInstr3(cb, TAG2, 0, TempReg, tval, TempReg, tqqq, |
| Lit16, get_VgT_ImproveOR_TQ(sz)); |
| } |
| |
| |
| /* Get the shadow for an operand described by (tag, val). Emit code |
| to do this and return the identity of the shadow holding the |
| result. The result tag is always copied into a new shadow, so it |
| can be modified without trashing the original.*/ |
| static |
| Int /* TempReg */ getOperandShadow ( UCodeBlock* cb, |
| Int sz, Int tag, Int val ) |
| { |
| Int sh; |
| sh = newShadow(cb); |
| if (tag == TempReg) { |
| uInstr2(cb, MOV, 4, TempReg, SHADOW(val), TempReg, sh); |
| return sh; |
| } |
| if (tag == Literal) { |
| uInstr1(cb, SETV, sz, TempReg, sh); |
| return sh; |
| } |
| if (tag == ArchReg) { |
| uInstr2(cb, GETV, sz, ArchReg, val, TempReg, sh); |
| return sh; |
| } |
| VG_(panic)("getOperandShadow"); |
| } |
| |
| |
| |
| /* Create and return an instrumented version of cb_in. Free cb_in |
| before returning. */ |
| static UCodeBlock* vg_instrument ( UCodeBlock* cb_in ) |
| { |
| UCodeBlock* cb; |
| Int i, j; |
| UInstr* u_in; |
| Int qs, qd, qt, qtt; |
| cb = VG_(allocCodeBlock)(); |
| cb->nextTemp = cb_in->nextTemp; |
| |
| for (i = 0; i < cb_in->used; i++) { |
| qs = qd = qt = qtt = INVALID_TEMPREG; |
| u_in = &cb_in->instrs[i]; |
| |
| /* if (i > 0) uInstr1(cb, NOP, 0, NoValue, 0); */ |
| |
| /* VG_(ppUInstr)(0, u_in); */ |
| switch (u_in->opcode) { |
| |
| case NOP: |
| break; |
| |
| case INCEIP: |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| /* Loads and stores. Test the V bits for the address. 24 |
| Mar 02: since the address is A-checked anyway, there's not |
| really much point in doing the V-check too, unless you |
| think that you might use addresses which are undefined but |
| still addressible. Hence the optionalisation of the V |
| check. |
| |
| The LOADV/STOREV does an addressibility check for the |
| address. */ |
| |
| case LOAD: |
| if (VG_(clo_check_addrVs)) { |
| uInstr1(cb, TESTV, 4, TempReg, SHADOW(u_in->val1)); |
| uInstr1(cb, SETV, 4, TempReg, SHADOW(u_in->val1)); |
| } |
| uInstr2(cb, LOADV, u_in->size, |
| TempReg, u_in->val1, |
| TempReg, SHADOW(u_in->val2)); |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| case STORE: |
| if (VG_(clo_check_addrVs)) { |
| uInstr1(cb, TESTV, 4, TempReg, SHADOW(u_in->val2)); |
| uInstr1(cb, SETV, 4, TempReg, SHADOW(u_in->val2)); |
| } |
| uInstr2(cb, STOREV, u_in->size, |
| TempReg, SHADOW(u_in->val1), |
| TempReg, u_in->val2); |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| /* Moving stuff around. Make the V bits follow accordingly, |
| but don't do anything else. */ |
| |
| case GET: |
| uInstr2(cb, GETV, u_in->size, |
| ArchReg, u_in->val1, |
| TempReg, SHADOW(u_in->val2)); |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| case PUT: |
| uInstr2(cb, PUTV, u_in->size, |
| TempReg, SHADOW(u_in->val1), |
| ArchReg, u_in->val2); |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| case GETF: |
| /* This is not the smartest way to do it, but should work. */ |
| qd = create_GETVF(cb, u_in->size); |
| uInstr2(cb, MOV, 4, TempReg, qd, TempReg, SHADOW(u_in->val1)); |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| case PUTF: |
| create_PUTVF(cb, u_in->size, SHADOW(u_in->val1)); |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| case MOV: |
| switch (u_in->tag1) { |
| case TempReg: |
| uInstr2(cb, MOV, 4, |
| TempReg, SHADOW(u_in->val1), |
| TempReg, SHADOW(u_in->val2)); |
| break; |
| case Literal: |
| uInstr1(cb, SETV, u_in->size, |
| TempReg, SHADOW(u_in->val2)); |
| break; |
| default: |
| VG_(panic)("vg_instrument: MOV"); |
| } |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| /* Special case of add, where one of the operands is a literal. |
| lea1(t) = t + some literal. |
| Therefore: lea1#(qa) = left(qa) |
| */ |
| case LEA1: |
| vg_assert(u_in->size == 4 && !VG_(anyFlagUse)(u_in)); |
| qs = SHADOW(u_in->val1); |
| qd = SHADOW(u_in->val2); |
| uInstr2(cb, MOV, 4, TempReg, qs, TempReg, qd); |
| create_Left(cb, u_in->size, qd); |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| /* Another form of add. |
| lea2(ts,tt,shift) = ts + (tt << shift); shift is a literal |
| and is 0,1,2 or 3. |
| lea2#(qs,qt) = left(qs `UifU` (qt << shift)). |
| Note, subtly, that the shift puts zeroes at the bottom of qt, |
| meaning Valid, since the corresponding shift of tt puts |
| zeroes at the bottom of tb. |
| */ |
| case LEA2: { |
| Int shift; |
| vg_assert(u_in->size == 4 && !VG_(anyFlagUse)(u_in)); |
| switch (u_in->extra4b) { |
| case 1: shift = 0; break; |
| case 2: shift = 1; break; |
| case 4: shift = 2; break; |
| case 8: shift = 3; break; |
| default: VG_(panic)( "vg_instrument(LEA2)" ); |
| } |
| qs = SHADOW(u_in->val1); |
| qt = SHADOW(u_in->val2); |
| qd = SHADOW(u_in->val3); |
| uInstr2(cb, MOV, 4, TempReg, qt, TempReg, qd); |
| if (shift > 0) { |
| uInstr2(cb, SHL, 4, Literal, 0, TempReg, qd); |
| uLiteral(cb, shift); |
| } |
| create_UifU(cb, 4, qs, qd); |
| create_Left(cb, u_in->size, qd); |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| } |
| |
| /* inc#/dec#(qd) = q `UifU` left(qd) = left(qd) */ |
| case INC: case DEC: |
| qd = SHADOW(u_in->val1); |
| create_Left(cb, u_in->size, qd); |
| if (u_in->flags_w != FlagsEmpty) |
| create_PUTVF(cb, u_in->size, qd); |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| /* This is a HACK (approximation :-) */ |
| /* rcl#/rcr#(qs,qd) |
| = let q0 = pcast-sz-0(qd) `UifU` pcast-sz-0(qs) `UifU` eflags# |
| eflags# = q0 |
| qd =pcast-0-sz(q0) |
| Ie, cast everything down to a single bit, then back up. |
| This assumes that any bad bits infect the whole word and |
| the eflags. |
| */ |
| case RCL: case RCR: |
| vg_assert(u_in->flags_r != FlagsEmpty); |
| /* The following assertion looks like it makes sense, but is |
| actually wrong. Consider this: |
| rcll %eax |
| imull %eax, %eax |
| The rcll writes O and C but so does the imull, so the O and C |
| write of the rcll is annulled by the prior improvement pass. |
| Noticed by Kevin Ryde <user42@zip.com.au> |
| */ |
| /* vg_assert(u_in->flags_w != FlagsEmpty); */ |
| qs = getOperandShadow(cb, u_in->size, u_in->tag1, u_in->val1); |
| /* We can safely modify qs; cast it to 0-size. */ |
| create_PCast(cb, u_in->size, 0, qs); |
| qd = SHADOW(u_in->val2); |
| create_PCast(cb, u_in->size, 0, qd); |
| /* qs is cast-to-0(shift count#), and qd is cast-to-0(value#). */ |
| create_UifU(cb, 0, qs, qd); |
| /* qs is now free; reuse it for the flag definedness. */ |
| qs = create_GETVF(cb, 0); |
| create_UifU(cb, 0, qs, qd); |
| create_PUTVF(cb, 0, qd); |
| create_PCast(cb, 0, u_in->size, qd); |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| /* for OP in shl shr sar rol ror |
| (qs is shift count#, qd is value to be OP#d) |
| OP(ts,td) |
| OP#(qs,qd) |
| = pcast-1-sz(qs) `UifU` OP(ts,qd) |
| So we apply OP to the tag bits too, and then UifU with |
| the shift count# to take account of the possibility of it |
| being undefined. |
| |
| A bit subtle: |
| ROL/ROR rearrange the tag bits as per the value bits. |
| SHL/SHR shifts zeroes into the value, and corresponding |
| zeroes indicating Definedness into the tag. |
| SAR copies the top bit of the value downwards, and therefore |
| SAR also copies the definedness of the top bit too. |
| So in all five cases, we just apply the same op to the tag |
| bits as is applied to the value bits. Neat! |
| */ |
| case SHL: |
| case SHR: case SAR: |
| case ROL: case ROR: { |
| Int t_amount = INVALID_TEMPREG; |
| vg_assert(u_in->tag1 == TempReg || u_in->tag1 == Literal); |
| vg_assert(u_in->tag2 == TempReg); |
| qd = SHADOW(u_in->val2); |
| |
| /* Make qs hold shift-count# and make |
| t_amount be a TempReg holding the shift count. */ |
| if (u_in->tag1 == Literal) { |
| t_amount = newTemp(cb); |
| uInstr2(cb, MOV, 4, Literal, 0, TempReg, t_amount); |
| uLiteral(cb, u_in->lit32); |
| qs = SHADOW(t_amount); |
| uInstr1(cb, SETV, 1, TempReg, qs); |
| } else { |
| t_amount = u_in->val1; |
| qs = SHADOW(u_in->val1); |
| } |
| |
| uInstr2(cb, u_in->opcode, |
| u_in->size, |
| TempReg, t_amount, |
| TempReg, qd); |
| qt = newShadow(cb); |
| uInstr2(cb, MOV, 4, TempReg, qs, TempReg, qt); |
| create_PCast(cb, 1, u_in->size, qt); |
| create_UifU(cb, u_in->size, qt, qd); |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| } |
| |
| /* One simple tag operation. */ |
| case WIDEN: |
| vg_assert(u_in->tag1 == TempReg); |
| create_Widen(cb, u_in->signed_widen, u_in->extra4b, u_in->size, |
| SHADOW(u_in->val1)); |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| /* not#(x) = x (since bitwise independent) */ |
| case NOT: |
| vg_assert(u_in->tag1 == TempReg); |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| /* neg#(x) = left(x) (derivable from case for SUB) */ |
| case NEG: |
| vg_assert(u_in->tag1 == TempReg); |
| create_Left(cb, u_in->size, SHADOW(u_in->val1)); |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| /* bswap#(x) = bswap(x) */ |
| case BSWAP: |
| vg_assert(u_in->tag1 == TempReg); |
| vg_assert(u_in->size == 4); |
| qd = SHADOW(u_in->val1); |
| uInstr1(cb, BSWAP, 4, TempReg, qd); |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| /* cc2val#(qd) = pcast-0-to-size(eflags#) */ |
| case CC2VAL: |
| vg_assert(u_in->tag1 == TempReg); |
| vg_assert(u_in->flags_r != FlagsEmpty); |
| qt = create_GETVF(cb, u_in->size); |
| uInstr2(cb, MOV, 4, TempReg, qt, TempReg, SHADOW(u_in->val1)); |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| /* cmov#(qs,qd) = cmov(qs,qd) |
| That is, do the cmov of tags using the same flags as for |
| the data (obviously). However, first do a test on the |
| validity of the flags. |
| */ |
| case CMOV: |
| vg_assert(u_in->size == 4); |
| vg_assert(u_in->tag1 == TempReg); |
| vg_assert(u_in->tag2 == TempReg); |
| vg_assert(u_in->flags_r != FlagsEmpty); |
| vg_assert(u_in->flags_w == FlagsEmpty); |
| qs = SHADOW(u_in->val1); |
| qd = SHADOW(u_in->val2); |
| qt = create_GETVF(cb, 0); |
| uInstr1(cb, TESTV, 0, TempReg, qt); |
| /* qt should never be referred to again. Nevertheless |
| ... */ |
| uInstr1(cb, SETV, 0, TempReg, qt); |
| |
| uInstr2(cb, CMOV, 4, TempReg, qs, TempReg, qd); |
| LAST_UINSTR(cb).cond = u_in->cond; |
| LAST_UINSTR(cb).flags_r = u_in->flags_r; |
| |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| /* add#/sub#(qs,qd) |
| = qs `UifU` qd `UifU` left(qs) `UifU` left(qd) |
| = left(qs) `UifU` left(qd) |
| = left(qs `UifU` qd) |
| adc#/sbb#(qs,qd) |
| = left(qs `UifU` qd) `UifU` pcast(eflags#) |
| Second arg (dest) is TempReg. |
| First arg (src) is Literal or TempReg or ArchReg. |
| */ |
| case ADD: case SUB: |
| case ADC: case SBB: |
| qd = SHADOW(u_in->val2); |
| qs = getOperandShadow(cb, u_in->size, u_in->tag1, u_in->val1); |
| create_UifU(cb, u_in->size, qs, qd); |
| create_Left(cb, u_in->size, qd); |
| if (u_in->opcode == ADC || u_in->opcode == SBB) { |
| vg_assert(u_in->flags_r != FlagsEmpty); |
| qt = create_GETVF(cb, u_in->size); |
| create_UifU(cb, u_in->size, qt, qd); |
| } |
| if (u_in->flags_w != FlagsEmpty) { |
| create_PUTVF(cb, u_in->size, qd); |
| } |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| /* xor#(qs,qd) = qs `UifU` qd */ |
| case XOR: |
| qd = SHADOW(u_in->val2); |
| qs = getOperandShadow(cb, u_in->size, u_in->tag1, u_in->val1); |
| create_UifU(cb, u_in->size, qs, qd); |
| if (u_in->flags_w != FlagsEmpty) { |
| create_PUTVF(cb, u_in->size, qd); |
| } |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| /* and#/or#(qs,qd) |
| = (qs `UifU` qd) `DifD` improve(vs,qs) |
| `DifD` improve(vd,qd) |
| where improve is the relevant one of |
| Improve{AND,OR}_TQ |
| Use the following steps, with qt as a temp: |
| qt = improve(vd,qd) |
| qd = qs `UifU` qd |
| qd = qt `DifD` qd |
| qt = improve(vs,qs) |
| qd = qt `DifD` qd |
| */ |
| case AND: case OR: |
| vg_assert(u_in->tag1 == TempReg); |
| vg_assert(u_in->tag2 == TempReg); |
| qd = SHADOW(u_in->val2); |
| qs = SHADOW(u_in->val1); |
| qt = newShadow(cb); |
| |
| /* qt = improve(vd,qd) */ |
| uInstr2(cb, MOV, 4, TempReg, qd, TempReg, qt); |
| if (u_in->opcode == AND) |
| create_ImproveAND_TQ(cb, u_in->size, u_in->val2, qt); |
| else |
| create_ImproveOR_TQ(cb, u_in->size, u_in->val2, qt); |
| /* qd = qs `UifU` qd */ |
| create_UifU(cb, u_in->size, qs, qd); |
| /* qd = qt `DifD` qd */ |
| create_DifD(cb, u_in->size, qt, qd); |
| /* qt = improve(vs,qs) */ |
| uInstr2(cb, MOV, 4, TempReg, qs, TempReg, qt); |
| if (u_in->opcode == AND) |
| create_ImproveAND_TQ(cb, u_in->size, u_in->val1, qt); |
| else |
| create_ImproveOR_TQ(cb, u_in->size, u_in->val1, qt); |
| /* qd = qt `DifD` qd */ |
| create_DifD(cb, u_in->size, qt, qd); |
| /* So, finally qd is the result tag. */ |
| if (u_in->flags_w != FlagsEmpty) { |
| create_PUTVF(cb, u_in->size, qd); |
| } |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| /* Machinery to do with supporting CALLM. Copy the start and |
| end markers only to make the result easier to read |
| (debug); they generate no code and have no effect. |
| */ |
| case CALLM_S: case CALLM_E: |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| /* Copy PUSH and POP verbatim. Arg/result absval |
| calculations are done when the associated CALL is |
| processed. CLEAR has no effect on absval calculations but |
| needs to be copied. |
| */ |
| case PUSH: case POP: case CLEAR: |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| /* In short: |
| callm#(a1# ... an#) = (a1# `UifU` ... `UifU` an#) |
| We have to decide on a size to do the computation at, |
| although the choice doesn't affect correctness. We will |
| do a pcast to the final size anyway, so the only important |
| factor is to choose a size which minimises the total |
| number of casts needed. Valgrind: just use size 0, |
| regardless. It may not be very good for performance |
| but does simplify matters, mainly by reducing the number |
| of different pessimising casts which have to be implemented. |
| */ |
| case CALLM: { |
| UInstr* uu; |
| Bool res_used; |
| |
| /* Now generate the code. Get the final result absval |
| into qt. */ |
| qt = newShadow(cb); |
| qtt = newShadow(cb); |
| uInstr1(cb, SETV, 0, TempReg, qt); |
| for (j = i-1; cb_in->instrs[j].opcode != CALLM_S; j--) { |
| uu = & cb_in->instrs[j]; |
| if (uu->opcode != PUSH) continue; |
| /* cast via a temporary */ |
| uInstr2(cb, MOV, 4, TempReg, SHADOW(uu->val1), |
| TempReg, qtt); |
| create_PCast(cb, uu->size, 0, qtt); |
| create_UifU(cb, 0, qtt, qt); |
| } |
| /* Remembering also that flags read count as inputs. */ |
| if (u_in->flags_r != FlagsEmpty) { |
| qtt = create_GETVF(cb, 0); |
| create_UifU(cb, 0, qtt, qt); |
| } |
| |
| /* qt now holds the result tag. If any results from the |
| call are used, either by fetching with POP or |
| implicitly by writing the flags, we copy the result |
| absval to the relevant location. If not used, the call |
| must have been for its side effects, so we test qt here |
| and now. Note that this assumes that all values |
| removed by POP continue to be live. So dead args |
| *must* be removed with CLEAR, not by POPping them into |
| a dummy tempreg. |
| */ |
| res_used = False; |
| for (j = i+1; cb_in->instrs[j].opcode != CALLM_E; j++) { |
| uu = & cb_in->instrs[j]; |
| if (uu->opcode != POP) continue; |
| /* Cast via a temp. */ |
| uInstr2(cb, MOV, 4, TempReg, qt, TempReg, qtt); |
| create_PCast(cb, 0, uu->size, qtt); |
| uInstr2(cb, MOV, 4, TempReg, qtt, |
| TempReg, SHADOW(uu->val1)); |
| res_used = True; |
| } |
| if (u_in->flags_w != FlagsEmpty) { |
| create_PUTVF(cb, 0, qt); |
| res_used = True; |
| } |
| if (!res_used) { |
| uInstr1(cb, TESTV, 0, TempReg, qt); |
| /* qt should never be referred to again. Nevertheless |
| ... */ |
| uInstr1(cb, SETV, 0, TempReg, qt); |
| } |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| } |
| /* Whew ... */ |
| |
| case JMP: |
| if (u_in->tag1 == TempReg) { |
| uInstr1(cb, TESTV, 4, TempReg, SHADOW(u_in->val1)); |
| uInstr1(cb, SETV, 4, TempReg, SHADOW(u_in->val1)); |
| } else { |
| vg_assert(u_in->tag1 == Literal); |
| } |
| if (u_in->cond != CondAlways) { |
| vg_assert(u_in->flags_r != FlagsEmpty); |
| qt = create_GETVF(cb, 0); |
| uInstr1(cb, TESTV, 0, TempReg, qt); |
| /* qt should never be referred to again. Nevertheless |
| ... */ |
| uInstr1(cb, SETV, 0, TempReg, qt); |
| } |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| case JIFZ: |
| uInstr1(cb, TESTV, 4, TempReg, SHADOW(u_in->val1)); |
| uInstr1(cb, SETV, 4, TempReg, SHADOW(u_in->val1)); |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| /* Emit a check on the address used. For FPU_R, the value |
| loaded into the FPU is checked at the time it is read from |
| memory (see synth_fpu_mem_check_actions). */ |
| case FPU_R: case FPU_W: |
| vg_assert(u_in->tag2 == TempReg); |
| uInstr1(cb, TESTV, 4, TempReg, SHADOW(u_in->val2)); |
| uInstr1(cb, SETV, 4, TempReg, SHADOW(u_in->val2)); |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| /* For FPU insns not referencing memory, just copy thru. */ |
| case FPU: |
| VG_(copyUInstr)(cb, u_in); |
| break; |
| |
| default: |
| VG_(ppUInstr)(0, u_in); |
| VG_(panic)( "vg_instrument: unhandled case"); |
| |
| } /* end of switch (u_in->opcode) */ |
| |
| } /* end of for loop */ |
| |
| VG_(freeCodeBlock)(cb_in); |
| return cb; |
| } |
| |
| /*------------------------------------------------------------*/ |
| /*--- Clean up mem check instrumentation. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| #define VGC_IS_SHADOW(tempreg) ((tempreg % 2) == 1) |
| #define VGC_UNDEF ((UChar)100) |
| #define VGC_VALUE ((UChar)101) |
| |
| #define NOP_no_msg(uu) \ |
| do { uu->opcode = NOP; } while (False) |
| |
| #define NOP_tag1_op(uu) \ |
| do { uu->opcode = NOP; \ |
| if (VG_(disassemble)) \ |
| VG_(printf)("at %d: delete %s due to defd arg\n", \ |
| i, VG_(nameOfTagOp(u->val3))); \ |
| } while (False) |
| |
| #define SETV_tag1_op(uu,newsz) \ |
| do { uu->opcode = SETV; \ |
| uu->size = newsz; \ |
| uu->tag2 = uu->tag3 = NoValue; \ |
| if (VG_(disassemble)) \ |
| VG_(printf)("at %d: convert %s to SETV%d " \ |
| "due to defd arg\n", \ |
| i, VG_(nameOfTagOp(u->val3)), newsz); \ |
| } while (False) |
| |
| |
| |
| /* Run backwards and delete SETVs on shadow temps for which the next |
| action is a write. Needs an env saying whether or not the next |
| action is a write. The supplied UCodeBlock is destructively |
| modified. |
| */ |
| static void vg_delete_redundant_SETVs ( UCodeBlock* cb ) |
| { |
| Bool* next_is_write; |
| Int i, j, k, n_temps; |
| UInstr* u; |
| TempUse tempUse[3]; |
| |
| n_temps = cb->nextTemp; |
| if (n_temps == 0) return; |
| |
| next_is_write = VG_(jitmalloc)(n_temps * sizeof(Bool)); |
| |
| for (i = 0; i < n_temps; i++) next_is_write[i] = True; |
| |
| for (i = cb->used-1; i >= 0; i--) { |
| u = &cb->instrs[i]; |
| |
| /* If we're not checking address V bits, there will be a lot of |
| GETVs, TAG1s and TAG2s calculating values which are never |
| used. These first three cases get rid of them. */ |
| |
| if (u->opcode == GETV && VGC_IS_SHADOW(u->val2) |
| && next_is_write[u->val2] |
| && !VG_(clo_check_addrVs)) { |
| u->opcode = NOP; |
| u->size = 0; |
| if (VG_(disassemble)) |
| VG_(printf)("at %d: delete GETV\n", i); |
| } else |
| |
| if (u->opcode == TAG1 && VGC_IS_SHADOW(u->val1) |
| && next_is_write[u->val1] |
| && !VG_(clo_check_addrVs)) { |
| u->opcode = NOP; |
| u->size = 0; |
| if (VG_(disassemble)) |
| VG_(printf)("at %d: delete TAG1\n", i); |
| } else |
| |
| if (u->opcode == TAG2 && VGC_IS_SHADOW(u->val2) |
| && next_is_write[u->val2] |
| && !VG_(clo_check_addrVs)) { |
| u->opcode = NOP; |
| u->size = 0; |
| if (VG_(disassemble)) |
| VG_(printf)("at %d: delete TAG2\n", i); |
| } else |
| |
| /* We do the rest of these regardless of whether or not |
| addresses are V-checked. */ |
| |
| if (u->opcode == MOV && VGC_IS_SHADOW(u->val2) |
| && next_is_write[u->val2]) { |
| /* This MOV is pointless because the target is dead at this |
| point. Delete it. */ |
| u->opcode = NOP; |
| u->size = 0; |
| if (VG_(disassemble)) |
| VG_(printf)("at %d: delete MOV\n", i); |
| } else |
| |
| if (u->opcode == SETV) { |
| if (u->tag1 == TempReg) { |
| vg_assert(VGC_IS_SHADOW(u->val1)); |
| if (next_is_write[u->val1]) { |
| /* This write is pointless, so annul it. */ |
| u->opcode = NOP; |
| u->size = 0; |
| if (VG_(disassemble)) |
| VG_(printf)("at %d: delete SETV\n", i); |
| } else { |
| /* This write has a purpose; don't annul it, but do |
| notice that we did it. */ |
| next_is_write[u->val1] = True; |
| } |
| |
| } |
| |
| } else { |
| /* Find out what this insn does to the temps. */ |
| k = getTempUsage(u, &tempUse[0]); |
| vg_assert(k <= 3); |
| for (j = k-1; j >= 0; j--) { |
| next_is_write[ tempUse[j].tempNo ] |
| = tempUse[j].isWrite; |
| } |
| } |
| |
| } |
| |
| VG_(jitfree)(next_is_write); |
| } |
| |
| |
| /* Run forwards, propagating and using the is-completely-defined |
| property. This removes a lot of redundant tag-munging code. |
| Unfortunately it requires intimate knowledge of how each uinstr and |
| tagop modifies its arguments. This duplicates knowledge of uinstr |
| tempreg uses embodied in getTempUsage(), which is unfortunate. |
| The supplied UCodeBlock* is modified in-place. |
| |
| For each value temp, def[] should hold VGC_VALUE. |
| |
| For each shadow temp, def[] may hold 4,2,1 or 0 iff that shadow is |
| definitely known to be fully defined at that size. In all other |
| circumstances a shadow's def[] entry is VGC_UNDEF, meaning possibly |
| undefined. In cases of doubt, VGC_UNDEF is always safe. |
| */ |
| static void vg_propagate_definedness ( UCodeBlock* cb ) |
| { |
| UChar* def; |
| Int i, j, k, t, n_temps; |
| UInstr* u; |
| TempUse tempUse[3]; |
| |
| n_temps = cb->nextTemp; |
| if (n_temps == 0) return; |
| |
| def = VG_(jitmalloc)(n_temps * sizeof(UChar)); |
| for (i = 0; i < n_temps; i++) |
| def[i] = VGC_IS_SHADOW(i) ? VGC_UNDEF : VGC_VALUE; |
| |
| /* Run forwards, detecting and using the all-defined property. */ |
| |
| for (i = 0; i < cb->used; i++) { |
| u = &cb->instrs[i]; |
| switch (u->opcode) { |
| |
| /* Tag-handling uinstrs. */ |
| |
| /* Deal with these quickly. */ |
| case NOP: |
| case INCEIP: |
| break; |
| |
| /* Make a tag defined. */ |
| case SETV: |
| vg_assert(u->tag1 == TempReg && VGC_IS_SHADOW(u->val1)); |
| def[u->val1] = u->size; |
| break; |
| |
| /* Check definedness of a tag. */ |
| case TESTV: |
| vg_assert(u->tag1 == TempReg && VGC_IS_SHADOW(u->val1)); |
| if (def[u->val1] <= 4) { |
| vg_assert(def[u->val1] == u->size); |
| NOP_no_msg(u); |
| if (VG_(disassemble)) |
| VG_(printf)("at %d: delete TESTV on defd arg\n", i); |
| } |
| break; |
| |
| /* Applies to both values and tags. Propagate Definedness |
| property through copies. Note that this isn't optional; |
| we *have* to do this to keep def[] correct. */ |
| case MOV: |
| vg_assert(u->tag2 == TempReg); |
| if (u->tag1 == TempReg) { |
| if (VGC_IS_SHADOW(u->val1)) { |
| vg_assert(VGC_IS_SHADOW(u->val2)); |
| def[u->val2] = def[u->val1]; |
| } |
| } |
| break; |
| |
| case PUTV: |
| vg_assert(u->tag1 == TempReg && VGC_IS_SHADOW(u->val1)); |
| if (def[u->val1] <= 4) { |
| vg_assert(def[u->val1] == u->size); |
| u->tag1 = Literal; |
| u->val1 = 0; |
| switch (u->size) { |
| case 4: u->lit32 = 0x00000000; break; |
| case 2: u->lit32 = 0xFFFF0000; break; |
| case 1: u->lit32 = 0xFFFFFF00; break; |
| default: VG_(panic)("vg_cleanup(PUTV)"); |
| } |
| if (VG_(disassemble)) |
| VG_(printf)( |
| "at %d: propagate definedness into PUTV\n", i); |
| } |
| break; |
| |
| case STOREV: |
| vg_assert(u->tag1 == TempReg && VGC_IS_SHADOW(u->val1)); |
| if (def[u->val1] <= 4) { |
| vg_assert(def[u->val1] == u->size); |
| u->tag1 = Literal; |
| u->val1 = 0; |
| switch (u->size) { |
| case 4: u->lit32 = 0x00000000; break; |
| case 2: u->lit32 = 0xFFFF0000; break; |
| case 1: u->lit32 = 0xFFFFFF00; break; |
| default: VG_(panic)("vg_cleanup(STOREV)"); |
| } |
| if (VG_(disassemble)) |
| VG_(printf)( |
| "at %d: propagate definedness into STandV\n", i); |
| } |
| break; |
| |
| /* Nothing interesting we can do with this, I think. */ |
| case PUTVF: |
| break; |
| |
| /* Tag handling operations. */ |
| case TAG2: |
| vg_assert(u->tag2 == TempReg && VGC_IS_SHADOW(u->val2)); |
| vg_assert(u->tag3 == Lit16); |
| /* Ultra-paranoid "type" checking. */ |
| switch (u->val3) { |
| case VgT_ImproveAND4_TQ: case VgT_ImproveAND2_TQ: |
| case VgT_ImproveAND1_TQ: case VgT_ImproveOR4_TQ: |
| case VgT_ImproveOR2_TQ: case VgT_ImproveOR1_TQ: |
| vg_assert(u->tag1 == TempReg && !VGC_IS_SHADOW(u->val1)); |
| break; |
| default: |
| vg_assert(u->tag1 == TempReg && VGC_IS_SHADOW(u->val1)); |
| break; |
| } |
| switch (u->val3) { |
| Int sz; |
| case VgT_UifU4: |
| sz = 4; goto do_UifU; |
| case VgT_UifU2: |
| sz = 2; goto do_UifU; |
| case VgT_UifU1: |
| sz = 1; goto do_UifU; |
| case VgT_UifU0: |
| sz = 0; goto do_UifU; |
| do_UifU: |
| vg_assert(u->tag1 == TempReg && VGC_IS_SHADOW(u->val1)); |
| vg_assert(u->tag2 == TempReg && VGC_IS_SHADOW(u->val2)); |
| if (def[u->val1] <= 4) { |
| /* UifU. The first arg is defined, so result is |
| simply second arg. Delete this operation. */ |
| vg_assert(def[u->val1] == sz); |
| NOP_no_msg(u); |
| if (VG_(disassemble)) |
| VG_(printf)( |
| "at %d: delete UifU%d due to defd arg1\n", |
| i, sz); |
| } |
| else |
| if (def[u->val2] <= 4) { |
| /* UifU. The second arg is defined, so result is |
| simply first arg. Copy to second. */ |
| vg_assert(def[u->val2] == sz); |
| u->opcode = MOV; |
| u->size = 4; |
| u->tag3 = NoValue; |
| def[u->val2] = def[u->val1]; |
| if (VG_(disassemble)) |
| VG_(printf)( |
| "at %d: change UifU%d to MOV due to defd" |
| " arg2\n", |
| i, sz); |
| } |
| break; |
| case VgT_ImproveAND4_TQ: |
| sz = 4; goto do_ImproveAND; |
| case VgT_ImproveAND1_TQ: |
| sz = 1; goto do_ImproveAND; |
| do_ImproveAND: |
| /* Implements Q = T OR Q. So if Q is entirely defined, |
| ie all 0s, we get MOV T, Q. */ |
| if (def[u->val2] <= 4) { |
| vg_assert(def[u->val2] == sz); |
| u->size = 4; /* Regardless of sz */ |
| u->opcode = MOV; |
| u->tag3 = NoValue; |
| def[u->val2] = VGC_UNDEF; |
| if (VG_(disassemble)) |
| VG_(printf)( |
| "at %d: change ImproveAND%d_TQ to MOV due " |
| "to defd arg2\n", |
| i, sz); |
| } |
| break; |
| default: |
| goto unhandled; |
| } |
| break; |
| |
| case TAG1: |
| vg_assert(u->tag1 == TempReg && VGC_IS_SHADOW(u->val1)); |
| if (def[u->val1] > 4) break; |
| /* We now know that the arg to the op is entirely defined. |
| If the op changes the size of the arg, we must replace |
| it with a SETV at the new size. If it doesn't change |
| the size, we can delete it completely. */ |
| switch (u->val3) { |
| /* Maintain the same size ... */ |
| case VgT_Left4: |
| vg_assert(def[u->val1] == 4); |
| NOP_tag1_op(u); |
| break; |
| case VgT_PCast11: |
| vg_assert(def[u->val1] == 1); |
| NOP_tag1_op(u); |
| break; |
| /* Change size ... */ |
| case VgT_PCast40: |
| vg_assert(def[u->val1] == 4); |
| SETV_tag1_op(u,0); |
| def[u->val1] = 0; |
| break; |
| case VgT_PCast14: |
| vg_assert(def[u->val1] == 1); |
| SETV_tag1_op(u,4); |
| def[u->val1] = 4; |
| break; |
| case VgT_PCast12: |
| vg_assert(def[u->val1] == 1); |
| SETV_tag1_op(u,2); |
| def[u->val1] = 2; |
| break; |
| case VgT_PCast10: |
| vg_assert(def[u->val1] == 1); |
| SETV_tag1_op(u,0); |
| def[u->val1] = 0; |
| break; |
| case VgT_PCast02: |
| vg_assert(def[u->val1] == 0); |
| SETV_tag1_op(u,2); |
| def[u->val1] = 2; |
| break; |
| default: |
| goto unhandled; |
| } |
| if (VG_(disassemble)) |
| VG_(printf)( |
| "at %d: delete TAG1 %s due to defd arg\n", |
| i, VG_(nameOfTagOp(u->val3))); |
| break; |
| |
| default: |
| unhandled: |
| /* We don't know how to handle this uinstr. Be safe, and |
| set to VGC_VALUE or VGC_UNDEF all temps written by it. */ |
| k = getTempUsage(u, &tempUse[0]); |
| vg_assert(k <= 3); |
| for (j = 0; j < k; j++) { |
| t = tempUse[j].tempNo; |
| vg_assert(t >= 0 && t < n_temps); |
| if (!tempUse[j].isWrite) { |
| /* t is read; ignore it. */ |
| if (0&& VGC_IS_SHADOW(t) && def[t] <= 4) |
| VG_(printf)("ignoring def %d at %s %s\n", |
| def[t], |
| VG_(nameUOpcode)(True, u->opcode), |
| (u->opcode == TAG1 || u->opcode == TAG2) |
| ? VG_(nameOfTagOp)(u->val3) |
| : (Char*)""); |
| } else { |
| /* t is written; better nullify it. */ |
| def[t] = VGC_IS_SHADOW(t) ? VGC_UNDEF : VGC_VALUE; |
| } |
| } |
| } |
| } |
| |
| VG_(jitfree)(def); |
| } |
| |
| |
| /* Top level post-instrumentation cleanup function. */ |
| static void vg_cleanup ( UCodeBlock* cb ) |
| { |
| vg_propagate_definedness ( cb ); |
| vg_delete_redundant_SETVs ( cb ); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Main entry point for the JITter. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Translate the basic block beginning at orig_addr, placing the |
| translation in a vg_malloc'd block, the address and size of which |
| are returned in trans_addr and trans_size. Length of the original |
| block is also returned in orig_size. If the latter three are NULL, |
| this call is being done for debugging purposes, in which case (a) |
| throw away the translation once it is made, and (b) produce a load |
| of debugging output. |
| */ |
| void VG_(translate) ( ThreadState* tst, |
| /* Identity of thread needing this block */ |
| Addr orig_addr, |
| UInt* orig_size, |
| Addr* trans_addr, |
| UInt* trans_size ) |
| { |
| Int n_disassembled_bytes, final_code_size; |
| Bool debugging_translation; |
| UChar* final_code; |
| UCodeBlock* cb; |
| |
| VGP_PUSHCC(VgpTranslate); |
| debugging_translation |
| = orig_size == NULL || trans_addr == NULL || trans_size == NULL; |
| |
| dis = True; |
| dis = debugging_translation; |
| |
| /* Check if we're being asked to jump to a silly address, and if so |
| record an error message before potentially crashing the entire |
| system. */ |
| if (VG_(clo_instrument) && !debugging_translation && !dis) { |
| Addr bad_addr; |
| Bool ok = VGM_(check_readable) ( orig_addr, 1, &bad_addr ); |
| if (!ok) { |
| VG_(record_jump_error)(tst, bad_addr); |
| } |
| } |
| |
| /* if (VG_(overall_in_count) >= 4800) dis=True; */ |
| if (VG_(disassemble)) |
| VG_(printf)("\n"); |
| if (0 || dis |
| || (VG_(overall_in_count) > 0 && |
| (VG_(overall_in_count) % 1000 == 0))) { |
| if (0&& (VG_(clo_verbosity) > 1 || dis)) |
| VG_(message)(Vg_UserMsg, |
| "trans# %d, bb# %lu, in %d, out %d", |
| VG_(overall_in_count), |
| VG_(bbs_done), |
| VG_(overall_in_osize), VG_(overall_in_tsize), |
| orig_addr ); |
| } |
| cb = VG_(allocCodeBlock)(); |
| |
| /* Disassemble this basic block into cb. */ |
| /* VGP_PUSHCC(VgpToUCode); */ |
| n_disassembled_bytes = VG_(disBB) ( cb, orig_addr ); |
| /* VGP_POPCC; */ |
| /* dis=True; */ |
| /* if (0&& VG_(translations_done) < 617) */ |
| /* dis=False; */ |
| /* Try and improve the code a bit. */ |
| if (VG_(clo_optimise)) { |
| /* VGP_PUSHCC(VgpImprove); */ |
| vg_improve ( cb ); |
| if (VG_(disassemble)) |
| VG_(ppUCodeBlock) ( cb, "Improved code:" ); |
| /* VGP_POPCC; */ |
| } |
| /* dis=False; */ |
| /* Add instrumentation code. */ |
| if (VG_(clo_instrument)) { |
| /* VGP_PUSHCC(VgpInstrument); */ |
| cb = vg_instrument(cb); |
| /* VGP_POPCC; */ |
| if (VG_(disassemble)) |
| VG_(ppUCodeBlock) ( cb, "Instrumented code:" ); |
| if (VG_(clo_cleanup)) { |
| /* VGP_PUSHCC(VgpCleanup); */ |
| vg_cleanup(cb); |
| /* VGP_POPCC; */ |
| if (VG_(disassemble)) |
| VG_(ppUCodeBlock) ( cb, "Cleaned-up instrumented code:" ); |
| } |
| } |
| |
| //VG_(disassemble) = True; |
| |
| /* Add cache simulation code. */ |
| if (VG_(clo_cachesim)) { |
| /* VGP_PUSHCC(VgpCacheInstrument); */ |
| cb = VG_(cachesim_instrument)(cb, orig_addr); |
| /* VGP_POPCC; */ |
| if (VG_(disassemble)) |
| VG_(ppUCodeBlock) ( cb, "Cachesim instrumented code:" ); |
| } |
| |
| //VG_(disassemble) = False; |
| |
| /* Allocate registers. */ |
| /* VGP_PUSHCC(VgpRegAlloc); */ |
| cb = vg_do_register_allocation ( cb ); |
| /* VGP_POPCC; */ |
| /* dis=False; */ |
| /* |
| if (VG_(disassemble)) |
| VG_(ppUCodeBlock) ( cb, "After Register Allocation:"); |
| */ |
| |
| /* VGP_PUSHCC(VgpFromUcode); */ |
| /* NB final_code is allocated with VG_(jitmalloc), not VG_(malloc) |
| and so must be VG_(jitfree)'d. */ |
| final_code = VG_(emit_code)(cb, &final_code_size ); |
| /* VGP_POPCC; */ |
| VG_(freeCodeBlock)(cb); |
| |
| if (debugging_translation) { |
| /* Only done for debugging -- throw away final result. */ |
| VG_(jitfree)(final_code); |
| } else { |
| /* Doing it for real -- return values to caller. */ |
| *orig_size = n_disassembled_bytes; |
| *trans_addr = (Addr)final_code; |
| *trans_size = final_code_size; |
| } |
| VGP_POPCC; |
| } |
| |
| /*--------------------------------------------------------------------*/ |
| /*--- end vg_translate.c ---*/ |
| /*--------------------------------------------------------------------*/ |