blob: d8de83f32f104bc0ec8d026b5c25f696e2a73d11 [file] [log] [blame]
/*--------------------------------------------------------------------*/
/*--- Massif: a heap profiling tool. ms_main.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Massif, a Valgrind tool for profiling memory
usage of programs.
Copyright (C) 2003-2006 Nicholas Nethercote
njn@valgrind.org
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
// Memory profiler. Produces a graph, gives lots of information about
// allocation contexts, in terms of space.time values (ie. area under the
// graph). Allocation context information is hierarchical, and can thus
// be inspected step-wise to an appropriate depth. See comments on data
// structures below for more info on how things work.
#include "pub_tool_basics.h"
#include "pub_tool_vki.h"
#include "pub_tool_aspacemgr.h"
#include "pub_tool_debuginfo.h"
#include "pub_tool_hashtable.h"
#include "pub_tool_libcbase.h"
#include "pub_tool_libcassert.h"
#include "pub_tool_libcfile.h"
#include "pub_tool_libcprint.h"
#include "pub_tool_libcproc.h"
#include "pub_tool_machine.h"
#include "pub_tool_mallocfree.h"
#include "pub_tool_options.h"
#include "pub_tool_replacemalloc.h"
#include "pub_tool_stacktrace.h"
#include "pub_tool_tooliface.h"
#include "pub_tool_clientstate.h"
#include "valgrind.h" // For {MALLOC,FREE}LIKE_BLOCK
/*------------------------------------------------------------*/
/*--- Overview of operation ---*/
/*------------------------------------------------------------*/
// Heap blocks are tracked, and the amount of space allocated by various
// contexts (ie. lines of code, more or less) is also tracked.
// Periodically, a census is taken, and the amount of space used, at that
// point, by the most significant (highly allocating) contexts is recorded.
// Census start off frequently, but are scaled back as the program goes on,
// so that there are always a good number of them. At the end, overall
// spacetimes for different contexts (of differing levels of precision) is
// calculated, the graph is printed, and the text giving spacetimes for the
// increasingly precise contexts is given.
//
// Measures the following:
// - heap blocks
// - heap admin bytes
// - stack(s)
// - code (code segments loaded at startup, and loaded with mmap)
// - data (data segments loaded at startup, and loaded/created with mmap,
// and brk()d segments)
/*------------------------------------------------------------*/
/*--- Main types ---*/
/*------------------------------------------------------------*/
// An XPt represents an "execution point", ie. a code address. Each XPt is
// part of a tree of XPts (an "execution tree", or "XTree"). Each
// top-to-bottom path through an XTree gives an execution context ("XCon"),
// and is equivalent to a traditional Valgrind ExeContext.
//
// The XPt at the top of an XTree (but below "alloc_xpt") is called a
// "top-XPt". The XPts are the bottom of an XTree (leaf nodes) are
// "bottom-XPTs". The number of XCons in an XTree is equal to the number of
// bottom-XPTs in that XTree.
//
// All XCons have the same top-XPt, "alloc_xpt", which represents all
// allocation functions like malloc(). It's a bit of a fake XPt, though,
// and is only used because it makes some of the code simpler.
//
// XTrees are bi-directional.
//
// > parent < Example: if child1() calls parent() and child2()
// / | \ also calls parent(), and parent() calls malloc(),
// | / \ | the XTree will look like this.
// | v v |
// child1 child2
typedef struct _XPt XPt;
struct _XPt {
Addr ip; // code address
// Bottom-XPts: space for the precise context.
// Other XPts: space of all the descendent bottom-XPts.
// Nb: this value goes up and down as the program executes.
UInt curr_space;
// An approximate space.time calculation used along the way for selecting
// which contexts to include at each census point.
// !!! top-XPTs only !!!
ULong approx_ST;
// exact_ST_dbld is an exact space.time calculation done at the end, and
// used in the results.
// Note that it is *doubled*, to avoid rounding errors.
// !!! not used for 'alloc_xpt' !!!
ULong exact_ST_dbld;
// n_children and max_children are integers; a very big program might
// have more than 65536 allocation points (Konqueror startup has 1800).
XPt* parent; // pointer to parent XPt
UInt n_children; // number of children
UInt max_children; // capacity of children array
XPt** children; // pointers to children XPts
};
// Each census snapshots the most significant XTrees, each XTree having a
// top-XPt as its root. The 'curr_space' element for each XPt is recorded
// in the snapshot. The snapshot contains all the XTree's XPts, not in a
// tree structure, but flattened into an array. This flat snapshot is used
// at the end for computing exact_ST_dbld for each XPt.
//
// Graph resolution, x-axis: no point having more than about 200 census
// x-points; you can't see them on the graph. Therefore:
//
// - do a census every 1 ms for first 200 --> 200, all (200 ms)
// - halve (drop half of them) --> 100, every 2nd (200 ms)
// - do a census every 2 ms for next 200 --> 200, every 2nd (400 ms)
// - halve --> 100, every 4th (400 ms)
// - do a census every 4 ms for next 400 --> 200, every 4th (800 ms)
// - etc.
//
// This isn't exactly right, because we actually drop (N/2)-1 when halving,
// but it shows the basic idea.
#define MAX_N_CENSI 200 // Keep it even, for simplicity
// Graph resolution, y-axis: hp2ps only draws the 19 biggest (in space-time)
// bands, rest get lumped into OTHERS. I only print the top N
// (cumulative-so-far space-time) at each point. N should be a bit bigger
// than 19 in case the cumulative space-time doesn't fit with the eventual
// space-time computed by hp2ps (but it should be close if the samples are
// evenly spread, since hp2ps does an approximate per-band space-time
// calculation that just sums the totals; ie. it assumes all samples are
// the same distance apart).
#define MAX_SNAPSHOTS 32
typedef
struct {
XPt* xpt;
UInt space;
}
XPtSnapshot;
// An XTree snapshot is stored as an array of of XPt snapshots.
typedef XPtSnapshot* XTreeSnapshot;
typedef
struct {
Int ms_time; // Int: must allow -1
XTreeSnapshot xtree_snapshots[MAX_SNAPSHOTS+1]; // +1 for zero-termination
UInt others_space;
UInt heap_admin_space;
UInt stacks_space;
}
Census;
// Metadata for heap blocks. Each one contains a pointer to a bottom-XPt,
// which is a foothold into the XCon at which it was allocated. From
// HP_Chunks, XPt 'space' fields are incremented (at allocation) and
// decremented (at deallocation).
//
// Nb: first two fields must match core's VgHashNode.
typedef
struct _HP_Chunk {
struct _HP_Chunk* next;
Addr data; // Ptr to actual block
SizeT size; // Size requested
XPt* where; // Where allocated; bottom-XPt
}
HP_Chunk;
/*------------------------------------------------------------*/
/*--- Statistics ---*/
/*------------------------------------------------------------*/
// Konqueror startup, to give an idea of the numbers involved with a biggish
// program, with default depth:
//
// depth=3 depth=40
// - 310,000 allocations
// - 300,000 frees
// - 15,000 XPts 800,000 XPts
// - 1,800 top-XPts
static UInt n_xpts = 0;
static UInt n_bot_xpts = 0;
static UInt n_allocs = 0;
static UInt n_zero_allocs = 0;
static UInt n_frees = 0;
static UInt n_children_reallocs = 0;
static UInt n_snapshot_frees = 0;
static UInt n_halvings = 0;
static UInt n_real_censi = 0;
static UInt n_fake_censi = 0;
static UInt n_attempted_censi = 0;
/*------------------------------------------------------------*/
/*--- Globals ---*/
/*------------------------------------------------------------*/
#define FILENAME_LEN 256
#define SPRINTF(zz_buf, fmt, args...) \
do { Int len = VG_(sprintf)(zz_buf, fmt, ## args); \
VG_(write)(fd, (void*)zz_buf, len); \
} while (0)
#define BUF_LEN 1024 // general purpose
static Char buf [BUF_LEN];
static Char buf2[BUF_LEN];
static Char buf3[BUF_LEN];
static SizeT sigstacks_space = 0; // Current signal stacks space sum
static VgHashTable malloc_list = NULL; // HP_Chunks
static UInt n_heap_blocks = 0;
// Current directory at startup.
static Char base_dir[VKI_PATH_MAX];
#define MAX_ALLOC_FNS 32 // includes the builtin ones
// First few filled in, rest should be zeroed. Zero-terminated vector.
static UInt n_alloc_fns = 11;
static Char* alloc_fns[MAX_ALLOC_FNS] = {
"malloc",
"operator new(unsigned)",
"operator new[](unsigned)",
"operator new(unsigned, std::nothrow_t const&)",
"operator new[](unsigned, std::nothrow_t const&)",
"__builtin_new",
"__builtin_vec_new",
"calloc",
"realloc",
"memalign",
};
/*------------------------------------------------------------*/
/*--- Command line args ---*/
/*------------------------------------------------------------*/
#define MAX_DEPTH 50
typedef
enum {
XText, XHTML,
}
XFormat;
static Bool clo_heap = True;
static UInt clo_heap_admin = 8;
static Bool clo_stacks = True;
static Bool clo_depth = 3;
static XFormat clo_format = XText;
static Bool ms_process_cmd_line_option(Char* arg)
{
VG_BOOL_CLO(arg, "--heap", clo_heap)
else VG_BOOL_CLO(arg, "--stacks", clo_stacks)
else VG_NUM_CLO (arg, "--heap-admin", clo_heap_admin)
else VG_BNUM_CLO(arg, "--depth", clo_depth, 1, MAX_DEPTH)
else if (VG_CLO_STREQN(11, arg, "--alloc-fn=")) {
alloc_fns[n_alloc_fns] = & arg[11];
n_alloc_fns++;
if (n_alloc_fns >= MAX_ALLOC_FNS) {
VG_(printf)("Too many alloc functions specified, sorry");
VG_(bad_option)(arg);
}
}
else if (VG_CLO_STREQ(arg, "--format=text"))
clo_format = XText;
else if (VG_CLO_STREQ(arg, "--format=html"))
clo_format = XHTML;
else
return VG_(replacement_malloc_process_cmd_line_option)(arg);
return True;
}
static void ms_print_usage(void)
{
VG_(printf)(
" --heap=no|yes profile heap blocks [yes]\n"
" --heap-admin=<number> average admin bytes per heap block [8]\n"
" --stacks=no|yes profile stack(s) [yes]\n"
" --depth=<number> depth of contexts [3]\n"
" --alloc-fn=<name> specify <fn> as an alloc function [empty]\n"
" --format=text|html format of textual output [text]\n"
);
VG_(replacement_malloc_print_usage)();
}
static void ms_print_debug_usage(void)
{
VG_(replacement_malloc_print_debug_usage)();
}
/*------------------------------------------------------------*/
/*--- Execution contexts ---*/
/*------------------------------------------------------------*/
// Fake XPt representing all allocation functions like malloc(). Acts as
// parent node to all top-XPts.
static XPt* alloc_xpt;
// Cheap allocation for blocks that never need to be freed. Saves about 10%
// for Konqueror startup with --depth=40.
static void* perm_malloc(SizeT n_bytes)
{
static Addr hp = 0; // current heap pointer
static Addr hp_lim = 0; // maximum usable byte in current block
#define SUPERBLOCK_SIZE (1 << 20) // 1 MB
if (hp + n_bytes > hp_lim) {
hp = (Addr)VG_(am_shadow_alloc)(SUPERBLOCK_SIZE);
if (hp == 0)
VG_(out_of_memory_NORETURN)( "massif:perm_malloc",
SUPERBLOCK_SIZE);
hp_lim = hp + SUPERBLOCK_SIZE - 1;
}
hp += n_bytes;
return (void*)(hp - n_bytes);
}
static XPt* new_XPt(Addr ip, XPt* parent, Bool is_bottom)
{
XPt* xpt = perm_malloc(sizeof(XPt));
xpt->ip = ip;
xpt->curr_space = 0;
xpt->approx_ST = 0;
xpt->exact_ST_dbld = 0;
xpt->parent = parent;
// Check parent is not a bottom-XPt
tl_assert(parent == NULL || 0 != parent->max_children);
xpt->n_children = 0;
// If a bottom-XPt, don't allocate space for children. This can be 50%
// or more, although it tends to drop as --depth increases (eg. 10% for
// konqueror with --depth=20).
if ( is_bottom ) {
xpt->max_children = 0;
xpt->children = NULL;
n_bot_xpts++;
} else {
xpt->max_children = 4;
xpt->children = VG_(malloc)( xpt->max_children * sizeof(XPt*) );
}
// Update statistics
n_xpts++;
return xpt;
}
static Bool is_alloc_fn(Addr ip)
{
Int i;
if ( VG_(get_fnname)(ip, buf, BUF_LEN) ) {
for (i = 0; i < n_alloc_fns; i++) {
if (VG_STREQ(buf, alloc_fns[i]))
return True;
}
}
return False;
}
// Returns an XCon, from the bottom-XPt. Nb: the XPt returned must be a
// bottom-XPt now and must always remain a bottom-XPt. We go to some effort
// to ensure this in certain cases. See comments below.
static XPt* get_XCon( ThreadId tid, Bool custom_malloc )
{
// Static to minimise stack size. +1 for added ~0 IP
static Addr ips[MAX_DEPTH + MAX_ALLOC_FNS + 1];
XPt* xpt = alloc_xpt;
UInt n_ips, L, A, B, nC;
UInt overestimate;
Bool reached_bottom;
// Want at least clo_depth non-alloc-fn entries in the snapshot.
// However, because we have 1 or more (an unknown number, at this point)
// alloc-fns ignored, we overestimate the size needed for the stack
// snapshot. Then, if necessary, we repeatedly increase the size until
// it is enough.
overestimate = 2;
while (True) {
n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + overestimate );
// Now we add a dummy "unknown" IP at the end. This is only used if we
// run out of IPs before hitting clo_depth. It's done to ensure the
// XPt we return is (now and forever) a bottom-XPt. If the returned XPt
// wasn't a bottom-XPt (now or later) it would cause problems later (eg.
// the parent's approx_ST wouldn't be equal [or almost equal] to the
// total of the childrens' approx_STs).
ips[ n_ips++ ] = ~((Addr)0);
// Skip over alloc functions in ips[].
for (L = 0; is_alloc_fn(ips[L]) && L < n_ips; L++) { }
// Must be at least one alloc function, unless client used
// MALLOCLIKE_BLOCK
if (!custom_malloc) tl_assert(L > 0);
// Should be at least one non-alloc function. If not, try again.
if (L == n_ips) {
overestimate += 2;
if (overestimate > MAX_ALLOC_FNS)
VG_(tool_panic)("No stk snapshot big enough to find non-alloc fns");
} else {
break;
}
}
A = L;
B = n_ips - 1;
reached_bottom = False;
// By this point, the IPs we care about are in ips[A]..ips[B]
// Now do the search/insertion of the XCon. 'L' is the loop counter,
// being the index into ips[].
while (True) {
// Look for IP in xpt's children.
// XXX: linear search, ugh -- about 10% of time for konqueror startup
// XXX: tried cacheing last result, only hit about 4% for konqueror
// Nb: this search hits about 98% of the time for konqueror
// If we've searched/added deep enough, or run out of EIPs, this is
// the bottom XPt.
if (L - A + 1 == clo_depth || L == B)
reached_bottom = True;
nC = 0;
while (True) {
if (nC == xpt->n_children) {
// not found, insert new XPt
tl_assert(xpt->max_children != 0);
tl_assert(xpt->n_children <= xpt->max_children);
// Expand 'children' if necessary
if (xpt->n_children == xpt->max_children) {
xpt->max_children *= 2;
xpt->children = VG_(realloc)( xpt->children,
xpt->max_children * sizeof(XPt*) );
n_children_reallocs++;
}
// Make new XPt for IP, insert in list
xpt->children[ xpt->n_children++ ] =
new_XPt(ips[L], xpt, reached_bottom);
break;
}
if (ips[L] == xpt->children[nC]->ip) break; // found the IP
nC++; // keep looking
}
// Return found/built bottom-XPt.
if (reached_bottom) {
tl_assert(0 == xpt->children[nC]->n_children); // Must be bottom-XPt
return xpt->children[nC];
}
// Descend to next level in XTree, the newly found/built non-bottom-XPt
xpt = xpt->children[nC];
L++;
}
}
// Update 'curr_space' of every XPt in the XCon, by percolating upwards.
static void update_XCon(XPt* xpt, Int space_delta)
{
tl_assert(True == clo_heap);
tl_assert(0 != space_delta);
tl_assert(NULL != xpt);
tl_assert(0 == xpt->n_children); // must be bottom-XPt
while (xpt != alloc_xpt) {
if (space_delta < 0) tl_assert(xpt->curr_space >= -space_delta);
xpt->curr_space += space_delta;
xpt = xpt->parent;
}
if (space_delta < 0) tl_assert(alloc_xpt->curr_space >= -space_delta);
alloc_xpt->curr_space += space_delta;
}
// Actually want a reverse sort, biggest to smallest
static Int XPt_cmp_approx_ST(void* n1, void* n2)
{
XPt* xpt1 = *(XPt**)n1;
XPt* xpt2 = *(XPt**)n2;
return (xpt1->approx_ST < xpt2->approx_ST ? 1 : -1);
}
static Int XPt_cmp_exact_ST_dbld(void* n1, void* n2)
{
XPt* xpt1 = *(XPt**)n1;
XPt* xpt2 = *(XPt**)n2;
return (xpt1->exact_ST_dbld < xpt2->exact_ST_dbld ? 1 : -1);
}
/*------------------------------------------------------------*/
/*--- A generic Queue ---*/
/*------------------------------------------------------------*/
typedef
struct {
UInt head; // Index of first entry
UInt tail; // Index of final+1 entry, ie. next free slot
UInt max_elems;
void** elems;
}
Queue;
static Queue* construct_queue(UInt size)
{
UInt i;
Queue* q = VG_(malloc)(sizeof(Queue));
q->head = 0;
q->tail = 0;
q->max_elems = size;
q->elems = VG_(malloc)(size * sizeof(void*));
for (i = 0; i < size; i++)
q->elems[i] = NULL;
return q;
}
static void destruct_queue(Queue* q)
{
VG_(free)(q->elems);
VG_(free)(q);
}
static void shuffle(Queue* dest_q, void** old_elems)
{
UInt i, j;
for (i = 0, j = dest_q->head; j < dest_q->tail; i++, j++)
dest_q->elems[i] = old_elems[j];
dest_q->head = 0;
dest_q->tail = i;
for ( ; i < dest_q->max_elems; i++)
dest_q->elems[i] = NULL; // paranoia
}
// Shuffles elements down. If not enough slots free, increase size. (We
// don't wait until we've completely run out of space, because there could
// be lots of shuffling just before that point which would be slow.)
static void adjust(Queue* q)
{
void** old_elems;
tl_assert(q->tail == q->max_elems);
if (q->head < 10) {
old_elems = q->elems;
q->max_elems *= 2;
q->elems = VG_(malloc)(q->max_elems * sizeof(void*));
shuffle(q, old_elems);
VG_(free)(old_elems);
} else {
shuffle(q, q->elems);
}
}
static void enqueue(Queue* q, void* elem)
{
if (q->tail == q->max_elems)
adjust(q);
q->elems[q->tail++] = elem;
}
static Bool is_empty_queue(Queue* q)
{
return (q->head == q->tail);
}
static void* dequeue(Queue* q)
{
if (is_empty_queue(q))
return NULL; // Queue empty
else
return q->elems[q->head++];
}
/*------------------------------------------------------------*/
/*--- malloc() et al replacement wrappers ---*/
/*------------------------------------------------------------*/
// Forward declaration
static void hp_census(void);
static
void* new_block ( ThreadId tid, void* p, SizeT size, SizeT align,
Bool is_zeroed )
{
HP_Chunk* hc;
Bool custom_alloc = (NULL == p);
if (size < 0) return NULL;
// Update statistics
n_allocs++;
if (0 == size) n_zero_allocs++;
// Allocate and zero if necessary
if (!p) {
p = VG_(cli_malloc)( align, size );
if (!p) {
return NULL;
}
if (is_zeroed) VG_(memset)(p, 0, size);
}
// Make new HP_Chunk node, add to malloc_list
hc = VG_(malloc)(sizeof(HP_Chunk));
hc->size = size;
hc->data = (Addr)p;
hc->where = NULL; // paranoia
if (clo_heap) {
hc->where = get_XCon( tid, custom_alloc );
if (0 != size)
update_XCon(hc->where, size);
}
VG_(HT_add_node)(malloc_list, hc);
n_heap_blocks++;
// do a census!
hp_census();
return p;
}
static __inline__
void die_block ( void* p, Bool custom_free )
{
HP_Chunk* hc;
// Update statistics
n_frees++;
// Remove HP_Chunk from malloc_list
hc = VG_(HT_remove)(malloc_list, (UWord)p);
if (NULL == hc)
return; // must have been a bogus free()
tl_assert(n_heap_blocks > 0);
n_heap_blocks--;
if (clo_heap && hc->size != 0)
update_XCon(hc->where, -hc->size);
VG_(free)( hc );
// Actually free the heap block, if necessary
if (!custom_free)
VG_(cli_free)( p );
// do a census!
hp_census();
}
static void* ms_malloc ( ThreadId tid, SizeT n )
{
return new_block( tid, NULL, n, VG_(clo_alignment), /*is_zeroed*/False );
}
static void* ms___builtin_new ( ThreadId tid, SizeT n )
{
return new_block( tid, NULL, n, VG_(clo_alignment), /*is_zeroed*/False );
}
static void* ms___builtin_vec_new ( ThreadId tid, SizeT n )
{
return new_block( tid, NULL, n, VG_(clo_alignment), /*is_zeroed*/False );
}
static void* ms_calloc ( ThreadId tid, SizeT m, SizeT size )
{
return new_block( tid, NULL, m*size, VG_(clo_alignment), /*is_zeroed*/True );
}
static void *ms_memalign ( ThreadId tid, SizeT align, SizeT n )
{
return new_block( tid, NULL, n, align, False );
}
static void ms_free ( ThreadId tid, void* p )
{
die_block( p, /*custom_free*/False );
}
static void ms___builtin_delete ( ThreadId tid, void* p )
{
die_block( p, /*custom_free*/False);
}
static void ms___builtin_vec_delete ( ThreadId tid, void* p )
{
die_block( p, /*custom_free*/False );
}
static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_size )
{
HP_Chunk* hc;
void* p_new;
SizeT old_size;
XPt *old_where, *new_where;
// Remove the old block
hc = VG_(HT_remove)(malloc_list, (UWord)p_old);
if (hc == NULL) {
return NULL; // must have been a bogus realloc()
}
old_size = hc->size;
if (new_size <= old_size) {
// new size is smaller or same; block not moved
p_new = p_old;
} else {
// new size is bigger; make new block, copy shared contents, free old
p_new = VG_(cli_malloc)(VG_(clo_alignment), new_size);
if (p_new) {
VG_(memcpy)(p_new, p_old, old_size);
VG_(cli_free)(p_old);
}
}
if (p_new) {
old_where = hc->where;
new_where = get_XCon( tid, /*custom_malloc*/False);
// Update HP_Chunk
hc->data = (Addr)p_new;
hc->size = new_size;
hc->where = new_where;
// Update XPt curr_space fields
if (clo_heap) {
if (0 != old_size) update_XCon(old_where, -old_size);
if (0 != new_size) update_XCon(new_where, new_size);
}
}
// Now insert the new hc (with a possibly new 'data' field) into
// malloc_list. If this realloc() did not increase the memory size, we
// will have removed and then re-added mc unnecessarily. But that's ok
// because shrinking a block with realloc() is (presumably) much rarer
// than growing it, and this way simplifies the growing case.
VG_(HT_add_node)(malloc_list, hc);
return p_new;
}
/*------------------------------------------------------------*/
/*--- Taking a census ---*/
/*------------------------------------------------------------*/
static Census censi[MAX_N_CENSI];
static UInt curr_census = 0;
static UInt get_xtree_size(XPt* xpt, UInt ix)
{
UInt i;
// If no memory allocated at all, nothing interesting to record.
if (alloc_xpt->curr_space == 0) return 0;
// Ignore sub-XTrees that account for a miniscule fraction of current
// allocated space.
if (xpt->curr_space / (double)alloc_xpt->curr_space > 0.002) {
ix++;
// Count all (non-zero) descendent XPts
for (i = 0; i < xpt->n_children; i++)
ix = get_xtree_size(xpt->children[i], ix);
}
return ix;
}
static
UInt do_space_snapshot(XPt xpt[], XTreeSnapshot xtree_snapshot, UInt ix)
{
UInt i;
// Structure of this function mirrors that of get_xtree_size().
if (alloc_xpt->curr_space == 0) return 0;
if (xpt->curr_space / (double)alloc_xpt->curr_space > 0.002) {
xtree_snapshot[ix].xpt = xpt;
xtree_snapshot[ix].space = xpt->curr_space;
ix++;
for (i = 0; i < xpt->n_children; i++)
ix = do_space_snapshot(xpt->children[i], xtree_snapshot, ix);
}
return ix;
}
static UInt ms_interval;
static UInt do_every_nth_census = 30;
// Weed out half the censi; we choose those that represent the smallest
// time-spans, because that loses the least information.
//
// Algorithm for N censi: We find the census representing the smallest
// timeframe, and remove it. We repeat this until (N/2)-1 censi are gone.
// (It's (N/2)-1 because we never remove the first and last censi.)
// We have to do this one census at a time, rather than finding the (N/2)-1
// smallest censi in one hit, because when a census is removed, it's
// neighbours immediately cover greater timespans. So it's N^2, but N only
// equals 200, and this is only done every 100 censi, which is not too often.
static void halve_censi(void)
{
Int i, jp, j, jn, k;
Census* min_census;
n_halvings++;
if (VG_(clo_verbosity) > 1)
VG_(message)(Vg_UserMsg, "Halving censi...");
// Sets j to the index of the first not-yet-removed census at or after i
#define FIND_CENSUS(i, j) \
for (j = i; j < MAX_N_CENSI && -1 == censi[j].ms_time; j++) { }
for (i = 2; i < MAX_N_CENSI; i += 2) {
// Find the censi representing the smallest timespan. The timespan
// for census n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between
// censi A and B. We don't consider the first and last censi for
// removal.
Int min_span = 0x7fffffff;
Int min_j = 0;
// Initial triple: (prev, curr, next) == (jp, j, jn)
jp = 0;
FIND_CENSUS(1, j);
FIND_CENSUS(j+1, jn);
while (jn < MAX_N_CENSI) {
Int timespan = censi[jn].ms_time - censi[jp].ms_time;
tl_assert(timespan >= 0);
if (timespan < min_span) {
min_span = timespan;
min_j = j;
}
// Move on to next triple
jp = j;
j = jn;
FIND_CENSUS(jn+1, jn);
}
// We've found the least important census, now remove it
min_census = & censi[ min_j ];
for (k = 0; NULL != min_census->xtree_snapshots[k]; k++) {
n_snapshot_frees++;
VG_(free)(min_census->xtree_snapshots[k]);
min_census->xtree_snapshots[k] = NULL;
}
min_census->ms_time = -1;
}
// Slide down the remaining censi over the removed ones. The '<=' is
// because we are removing on (N/2)-1, rather than N/2.
for (i = 0, j = 0; i <= MAX_N_CENSI / 2; i++, j++) {
FIND_CENSUS(j, j);
if (i != j) {
censi[i] = censi[j];
}
}
curr_census = i;
// Double intervals
ms_interval *= 2;
do_every_nth_census *= 2;
if (VG_(clo_verbosity) > 1)
VG_(message)(Vg_UserMsg, "...done");
}
// Take a census. Census time seems to be insignificant (usually <= 0 ms,
// almost always <= 1ms) so don't have to worry about subtracting it from
// running time in any way.
//
// XXX: NOT TRUE! with bigger depths, konqueror censuses can easily take
// 50ms!
static void hp_census(void)
{
static UInt ms_prev_census = 0;
static UInt ms_next_census = 0; // zero allows startup census
Int ms_time, ms_time_since_prev;
Census* census;
// Only do a census if it's time
ms_time = VG_(read_millisecond_timer)();
ms_time_since_prev = ms_time - ms_prev_census;
if (ms_time < ms_next_census) {
n_fake_censi++;
return;
}
n_real_censi++;
census = & censi[curr_census];
census->ms_time = ms_time;
// Heap: snapshot the K most significant XTrees -------------------
if (clo_heap) {
Int i, K;
K = ( alloc_xpt->n_children < MAX_SNAPSHOTS
? alloc_xpt->n_children
: MAX_SNAPSHOTS); // max out
// Update .approx_ST field (approximatively) for all top-XPts.
// We *do not* do it for any non-top-XPTs.
for (i = 0; i < alloc_xpt->n_children; i++) {
XPt* top_XPt = alloc_xpt->children[i];
top_XPt->approx_ST += top_XPt->curr_space * ms_time_since_prev;
}
// Sort top-XPts by approx_ST field.
VG_(ssort)(alloc_xpt->children, alloc_xpt->n_children, sizeof(XPt*),
XPt_cmp_approx_ST);
// For each significant top-level XPt, record space info about its
// entire XTree, in a single census entry.
// Nb: the xtree_size count/snapshot buffer allocation, and the actual
// snapshot, take similar amounts of time (measured with the
// millisecond counter).
for (i = 0; i < K; i++) {
UInt xtree_size, xtree_size2;
// VG_(printf)("%7u ", alloc_xpt->children[i]->approx_ST);
// Count how many XPts are in the XTree
xtree_size = get_xtree_size( alloc_xpt->children[i], 0 );
// If no XPts counted (ie. alloc_xpt.curr_space==0 or XTree
// insignificant) then don't take any more snapshots.
if (0 == xtree_size) break;
// Make array of the appropriate size (+1 for zero termination,
// which calloc() does for us).
census->xtree_snapshots[i] =
VG_(calloc)(xtree_size+1, sizeof(XPtSnapshot));
if (0 && VG_(clo_verbosity) > 1)
VG_(printf)("calloc: %d (%d B)\n", xtree_size+1,
(xtree_size+1) * sizeof(XPtSnapshot));
// Take space-snapshot: copy 'curr_space' for every XPt in the
// XTree into the snapshot array, along with pointers to the XPts.
// (Except for ones with curr_space==0, which wouldn't contribute
// to the final exact_ST_dbld calculation anyway; excluding them
// saves a lot of memory and up to 40% time with big --depth valus.
xtree_size2 = do_space_snapshot(alloc_xpt->children[i],
census->xtree_snapshots[i], 0);
tl_assert(xtree_size == xtree_size2);
}
// VG_(printf)("\n\n");
// Zero-terminate 'xtree_snapshot' array
census->xtree_snapshots[i] = NULL;
//VG_(printf)("printed %d censi\n", K);
// Lump the rest into a single "others" entry.
census->others_space = 0;
for (i = K; i < alloc_xpt->n_children; i++) {
census->others_space += alloc_xpt->children[i]->curr_space;
}
}
// Heap admin -------------------------------------------------------
if (clo_heap_admin > 0)
census->heap_admin_space = clo_heap_admin * n_heap_blocks;
// Stack(s) ---------------------------------------------------------
if (clo_stacks) {
ThreadId tid;
Addr stack_min, stack_max;
census->stacks_space = sigstacks_space;
VG_(thread_stack_reset_iter)();
while ( VG_(thread_stack_next)(&tid, &stack_min, &stack_max) ) {
census->stacks_space += (stack_max - stack_min);
}
}
// Finish, update interval if necessary -----------------------------
curr_census++;
census = NULL; // don't use again now that curr_census changed
// Halve the entries, if our census table is full
if (MAX_N_CENSI == curr_census) {
halve_censi();
}
// Take time for next census from now, rather than when this census
// should have happened. Because, if there's a big gap due to a kernel
// operation, there's no point doing catch-up censi every BB for a while
// -- that would just give N censi at almost the same time.
if (VG_(clo_verbosity) > 1) {
VG_(message)(Vg_UserMsg, "census: %d ms (took %d ms)", ms_time,
VG_(read_millisecond_timer)() - ms_time );
}
ms_prev_census = ms_time;
ms_next_census = ms_time + ms_interval;
//ms_next_census += ms_interval;
//VG_(printf)("Next: %d ms\n", ms_next_census);
}
/*------------------------------------------------------------*/
/*--- Tracked events ---*/
/*------------------------------------------------------------*/
static void new_mem_stack_signal(Addr a, SizeT len)
{
sigstacks_space += len;
}
static void die_mem_stack_signal(Addr a, SizeT len)
{
tl_assert(sigstacks_space >= len);
sigstacks_space -= len;
}
/*------------------------------------------------------------*/
/*--- Client Requests ---*/
/*------------------------------------------------------------*/
static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret )
{
switch (argv[0]) {
case VG_USERREQ__MALLOCLIKE_BLOCK: {
void* res;
void* p = (void*)argv[1];
SizeT sizeB = argv[2];
*ret = 0;
res = new_block( tid, p, sizeB, /*align--ignored*/0, /*is_zeroed*/False );
tl_assert(res == p);
return True;
}
case VG_USERREQ__FREELIKE_BLOCK: {
void* p = (void*)argv[1];
*ret = 0;
die_block( p, /*custom_free*/True );
return True;
}
default:
*ret = 0;
return False;
}
}
/*------------------------------------------------------------*/
/*--- Instrumentation ---*/
/*------------------------------------------------------------*/
static
IRBB* ms_instrument ( VgCallbackClosure* closure,
IRBB* bb_in,
VexGuestLayout* layout,
VexGuestExtents* vge,
IRType gWordTy, IRType hWordTy )
{
/* XXX Will Massif work when gWordTy != hWordTy ? */
return bb_in;
}
/*------------------------------------------------------------*/
/*--- Spacetime recomputation ---*/
/*------------------------------------------------------------*/
// Although we've been calculating space-time along the way, because the
// earlier calculations were done at a finer timescale, the .approx_ST field
// might not agree with what hp2ps sees, because we've thrown away some of
// the information. So recompute it at the scale that hp2ps sees, so we can
// confidently determine which contexts hp2ps will choose for displaying as
// distinct bands. This recomputation only happens to the significant ones
// that get printed in the .hp file, so it's cheap.
//
// The approx_ST calculation:
// ( a[0]*d(0,1) + a[1]*(d(0,1) + d(1,2)) + ... + a[N-1]*d(N-2,N-1) ) / 2
// where
// a[N] is the space at census N
// d(A,B) is the time interval between censi A and B
// and
// d(A,B) + d(B,C) == d(A,C)
//
// Key point: we can calculate the area for a census without knowing the
// previous or subsequent censi's space; because any over/underestimates
// for this census will be reversed in the next, balancing out. This is
// important, as getting the previous/next census entry for a particular
// AP is a pain with this data structure, but getting the prev/next
// census time is easy.
//
// Each heap calculation gets added to its context's exact_ST_dbld field.
// The ULong* values are all running totals, hence the use of "+=" everywhere.
// This does the calculations for a single census.
static void calc_exact_ST_dbld2(Census* census, UInt d_t1_t2,
ULong* twice_heap_ST,
ULong* twice_heap_admin_ST,
ULong* twice_stack_ST)
{
UInt i, j;
XPtSnapshot* xpt_snapshot;
// Heap --------------------------------------------------------
if (clo_heap) {
for (i = 0; NULL != census->xtree_snapshots[i]; i++) {
// Compute total heap exact_ST_dbld for the entire XTree using only
// the top-XPt (the first XPt in xtree_snapshot).
*twice_heap_ST += d_t1_t2 * census->xtree_snapshots[i][0].space;
// Increment exact_ST_dbld for every XPt in xtree_snapshot (inc.
// top one)
for (j = 0; NULL != census->xtree_snapshots[i][j].xpt; j++) {
xpt_snapshot = & census->xtree_snapshots[i][j];
xpt_snapshot->xpt->exact_ST_dbld += d_t1_t2 * xpt_snapshot->space;
}
}
*twice_heap_ST += d_t1_t2 * census->others_space;
}
// Heap admin --------------------------------------------------
if (clo_heap_admin > 0)
*twice_heap_admin_ST += d_t1_t2 * census->heap_admin_space;
// Stack(s) ----------------------------------------------------
if (clo_stacks)
*twice_stack_ST += d_t1_t2 * census->stacks_space;
}
// This does the calculations for all censi.
static void calc_exact_ST_dbld(ULong* heap2, ULong* heap_admin2, ULong* stack2)
{
UInt i, N = curr_census;
*heap2 = 0;
*heap_admin2 = 0;
*stack2 = 0;
if (N <= 1)
return;
calc_exact_ST_dbld2( &censi[0], censi[1].ms_time - censi[0].ms_time,
heap2, heap_admin2, stack2 );
for (i = 1; i <= N-2; i++) {
calc_exact_ST_dbld2( & censi[i], censi[i+1].ms_time - censi[i-1].ms_time,
heap2, heap_admin2, stack2 );
}
calc_exact_ST_dbld2( & censi[N-1], censi[N-1].ms_time - censi[N-2].ms_time,
heap2, heap_admin2, stack2 );
// Now get rid of the halves. May lose a 0.5 on each, doesn't matter.
*heap2 /= 2;
*heap_admin2 /= 2;
*stack2 /= 2;
}
/*------------------------------------------------------------*/
/*--- Writing the graph file ---*/
/*------------------------------------------------------------*/
static Char* make_filename(Char* dir, Char* suffix)
{
Char* filename;
/* Block is big enough for dir name + massif.<pid>.<suffix> */
filename = VG_(malloc)((VG_(strlen)(dir) + 32)*sizeof(Char));
VG_(sprintf)(filename, "%s/massif.%d%s", dir, VG_(getpid)(), suffix);
return filename;
}
// Make string acceptable to hp2ps (sigh): remove spaces, escape parentheses.
static Char* clean_fnname(Char *d, Char* s)
{
Char* dorig = d;
while (*s) {
if (' ' == *s) { *d = '%'; }
else if ('(' == *s) { *d++ = '\\'; *d = '('; }
else if (')' == *s) { *d++ = '\\'; *d = ')'; }
else { *d = *s; };
s++;
d++;
}
*d = '\0';
return dorig;
}
static void file_err ( Char* file )
{
VG_(message)(Vg_UserMsg, "error: can't open output file '%s'", file );
VG_(message)(Vg_UserMsg, " ... so profile results will be missing.");
}
/* Format, by example:
JOB "a.out -p"
DATE "Fri Apr 17 11:43:45 1992"
SAMPLE_UNIT "seconds"
VALUE_UNIT "bytes"
BEGIN_SAMPLE 0.00
SYSTEM 24
END_SAMPLE 0.00
BEGIN_SAMPLE 1.00
elim 180
insert 24
intersect 12
disin 60
main 12
reduce 20
SYSTEM 12
END_SAMPLE 1.00
MARK 1.50
MARK 1.75
MARK 1.80
BEGIN_SAMPLE 2.00
elim 192
insert 24
intersect 12
disin 84
main 12
SYSTEM 24
END_SAMPLE 2.00
BEGIN_SAMPLE 2.82
END_SAMPLE 2.82
*/
static void write_hp_file(void)
{
Int i, j;
Int fd, res;
SysRes sres;
Char *hp_file, *ps_file, *aux_file;
Char* cmdfmt;
Char* cmdbuf;
Int cmdlen;
// Open file
hp_file = make_filename( base_dir, ".hp" );
ps_file = make_filename( base_dir, ".ps" );
aux_file = make_filename( base_dir, ".aux" );
sres = VG_(open)(hp_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY,
VKI_S_IRUSR|VKI_S_IWUSR);
if (sres.isError) {
file_err( hp_file );
return;
} else {
fd = sres.val;
}
// File header, including command line
SPRINTF(buf, "JOB \"");
if (VG_(args_the_exename)) {
SPRINTF(buf, "%s", VG_(args_the_exename));
}
for (i = 0; i < VG_(args_for_client).used; i++) {
if (VG_(args_for_client).strs[i])
SPRINTF(buf, " %s", VG_(args_for_client).strs[i]);
}
SPRINTF(buf, /*" (%d ms/sample)\"\n"*/ "\"\n"
"DATE \"\"\n"
"SAMPLE_UNIT \"ms\"\n"
"VALUE_UNIT \"bytes\"\n", ms_interval);
// Censi
for (i = 0; i < curr_census; i++) {
Census* census = & censi[i];
// Census start
SPRINTF(buf, "MARK %d.0\n"
"BEGIN_SAMPLE %d.0\n",
census->ms_time, census->ms_time);
// Heap -----------------------------------------------------------
if (clo_heap) {
// Print all the significant XPts from that census
for (j = 0; NULL != census->xtree_snapshots[j]; j++) {
// Grab the jth top-XPt
XTreeSnapshot xtree_snapshot = & census->xtree_snapshots[j][0];
if ( ! VG_(get_fnname)(xtree_snapshot->xpt->ip, buf2, 16)) {
VG_(sprintf)(buf2, "???");
}
SPRINTF(buf, "x%x:%s %d\n", xtree_snapshot->xpt->ip,
clean_fnname(buf3, buf2), xtree_snapshot->space);
}
// Remaining heap block alloc points, combined
if (census->others_space > 0)
SPRINTF(buf, "other %d\n", census->others_space);
}
// Heap admin -----------------------------------------------------
if (clo_heap_admin > 0 && census->heap_admin_space)
SPRINTF(buf, "heap-admin %d\n", census->heap_admin_space);
// Stack(s) -------------------------------------------------------
if (clo_stacks)
SPRINTF(buf, "stack(s) %d\n", census->stacks_space);
// Census end
SPRINTF(buf, "END_SAMPLE %d.0\n", census->ms_time);
}
// Close file
tl_assert(fd >= 0);
VG_(close)(fd);
// Attempt to convert file using hp2ps
cmdfmt = "%s/hp2ps -c -t1 %s";
cmdlen = VG_(strlen)(VG_(libdir)) + VG_(strlen)(hp_file)
+ VG_(strlen)(cmdfmt);
cmdbuf = VG_(malloc)( sizeof(Char) * cmdlen );
VG_(sprintf)(cmdbuf, cmdfmt, VG_(libdir), hp_file);
res = VG_(system)(cmdbuf);
VG_(free)(cmdbuf);
if (res != 0) {
VG_(message)(Vg_UserMsg,
"Conversion to PostScript failed. Try converting manually.");
} else {
// remove the .hp and .aux file
VG_(unlink)(hp_file);
VG_(unlink)(aux_file);
}
VG_(free)(hp_file);
VG_(free)(ps_file);
VG_(free)(aux_file);
}
/*------------------------------------------------------------*/
/*--- Writing the XPt text/HTML file ---*/
/*------------------------------------------------------------*/
static void percentify(Int n, Int pow, Int field_width, char xbuf[])
{
int i, len, space;
VG_(sprintf)(xbuf, "%d.%d%%", n / pow, n % pow);
len = VG_(strlen)(xbuf);
space = field_width - len;
if (space < 0) space = 0; /* Allow for v. small field_width */
i = len;
/* Right justify in field */
for ( ; i >= 0; i--) xbuf[i + space] = xbuf[i];
for (i = 0; i < space; i++) xbuf[i] = ' ';
}
// Nb: uses a static buffer, each call trashes the last string returned.
static Char* make_perc(ULong spacetime, ULong total_spacetime)
{
static Char mbuf[32];
UInt p = 10;
tl_assert(0 != total_spacetime);
percentify(spacetime * 100 * p / total_spacetime, p, 5, mbuf);
return mbuf;
}
// Nb: passed in XPt is a lower-level XPt; IPs are grabbed from
// bottom-to-top of XCon, and then printed in the reverse order.
static UInt pp_XCon(Int fd, XPt* xpt)
{
Addr rev_ips[clo_depth+1];
Int i = 0;
Int n = 0;
Bool is_HTML = ( XHTML == clo_format );
Char* maybe_br = ( is_HTML ? "<br>" : "" );
Char* maybe_indent = ( is_HTML ? "&nbsp;&nbsp;" : "" );
tl_assert(NULL != xpt);
while (True) {
rev_ips[i] = xpt->ip;
n++;
if (alloc_xpt == xpt->parent) break;
i++;
xpt = xpt->parent;
}
for (i = n-1; i >= 0; i--) {
// -1 means point to calling line
VG_(describe_IP)(rev_ips[i]-1, buf2, BUF_LEN);
SPRINTF(buf, " %s%s%s\n", maybe_indent, buf2, maybe_br);
}
return n;
}
// Important point: for HTML, each XPt must be identified uniquely for the
// HTML links to all match up correctly. Using xpt->ip is not
// sufficient, because function pointers mean that you can call more than
// one other function from a single code location. So instead we use the
// address of the xpt struct itself, which is guaranteed to be unique.
static void pp_all_XPts2(Int fd, Queue* q, ULong heap_spacetime,
ULong total_spacetime)
{
UInt i;
XPt *xpt, *child;
UInt L = 0;
UInt c1 = 1;
UInt c2 = 0;
ULong sum = 0;
UInt n;
Char *ip_desc, *perc;
Bool is_HTML = ( XHTML == clo_format );
Char* maybe_br = ( is_HTML ? "<br>" : "" );
Char* maybe_p = ( is_HTML ? "<p>" : "" );
Char* maybe_ul = ( is_HTML ? "<ul>" : "" );
Char* maybe_li = ( is_HTML ? "<li>" : "" );
Char* maybe_fli = ( is_HTML ? "</li>" : "" );
Char* maybe_ful = ( is_HTML ? "</ul>" : "" );
Char* end_hr = ( is_HTML ? "<hr>" :
"=================================" );
Char* depth = ( is_HTML ? "<code>--depth</code>" : "--depth" );
if (total_spacetime == 0) {
SPRINTF(buf, "(No heap memory allocated)\n");
return;
}
SPRINTF(buf, "== %d ===========================%s\n", L, maybe_br);
while (NULL != (xpt = (XPt*)dequeue(q))) {
// Check that non-top-level XPts have a zero .approx_ST field.
if (xpt->parent != alloc_xpt) tl_assert( 0 == xpt->approx_ST );
// Check that the sum of all children .exact_ST_dbld fields equals
// parent's (unless alloc_xpt, when it should == 0).
if (alloc_xpt == xpt) {
tl_assert(0 == xpt->exact_ST_dbld);
} else {
sum = 0;
for (i = 0; i < xpt->n_children; i++) {
sum += xpt->children[i]->exact_ST_dbld;
}
//tl_assert(sum == xpt->exact_ST_dbld);
// It's possible that not all the children were included in the
// exact_ST_dbld calculations. Hopefully almost all of them were, and
// all the important ones.
// tl_assert(sum <= xpt->exact_ST_dbld);
// tl_assert(sum * 1.05 > xpt->exact_ST_dbld );
// if (sum != xpt->exact_ST_dbld) {
// VG_(printf)("%lld, %lld\n", sum, xpt->exact_ST_dbld);
// }
}
if (xpt == alloc_xpt) {
SPRINTF(buf, "Heap allocation functions accounted for "
"%s of measured spacetime%s\n",
make_perc(heap_spacetime, total_spacetime), maybe_br);
} else {
// Remember: exact_ST_dbld is space.time *doubled*
perc = make_perc(xpt->exact_ST_dbld / 2, total_spacetime);
if (is_HTML) {
SPRINTF(buf, "<a name=\"b%x\"></a>"
"Context accounted for "
"<a href=\"#a%x\">%s</a> of measured spacetime<br>\n",
xpt, xpt, perc);
} else {
SPRINTF(buf, "Context accounted for %s of measured spacetime\n",
perc);
}
n = pp_XCon(fd, xpt);
tl_assert(n == L);
}
// Sort children by exact_ST_dbld
VG_(ssort)(xpt->children, xpt->n_children, sizeof(XPt*),
XPt_cmp_exact_ST_dbld);
SPRINTF(buf, "%s\nCalled from:%s\n", maybe_p, maybe_ul);
for (i = 0; i < xpt->n_children; i++) {
child = xpt->children[i];
// Stop when <1% of total spacetime
if (child->exact_ST_dbld * 1000 / (total_spacetime * 2) < 5) {
UInt n_insig = xpt->n_children - i;
Char* s = ( n_insig == 1 ? "" : "s" );
Char* and = ( 0 == i ? "" : "and " );
Char* other = ( 0 == i ? "" : "other " );
SPRINTF(buf, " %s%s%d %sinsignificant place%s%s\n\n",
maybe_li, and, n_insig, other, s, maybe_fli);
break;
}
// Remember: exact_ST_dbld is space.time *doubled*
perc = make_perc(child->exact_ST_dbld / 2, total_spacetime);
ip_desc = VG_(describe_IP)(child->ip-1, buf2, BUF_LEN);
if (is_HTML) {
SPRINTF(buf, "<li><a name=\"a%x\"></a>", child );
if (child->n_children > 0) {
SPRINTF(buf, "<a href=\"#b%x\">%s</a>", child, perc);
} else {
SPRINTF(buf, "%s", perc);
}
SPRINTF(buf, ": %s\n", ip_desc);
} else {
SPRINTF(buf, " %6s: %s\n\n", perc, ip_desc);
}
if (child->n_children > 0) {
enqueue(q, (void*)child);
c2++;
}
}
SPRINTF(buf, "%s%s", maybe_ful, maybe_p);
c1--;
// Putting markers between levels of the structure:
// c1 tracks how many to go on this level, c2 tracks how many we've
// queued up for the next level while finishing off this level.
// When c1 gets to zero, we've changed levels, so print a marker,
// move c2 into c1, and zero c2.
if (0 == c1) {
L++;
c1 = c2;
c2 = 0;
if (! is_empty_queue(q) ) { // avoid empty one at end
SPRINTF(buf, "== %d ===========================%s\n", L, maybe_br);
}
} else {
SPRINTF(buf, "---------------------------------%s\n", maybe_br);
}
}
SPRINTF(buf, "%s\n\nEnd of information. Rerun with a bigger "
"%s value for more.\n", end_hr, depth);
}
static void pp_all_XPts(Int fd, XPt* xpt, ULong heap_spacetime,
ULong total_spacetime)
{
Queue* q = construct_queue(100);
enqueue(q, xpt);
pp_all_XPts2(fd, q, heap_spacetime, total_spacetime);
destruct_queue(q);
}
static void
write_text_file(ULong total_ST, ULong heap_ST)
{
SysRes sres;
Int fd, i;
Char* text_file;
Char* maybe_p = ( XHTML == clo_format ? "<p>" : "" );
// Open file
text_file = make_filename( base_dir,
( XText == clo_format ? ".txt" : ".html" ) );
sres = VG_(open)(text_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY,
VKI_S_IRUSR|VKI_S_IWUSR);
if (sres.isError) {
file_err( text_file );
return;
} else {
fd = sres.val;
}
// Header
if (XHTML == clo_format) {
SPRINTF(buf, "<html>\n"
"<head>\n"
"<title>%s</title>\n"
"</head>\n"
"<body>\n",
text_file);
}
// Command line
SPRINTF(buf, "Command:");
if (VG_(args_the_exename)) {
SPRINTF(buf, " %s", VG_(args_the_exename));
}
for (i = 0; i < VG_(args_for_client).used; i++) {
if (VG_(args_for_client).strs[i])
SPRINTF(buf, " %s", VG_(args_for_client).strs[i]);
}
SPRINTF(buf, "\n%s\n", maybe_p);
if (clo_heap)
pp_all_XPts(fd, alloc_xpt, heap_ST, total_ST);
tl_assert(fd >= 0);
VG_(close)(fd);
}
/*------------------------------------------------------------*/
/*--- Finalisation ---*/
/*------------------------------------------------------------*/
static void
print_summary(ULong total_ST, ULong heap_ST, ULong heap_admin_ST,
ULong stack_ST)
{
VG_(message)(Vg_UserMsg, "Total spacetime: %,llu ms.B", total_ST);
// Heap --------------------------------------------------------------
if (clo_heap)
VG_(message)(Vg_UserMsg, "heap: %s",
( 0 == total_ST ? (Char*)"(n/a)"
: make_perc(heap_ST, total_ST) ) );
// Heap admin --------------------------------------------------------
if (clo_heap_admin)
VG_(message)(Vg_UserMsg, "heap admin: %s",
( 0 == total_ST ? (Char*)"(n/a)"
: make_perc(heap_admin_ST, total_ST) ) );
tl_assert( VG_(HT_count_nodes)(malloc_list) == n_heap_blocks );
// Stack(s) ----------------------------------------------------------
if (clo_stacks) {
VG_(message)(Vg_UserMsg, "stack(s): %s",
( 0 == stack_ST ? (Char*)"0%"
: make_perc(stack_ST, total_ST) ) );
}
if (VG_(clo_verbosity) > 1) {
tl_assert(n_xpts > 0); // always have alloc_xpt
VG_(message)(Vg_DebugMsg, " allocs: %u", n_allocs);
VG_(message)(Vg_DebugMsg, "zeroallocs: %u (%d%%)", n_zero_allocs,
n_zero_allocs * 100 / n_allocs );
VG_(message)(Vg_DebugMsg, " frees: %u", n_frees);
VG_(message)(Vg_DebugMsg, " XPts: %u (%d B)", n_xpts,
n_xpts*sizeof(XPt));
VG_(message)(Vg_DebugMsg, " bot-XPts: %u (%d%%)", n_bot_xpts,
n_bot_xpts * 100 / n_xpts);
VG_(message)(Vg_DebugMsg, " top-XPts: %u (%d%%)", alloc_xpt->n_children,
alloc_xpt->n_children * 100 / n_xpts);
VG_(message)(Vg_DebugMsg, "c-reallocs: %u", n_children_reallocs);
VG_(message)(Vg_DebugMsg, "snap-frees: %u", n_snapshot_frees);
VG_(message)(Vg_DebugMsg, "atmp censi: %u", n_attempted_censi);
VG_(message)(Vg_DebugMsg, "fake censi: %u", n_fake_censi);
VG_(message)(Vg_DebugMsg, "real censi: %u", n_real_censi);
VG_(message)(Vg_DebugMsg, " halvings: %u", n_halvings);
}
}
static void ms_fini(Int exit_status)
{
ULong total_ST = 0;
ULong heap_ST = 0;
ULong heap_admin_ST = 0;
ULong stack_ST = 0;
// Do a final (empty) sample to show program's end
hp_census();
// Redo spacetimes of significant contexts to match the .hp file.
calc_exact_ST_dbld(&heap_ST, &heap_admin_ST, &stack_ST);
total_ST = heap_ST + heap_admin_ST + stack_ST;
write_hp_file ( );
write_text_file( total_ST, heap_ST );
print_summary ( total_ST, heap_ST, heap_admin_ST, stack_ST );
}
/*------------------------------------------------------------*/
/*--- Initialisation ---*/
/*------------------------------------------------------------*/
static void ms_post_clo_init(void)
{
ms_interval = 1;
// Do an initial sample for t = 0
hp_census();
}
static void ms_pre_clo_init(void)
{
VG_(details_name) ("Massif");
VG_(details_version) (NULL);
VG_(details_description) ("a space profiler");
VG_(details_copyright_author)("Copyright (C) 2003, Nicholas Nethercote");
VG_(details_bug_reports_to) (VG_BUGS_TO);
// Basic functions
VG_(basic_tool_funcs) (ms_post_clo_init,
ms_instrument,
ms_fini);
// Needs
VG_(needs_libc_freeres)();
VG_(needs_command_line_options)(ms_process_cmd_line_option,
ms_print_usage,
ms_print_debug_usage);
VG_(needs_client_requests) (ms_handle_client_request);
VG_(needs_malloc_replacement) (ms_malloc,
ms___builtin_new,
ms___builtin_vec_new,
ms_memalign,
ms_calloc,
ms_free,
ms___builtin_delete,
ms___builtin_vec_delete,
ms_realloc,
0 );
// Events to track
VG_(track_new_mem_stack_signal)( new_mem_stack_signal );
VG_(track_die_mem_stack_signal)( die_mem_stack_signal );
// HP_Chunks
malloc_list = VG_(HT_construct)( 80021 ); // prime, big
// Dummy node at top of the context structure.
alloc_xpt = new_XPt(0, NULL, /*is_bottom*/False);
tl_assert( VG_(getcwd)(base_dir, VKI_PATH_MAX) );
}
VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init)
/*--------------------------------------------------------------------*/
/*--- end ---*/
/*--------------------------------------------------------------------*/