blob: 2b36d43cad005a539340f73968fda3be0be8dba7 [file] [log] [blame]
/*--------------------------------------------------------------------*/
/*--- Cachegrind: everything but the simulation itself. ---*/
/*--- cg_main.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Cachegrind, a Valgrind tool for cache
profiling programs.
Copyright (C) 2002-2005 Nicholas Nethercote
njn@valgrind.org
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#include "tool.h"
//#include "vg_profile.c"
#include "cg_arch.h"
#include "cg_sim.c"
/*------------------------------------------------------------*/
/*--- Constants ---*/
/*------------------------------------------------------------*/
#define MIN_LINE_SIZE 16
#define FILE_LEN 256
#define FN_LEN 256
/*------------------------------------------------------------*/
/*--- Profiling events ---*/
/*------------------------------------------------------------*/
typedef
enum {
VgpGetLineCC = VgpFini+1,
VgpCacheSimulate,
VgpCacheResults
}
VgpToolCC;
/*------------------------------------------------------------*/
/*--- Types and Data Structures ---*/
/*------------------------------------------------------------*/
typedef struct _CC CC;
struct _CC {
ULong a;
ULong m1;
ULong m2;
};
//------------------------------------------------------------
// Primary data structure #1: CC table
// - Holds the per-source-line hit/miss stats, grouped by file/function/line.
// - hash(file, hash(fn, hash(line+CC)))
// - Each hash table is separately chained.
// - The array sizes below work fairly well for Konqueror.
// - Lookups done by instr_addr, which is converted immediately to a source
// location.
// - Traversed for dumping stats at end in file/func/line hierarchy.
#define N_FILE_ENTRIES 251
#define N_FN_ENTRIES 53
#define N_LINE_ENTRIES 37
typedef struct _lineCC lineCC;
struct _lineCC {
Int line;
CC Ir;
CC Dr;
CC Dw;
lineCC* next;
};
typedef struct _fnCC fnCC;
struct _fnCC {
Char* fn;
fnCC* next;
lineCC* lines[N_LINE_ENTRIES];
};
typedef struct _fileCC fileCC;
struct _fileCC {
Char* file;
fileCC* next;
fnCC* fns[N_FN_ENTRIES];
};
// Top level of CC table. Auto-zeroed.
static fileCC *CC_table[N_FILE_ENTRIES];
//------------------------------------------------------------
// Primary data structre #2: Instr-info table
// - Holds the cached info about each instr that is used for simulation.
// - table(BB_start_addr, list(instr_info))
// - For each BB, each instr_info in the list holds info about the
// instruction (instr_len, instr_addr, etc), plus a pointer to its line
// CC. This node is what's passed to the simulation function.
// - When BBs are discarded the relevant list(instr_details) is freed.
typedef struct _instr_info instr_info;
struct _instr_info {
Addr instr_addr;
UChar instr_len;
UChar data_size;
lineCC* parent; // parent line-CC
};
typedef struct _BB_info BB_info;
struct _BB_info {
BB_info* next; // next field
Addr BB_addr; // key
Int n_instrs;
instr_info instrs[0];
};
VgHashTable instr_info_table; // hash(Addr, BB_info)
//------------------------------------------------------------
// Stats
static Int distinct_files = 0;
static Int distinct_fns = 0;
static Int distinct_lines = 0;
static Int distinct_instrs = 0;
static Int full_debug_BBs = 0;
static Int file_line_debug_BBs = 0;
static Int fn_debug_BBs = 0;
static Int no_debug_BBs = 0;
static Int BB_retranslations = 0;
/*------------------------------------------------------------*/
/*--- CC table operations ---*/
/*------------------------------------------------------------*/
static void get_debug_info(Addr instr_addr, Char file[FILE_LEN],
Char fn[FN_LEN], Int* line)
{
Bool found_file_line = VG_(get_filename_linenum)(instr_addr, file,
FILE_LEN, line);
Bool found_fn = VG_(get_fnname)(instr_addr, fn, FN_LEN);
if (!found_file_line) {
VG_(strcpy)(file, "???");
*line = 0;
}
if (!found_fn) {
VG_(strcpy)(fn, "???");
}
if (found_file_line) {
if (found_fn) full_debug_BBs++;
else file_line_debug_BBs++;
} else {
if (found_fn) fn_debug_BBs++;
else no_debug_BBs++;
}
}
static UInt hash(Char *s, UInt table_size)
{
const int hash_constant = 256;
int hash_value = 0;
for ( ; *s; s++)
hash_value = (hash_constant * hash_value + *s) % table_size;
return hash_value;
}
static __inline__
fileCC* new_fileCC(Char filename[], fileCC* next)
{
// Using calloc() zeroes the fns[] array
fileCC* cc = VG_(calloc)(1, sizeof(fileCC));
cc->file = VG_(strdup)(filename);
cc->next = next;
return cc;
}
static __inline__
fnCC* new_fnCC(Char fn[], fnCC* next)
{
// Using calloc() zeroes the lines[] array
fnCC* cc = VG_(calloc)(1, sizeof(fnCC));
cc->fn = VG_(strdup)(fn);
cc->next = next;
return cc;
}
static __inline__
lineCC* new_lineCC(Int line, lineCC* next)
{
// Using calloc() zeroes the Ir/Dr/Dw CCs and the instrs[] array
lineCC* cc = VG_(calloc)(1, sizeof(lineCC));
cc->line = line;
cc->next = next;
return cc;
}
static __inline__
instr_info* new_instr_info(Addr instr_addr, lineCC* parent, instr_info* next)
{
// Using calloc() zeroes instr_len and data_size
instr_info* ii = VG_(calloc)(1, sizeof(instr_info));
ii->instr_addr = instr_addr;
ii->parent = parent;
return ii;
}
// Do a three step traversal: by file, then fn, then line.
// In all cases prepends new nodes to their chain. Returns a pointer to the
// line node, creates a new one if necessary.
static lineCC* get_lineCC(Addr origAddr)
{
fileCC *curr_fileCC;
fnCC *curr_fnCC;
lineCC *curr_lineCC;
Char file[FILE_LEN], fn[FN_LEN];
Int line;
UInt file_hash, fn_hash, line_hash;
get_debug_info(origAddr, file, fn, &line);
VGP_PUSHCC(VgpGetLineCC);
// level 1
file_hash = hash(file, N_FILE_ENTRIES);
curr_fileCC = CC_table[file_hash];
while (NULL != curr_fileCC && !VG_STREQ(file, curr_fileCC->file)) {
curr_fileCC = curr_fileCC->next;
}
if (NULL == curr_fileCC) {
CC_table[file_hash] = curr_fileCC =
new_fileCC(file, CC_table[file_hash]);
distinct_files++;
}
// level 2
fn_hash = hash(fn, N_FN_ENTRIES);
curr_fnCC = curr_fileCC->fns[fn_hash];
while (NULL != curr_fnCC && !VG_STREQ(fn, curr_fnCC->fn)) {
curr_fnCC = curr_fnCC->next;
}
if (NULL == curr_fnCC) {
curr_fileCC->fns[fn_hash] = curr_fnCC =
new_fnCC(fn, curr_fileCC->fns[fn_hash]);
distinct_fns++;
}
// level 3
line_hash = line % N_LINE_ENTRIES;
curr_lineCC = curr_fnCC->lines[line_hash];
while (NULL != curr_lineCC && line != curr_lineCC->line) {
curr_lineCC = curr_lineCC->next;
}
if (NULL == curr_lineCC) {
curr_fnCC->lines[line_hash] = curr_lineCC =
new_lineCC(line, curr_fnCC->lines[line_hash]);
distinct_lines++;
}
VGP_POPCC(VgpGetLineCC);
return curr_lineCC;
}
/*------------------------------------------------------------*/
/*--- Cache simulation functions ---*/
/*------------------------------------------------------------*/
static VGA_REGPARM(1)
void log_1I_0D_cache_access(instr_info* n)
{
//VG_(printf)("1I_0D : CCaddr=0x%x, iaddr=0x%x, isize=%u\n",
// n, n->instr_addr, n->instr_len);
VGP_PUSHCC(VgpCacheSimulate);
cachesim_I1_doref(n->instr_addr, n->instr_len,
&n->parent->Ir.m1, &n->parent->Ir.m2);
n->parent->Ir.a++;
VGP_POPCC(VgpCacheSimulate);
}
static VGA_REGPARM(2)
void log_1I_1Dr_cache_access(instr_info* n, Addr data_addr)
{
//VG_(printf)("1I_1Dr: CCaddr=%p, iaddr=%p, isize=%u, daddr=%p, dsize=%u\n",
// n, n->instr_addr, n->instr_len, data_addr, n->data_size);
VGP_PUSHCC(VgpCacheSimulate);
cachesim_I1_doref(n->instr_addr, n->instr_len,
&n->parent->Ir.m1, &n->parent->Ir.m2);
n->parent->Ir.a++;
cachesim_D1_doref(data_addr, n->data_size,
&n->parent->Dr.m1, &n->parent->Dr.m2);
n->parent->Dr.a++;
VGP_POPCC(VgpCacheSimulate);
}
static VGA_REGPARM(2)
void log_1I_1Dw_cache_access(instr_info* n, Addr data_addr)
{
//VG_(printf)("1I_1Dw: CCaddr=%p, iaddr=%p, isize=%u, daddr=%p, dsize=%u\n",
// n, n->instr_addr, n->instr_len, data_addr, n->data_size);
VGP_PUSHCC(VgpCacheSimulate);
cachesim_I1_doref(n->instr_addr, n->instr_len,
&n->parent->Ir.m1, &n->parent->Ir.m2);
n->parent->Ir.a++;
cachesim_D1_doref(data_addr, n->data_size,
&n->parent->Dw.m1, &n->parent->Dw.m2);
n->parent->Dw.a++;
VGP_POPCC(VgpCacheSimulate);
}
static VGA_REGPARM(3)
void log_1I_2D_cache_access(instr_info* n, Addr data_addr1, Addr data_addr2)
{
//VG_(printf)("1I_2D: CCaddr=%p, iaddr=%p, isize=%u, daddr1=%p, daddr2=%p, dsize=%u\n",
// n, n->instr_addr, n->instr_len, data_addr1, data_addr2, n->data_size);
VGP_PUSHCC(VgpCacheSimulate);
cachesim_I1_doref(n->instr_addr, n->instr_len,
&n->parent->Ir.m1, &n->parent->Ir.m2);
n->parent->Ir.a++;
cachesim_D1_doref(data_addr1, n->data_size,
&n->parent->Dr.m1, &n->parent->Dr.m2);
n->parent->Dr.a++;
cachesim_D1_doref(data_addr2, n->data_size,
&n->parent->Dw.m1, &n->parent->Dw.m2);
n->parent->Dw.a++;
VGP_POPCC(VgpCacheSimulate);
}
/*------------------------------------------------------------*/
/*--- Instrumentation ---*/
/*------------------------------------------------------------*/
static
BB_info* get_BB_info(IRBB* bbIn, Addr origAddr, Bool* bbSeenBefore)
{
Int i, n_instrs;
IRStmt* st;
BB_info* bbInfo;
VgHashNode** dummy;
// Count number of original instrs in BB
n_instrs = 0;
for (i = 0; i < bbIn->stmts_used; i++) {
st = bbIn->stmts[i];
if (Ist_IMark == st->tag) n_instrs++;
}
// Get the BB_info
bbInfo = (BB_info*)VG_(HT_get_node)(instr_info_table, origAddr, &dummy);
*bbSeenBefore = ( NULL == bbInfo ? False : True );
if (*bbSeenBefore) {
// BB must have been translated before, but flushed from the TT
tl_assert(bbInfo->n_instrs == n_instrs );
BB_retranslations++;
} else {
// BB never translated before (at this address, at least; could have
// been unloaded and then reloaded elsewhere in memory)
bbInfo = VG_(calloc)(1, sizeof(BB_info) + n_instrs*sizeof(instr_info));
bbInfo->BB_addr = origAddr;
bbInfo->n_instrs = n_instrs;
VG_(HT_add_node)( instr_info_table, (VgHashNode*)bbInfo );
distinct_instrs++;
}
return bbInfo;
}
static
void handleOneStatement(IRTypeEnv* tyenv, IRBB* bbOut, IRStmt* st,
Addr* instrAddr, UInt* instrLen,
IRExpr** loadAddrExpr, IRExpr** storeAddrExpr,
UInt* dataSize)
{
tl_assert(isFlatIRStmt(st));
switch (st->tag) {
case Ist_NoOp:
break;
case Ist_IMark:
/* st->Ist.IMark.addr is a 64-bit int. ULong_to_Ptr casts this
to the host's native pointer type; if that is 32 bits then it
discards the upper 32 bits. If we are cachegrinding on a
32-bit host then we are also ensured that the guest word size
is 32 bits, due to the assertion in cg_instrument that the
host and guest word sizes must be the same. Hence
st->Ist.IMark.addr will have been derived from a 32-bit guest
code address and truncation of it is safe. I believe this
assignment should be correct for both 32- and 64-bit
machines. */
*instrAddr = (Addr)ULong_to_Ptr(st->Ist.IMark.addr);
*instrLen = st->Ist.IMark.len;
addStmtToIRBB( bbOut, st );
break;
case Ist_Tmp: {
IRExpr* data = st->Ist.Tmp.data;
if (data->tag == Iex_LDle) {
IRExpr* aexpr = data->Iex.LDle.addr;
tl_assert( isIRAtom(aexpr) );
// XXX: repe cmpsb does two loads... the first one is ignored here!
//tl_assert( NULL == *loadAddrExpr ); // XXX: ???
*loadAddrExpr = aexpr;
*dataSize = sizeofIRType(data->Iex.LDle.ty);
}
addStmtToIRBB( bbOut, st );
break;
}
case Ist_STle: {
IRExpr* data = st->Ist.STle.data;
IRExpr* aexpr = st->Ist.STle.addr;
tl_assert( isIRAtom(aexpr) );
tl_assert( NULL == *storeAddrExpr ); // XXX: ???
*storeAddrExpr = aexpr;
*dataSize = sizeofIRType(typeOfIRExpr(tyenv, data));
addStmtToIRBB( bbOut, st );
break;
}
case Ist_Dirty: {
IRDirty* d = st->Ist.Dirty.details;
if (d->mFx != Ifx_None) {
/* This dirty helper accesses memory. Collect the
details. */
tl_assert(d->mAddr != NULL);
tl_assert(d->mSize != 0);
*dataSize = d->mSize;
if (d->mFx == Ifx_Read || d->mFx == Ifx_Modify)
*loadAddrExpr = d->mAddr;
if (d->mFx == Ifx_Write || d->mFx == Ifx_Modify)
*storeAddrExpr = d->mAddr;
} else {
tl_assert(d->mAddr == NULL);
tl_assert(d->mSize == 0);
}
addStmtToIRBB( bbOut, st );
break;
}
case Ist_Put:
case Ist_PutI:
case Ist_Exit:
case Ist_MFence:
addStmtToIRBB( bbOut, st );
break;
default:
VG_(printf)("\n");
ppIRStmt(st);
VG_(printf)("\n");
VG_(tool_panic)("Cachegrind: unhandled IRStmt");
}
}
static
void do_details( instr_info* n, Bool bbSeenBefore,
Addr instr_addr, Int instr_len, Int data_size )
{
if (bbSeenBefore) {
tl_assert( n->instr_addr == instr_addr );
tl_assert( n->instr_len == instr_len );
tl_assert( n->data_size == data_size );
// Don't check that (n->parent == parent)... it's conceivable that
// the debug info might change; the other asserts should be enough to
// detect anything strange.
} else {
lineCC* parent = get_lineCC(instr_addr);
n->instr_addr = instr_addr;
n->instr_len = instr_len;
n->data_size = data_size;
n->parent = parent;
}
}
static Bool loadStoreAddrsMatch(IRExpr* loadAddrExpr, IRExpr* storeAddrExpr)
{
// I'm assuming that for 'modify' instructions, that Vex always makes
// the loadAddrExpr and storeAddrExpr be of the same type, ie. both Tmp
// expressions, or both Const expressions.
tl_assert(isIRAtom(loadAddrExpr));
tl_assert(isIRAtom(storeAddrExpr));
return eqIRAtom(loadAddrExpr, storeAddrExpr);
}
// Instrumentation for the end of each original instruction.
static
void endOfInstr(IRBB* bbOut, instr_info* i_node, Bool bbSeenBefore,
UInt instrAddr, UInt instrLen, UInt dataSize,
IRExpr* loadAddrExpr, IRExpr* storeAddrExpr)
{
IRDirty* di;
IRExpr *arg1, *arg2, *arg3, **argv;
Int argc;
Char* helperName;
void* helperAddr;
IRType wordTy;
// Stay sane ...
tl_assert(sizeof(HWord) == sizeof(void*));
if (sizeof(HWord) == 4) {
wordTy = Ity_I32;
} else
if (sizeof(HWord) == 8) {
wordTy = Ity_I64;
} else {
VG_(tool_panic)("endOfInstr: strange word size");
}
if (loadAddrExpr)
tl_assert(wordTy == typeOfIRExpr(bbOut->tyenv, loadAddrExpr));
if (storeAddrExpr)
tl_assert(wordTy == typeOfIRExpr(bbOut->tyenv, storeAddrExpr));
// Nb: instrLen will be zero if Vex failed to decode it.
tl_assert( 0 == instrLen ||
(instrLen >= VGA_MIN_INSTR_SZB &&
instrLen <= VGA_MAX_INSTR_SZB) );
// Large (eg. 28B, 108B, 512B on x86) data-sized instructions will be
// done inaccurately, but they're very rare and this avoids errors from
// hitting more than two cache lines in the simulation.
if (dataSize > MIN_LINE_SIZE) dataSize = MIN_LINE_SIZE;
// Setup 1st arg: instr_info node's address
// Believed to be 64-bit clean
do_details(i_node, bbSeenBefore, instrAddr, instrLen, dataSize );
arg1 = mkIRExpr_HWord( (HWord)i_node );
if (!loadAddrExpr && !storeAddrExpr) {
// no load/store
tl_assert(0 == dataSize);
helperName = "log_1I_0D_cache_access";
helperAddr = &log_1I_0D_cache_access;
argc = 1;
argv = mkIRExprVec_1(arg1);
} else if (loadAddrExpr && !storeAddrExpr) {
// load
tl_assert( isIRAtom(loadAddrExpr) );
helperName = "log_1I_1Dr_cache_access";
helperAddr = &log_1I_1Dr_cache_access;
argc = 2;
arg2 = loadAddrExpr;
argv = mkIRExprVec_2(arg1, arg2);
} else if (!loadAddrExpr && storeAddrExpr) {
// store
tl_assert( isIRAtom(storeAddrExpr) );
helperName = "log_1I_1Dw_cache_access";
helperAddr = &log_1I_1Dw_cache_access;
argc = 2;
arg2 = storeAddrExpr;
argv = mkIRExprVec_2(arg1, arg2);
} else {
tl_assert( loadAddrExpr && storeAddrExpr );
tl_assert( isIRAtom(loadAddrExpr) );
tl_assert( isIRAtom(storeAddrExpr) );
if ( loadStoreAddrsMatch(loadAddrExpr, storeAddrExpr) ) {
// modify
helperName = "log_1I_1Dr_cache_access";
helperAddr = &log_1I_1Dr_cache_access;
argc = 2;
arg2 = loadAddrExpr;
argv = mkIRExprVec_2(arg1, arg2);
} else {
// load/store
helperName = "log_1I_2D_cache_access";
helperAddr = &log_1I_2D_cache_access;
argc = 3;
arg2 = loadAddrExpr;
arg3 = storeAddrExpr;
argv = mkIRExprVec_3(arg1, arg2, arg3);
}
}
// Add call to the instrumentation function
di = unsafeIRDirty_0_N( argc, helperName, helperAddr, argv);
addStmtToIRBB( bbOut, IRStmt_Dirty(di) );
}
static IRBB* cg_instrument ( IRBB* bbIn, VexGuestLayout* layout,
IRType gWordTy, IRType hWordTy )
{
Int i, dataSize = 0, bbInfo_i;
IRBB* bbOut;
IRStmt* st;
BB_info* bbInfo;
Bool bbSeenBefore = False;
Addr instrAddr, origAddr;
UInt instrLen;
IRExpr *loadAddrExpr, *storeAddrExpr;
if (gWordTy != hWordTy) {
/* We don't currently support this case. */
VG_(tool_panic)("host/guest word size mismatch");
}
/* Set up BB */
bbOut = emptyIRBB();
bbOut->tyenv = dopyIRTypeEnv(bbIn->tyenv);
bbOut->next = dopyIRExpr(bbIn->next);
bbOut->jumpkind = bbIn->jumpkind;
// Get the first statement, and origAddr from it
i = 0;
tl_assert(bbIn->stmts_used > 0);
st = bbIn->stmts[0];
tl_assert(Ist_IMark == st->tag);
origAddr = (Addr)st->Ist.IMark.addr;
tl_assert(origAddr == st->Ist.IMark.addr); // XXX: check no overflow
// Get block info
bbInfo = get_BB_info(bbIn, origAddr, &bbSeenBefore);
bbInfo_i = 0;
do {
// We should be at an IMark statement
tl_assert(Ist_IMark == st->tag);
// Reset stuff for this original instruction
loadAddrExpr = storeAddrExpr = NULL;
dataSize = 0;
// Process all the statements for this original instruction (ie. until
// the next IMark statement, or the end of the block)
do {
handleOneStatement(bbIn->tyenv, bbOut, st, &instrAddr, &instrLen,
&loadAddrExpr, &storeAddrExpr, &dataSize);
i++;
st = ( i < bbIn->stmts_used ? bbIn->stmts[i] : NULL );
}
while (st && Ist_IMark != st->tag);
// Add instrumentation for this original instruction.
endOfInstr(bbOut, &bbInfo->instrs[ bbInfo_i ], bbSeenBefore,
instrAddr, instrLen, dataSize, loadAddrExpr, storeAddrExpr);
bbInfo_i++;
}
while (st);
return bbOut;
}
/*------------------------------------------------------------*/
/*--- Cache configuration ---*/
/*------------------------------------------------------------*/
#define UNDEFINED_CACHE { -1, -1, -1 }
static cache_t clo_I1_cache = UNDEFINED_CACHE;
static cache_t clo_D1_cache = UNDEFINED_CACHE;
static cache_t clo_L2_cache = UNDEFINED_CACHE;
/* Checks cache config is ok; makes it so if not. */
static
void check_cache(cache_t* cache, Char *name)
{
/* First check they're all powers of two */
if (-1 == VG_(log2)(cache->size)) {
VG_(message)(Vg_UserMsg,
"error: %s size of %dB not a power of two; aborting.",
name, cache->size);
VG_(exit)(1);
}
if (-1 == VG_(log2)(cache->assoc)) {
VG_(message)(Vg_UserMsg,
"error: %s associativity of %d not a power of two; aborting.",
name, cache->assoc);
VG_(exit)(1);
}
if (-1 == VG_(log2)(cache->line_size)) {
VG_(message)(Vg_UserMsg,
"error: %s line size of %dB not a power of two; aborting.",
name, cache->line_size);
VG_(exit)(1);
}
// Then check line size >= 16 -- any smaller and a single instruction could
// straddle three cache lines, which breaks a simulation assertion and is
// stupid anyway.
if (cache->line_size < MIN_LINE_SIZE) {
VG_(message)(Vg_UserMsg,
"error: %s line size of %dB too small; aborting.",
name, cache->line_size);
VG_(exit)(1);
}
/* Then check cache size > line size (causes seg faults if not). */
if (cache->size <= cache->line_size) {
VG_(message)(Vg_UserMsg,
"error: %s cache size of %dB <= line size of %dB; aborting.",
name, cache->size, cache->line_size);
VG_(exit)(1);
}
/* Then check assoc <= (size / line size) (seg faults otherwise). */
if (cache->assoc > (cache->size / cache->line_size)) {
VG_(message)(Vg_UserMsg,
"warning: %s associativity > (size / line size); aborting.", name);
VG_(exit)(1);
}
}
static
void configure_caches(cache_t* I1c, cache_t* D1c, cache_t* L2c)
{
#define DEFINED(L) (-1 != L.size || -1 != L.assoc || -1 != L.line_size)
Int n_clos = 0;
// Count how many were defined on the command line.
if (DEFINED(clo_I1_cache)) { n_clos++; }
if (DEFINED(clo_D1_cache)) { n_clos++; }
if (DEFINED(clo_L2_cache)) { n_clos++; }
// Set the cache config (using auto-detection, if supported by the
// architecture)
VGA_(configure_caches)( I1c, D1c, L2c, (3 == n_clos) );
// Then replace with any defined on the command line.
if (DEFINED(clo_I1_cache)) { *I1c = clo_I1_cache; }
if (DEFINED(clo_D1_cache)) { *D1c = clo_D1_cache; }
if (DEFINED(clo_L2_cache)) { *L2c = clo_L2_cache; }
// Then check values and fix if not acceptable.
check_cache(I1c, "I1");
check_cache(D1c, "D1");
check_cache(L2c, "L2");
if (VG_(clo_verbosity) > 1) {
VG_(message)(Vg_UserMsg, "Cache configuration used:");
VG_(message)(Vg_UserMsg, " I1: %dB, %d-way, %dB lines",
I1c->size, I1c->assoc, I1c->line_size);
VG_(message)(Vg_UserMsg, " D1: %dB, %d-way, %dB lines",
D1c->size, D1c->assoc, D1c->line_size);
VG_(message)(Vg_UserMsg, " L2: %dB, %d-way, %dB lines",
L2c->size, L2c->assoc, L2c->line_size);
}
#undef CMD_LINE_DEFINED
}
/*------------------------------------------------------------*/
/*--- cg_fini() and related function ---*/
/*------------------------------------------------------------*/
// Total reads/writes/misses. Calculated during CC traversal at the end.
// All auto-zeroed.
static CC Ir_total;
static CC Dr_total;
static CC Dw_total;
static Char* cachegrind_out_file;
static void fprint_lineCC(Int fd, lineCC* n)
{
Char buf[512];
VG_(sprintf)(buf, "%u %llu %llu %llu %llu %llu %llu %llu %llu %llu\n",
n->line,
n->Ir.a, n->Ir.m1, n->Ir.m2,
n->Dr.a, n->Dr.m1, n->Dr.m2,
n->Dw.a, n->Dw.m1, n->Dw.m2);
VG_(write)(fd, (void*)buf, VG_(strlen)(buf));
Ir_total.a += n->Ir.a; Ir_total.m1 += n->Ir.m1; Ir_total.m2 += n->Ir.m2;
Dr_total.a += n->Dr.a; Dr_total.m1 += n->Dr.m1; Dr_total.m2 += n->Dr.m2;
Dw_total.a += n->Dw.a; Dw_total.m1 += n->Dw.m1; Dw_total.m2 += n->Dw.m2;
}
static void fprint_CC_table_and_calc_totals(void)
{
Int fd;
Char buf[512];
fileCC *curr_fileCC;
fnCC *curr_fnCC;
lineCC *curr_lineCC;
Int i, j, k;
VGP_PUSHCC(VgpCacheResults);
fd = VG_(open)(cachegrind_out_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY,
VKI_S_IRUSR|VKI_S_IWUSR);
if (fd < 0) {
// If the file can't be opened for whatever reason (conflict
// between multiple cachegrinded processes?), give up now.
VG_(message)(Vg_UserMsg,
"error: can't open cache simulation output file `%s'",
cachegrind_out_file );
VG_(message)(Vg_UserMsg,
" ... so simulation results will be missing.");
return;
}
// "desc:" lines (giving I1/D1/L2 cache configuration). The spaces after
// the 2nd colon makes cg_annotate's output look nicer.
VG_(sprintf)(buf, "desc: I1 cache: %s\n"
"desc: D1 cache: %s\n"
"desc: L2 cache: %s\n",
I1.desc_line, D1.desc_line, L2.desc_line);
VG_(write)(fd, (void*)buf, VG_(strlen)(buf));
// "cmd:" line
VG_(strcpy)(buf, "cmd:");
VG_(write)(fd, (void*)buf, VG_(strlen)(buf));
for (i = 0; i < VG_(client_argc); i++) {
VG_(write)(fd, " ", 1);
VG_(write)(fd, VG_(client_argv)[i], VG_(strlen)(VG_(client_argv)[i]));
}
// "events:" line
VG_(sprintf)(buf, "\nevents: Ir I1mr I2mr Dr D1mr D2mr Dw D1mw D2mw\n");
VG_(write)(fd, (void*)buf, VG_(strlen)(buf));
// Six loops here: three for the hash table arrays, and three for the
// chains hanging off the hash table arrays.
for (i = 0; i < N_FILE_ENTRIES; i++) {
curr_fileCC = CC_table[i];
while (curr_fileCC != NULL) {
VG_(sprintf)(buf, "fl=%s\n", curr_fileCC->file);
VG_(write)(fd, (void*)buf, VG_(strlen)(buf));
for (j = 0; j < N_FN_ENTRIES; j++) {
curr_fnCC = curr_fileCC->fns[j];
while (curr_fnCC != NULL) {
VG_(sprintf)(buf, "fn=%s\n", curr_fnCC->fn);
VG_(write)(fd, (void*)buf, VG_(strlen)(buf));
for (k = 0; k < N_LINE_ENTRIES; k++) {
curr_lineCC = curr_fnCC->lines[k];
while (curr_lineCC != NULL) {
fprint_lineCC(fd, curr_lineCC);
curr_lineCC = curr_lineCC->next;
}
}
curr_fnCC = curr_fnCC->next;
}
}
curr_fileCC = curr_fileCC->next;
}
}
// Summary stats must come after rest of table, since we calculate them
// during traversal. */
VG_(sprintf)(buf, "summary: "
"%llu %llu %llu %llu %llu %llu %llu %llu %llu\n",
Ir_total.a, Ir_total.m1, Ir_total.m2,
Dr_total.a, Dr_total.m1, Dr_total.m2,
Dw_total.a, Dw_total.m1, Dw_total.m2);
VG_(write)(fd, (void*)buf, VG_(strlen)(buf));
VG_(close)(fd);
}
static UInt ULong_width(ULong n)
{
UInt w = 0;
while (n > 0) {
n = n / 10;
w++;
}
return w + (w-1)/3; // add space for commas
}
static
void percentify(Int n, Int ex, Int field_width, char buf[])
{
int i, len, space;
VG_(sprintf)(buf, "%d.%d%%", n / ex, n % ex);
len = VG_(strlen)(buf);
space = field_width - len;
if (space < 0) space = 0; /* Allow for v. small field_width */
i = len;
/* Right justify in field */
for ( ; i >= 0; i--) buf[i + space] = buf[i];
for (i = 0; i < space; i++) buf[i] = ' ';
}
static void cg_fini(Int exitcode)
{
static char buf1[128], buf2[128], buf3[128], fmt [128];
CC D_total;
ULong L2_total_m, L2_total_mr, L2_total_mw,
L2_total, L2_total_r, L2_total_w;
Int l1, l2, l3;
Int p;
fprint_CC_table_and_calc_totals();
if (VG_(clo_verbosity) == 0)
return;
/* I cache results. Use the I_refs value to determine the first column
* width. */
l1 = ULong_width(Ir_total.a);
l2 = ULong_width(Dr_total.a);
l3 = ULong_width(Dw_total.a);
/* Make format string, getting width right for numbers */
VG_(sprintf)(fmt, "%%s %%,%dld", l1);
VG_(message)(Vg_UserMsg, fmt, "I refs: ", Ir_total.a);
VG_(message)(Vg_UserMsg, fmt, "I1 misses: ", Ir_total.m1);
VG_(message)(Vg_UserMsg, fmt, "L2i misses: ", Ir_total.m2);
p = 100;
if (0 == Ir_total.a) Ir_total.a = 1;
percentify(Ir_total.m1 * 100 * p / Ir_total.a, p, l1+1, buf1);
VG_(message)(Vg_UserMsg, "I1 miss rate: %s", buf1);
percentify(Ir_total.m2 * 100 * p / Ir_total.a, p, l1+1, buf1);
VG_(message)(Vg_UserMsg, "L2i miss rate: %s", buf1);
VG_(message)(Vg_UserMsg, "");
/* D cache results. Use the D_refs.rd and D_refs.wr values to determine the
* width of columns 2 & 3. */
D_total.a = Dr_total.a + Dw_total.a;
D_total.m1 = Dr_total.m1 + Dw_total.m1;
D_total.m2 = Dr_total.m2 + Dw_total.m2;
/* Make format string, getting width right for numbers */
VG_(sprintf)(fmt, "%%s %%,%dld (%%,%dld rd + %%,%dld wr)", l1, l2, l3);
VG_(message)(Vg_UserMsg, fmt, "D refs: ",
D_total.a, Dr_total.a, Dw_total.a);
VG_(message)(Vg_UserMsg, fmt, "D1 misses: ",
D_total.m1, Dr_total.m1, Dw_total.m1);
VG_(message)(Vg_UserMsg, fmt, "L2d misses: ",
D_total.m2, Dr_total.m2, Dw_total.m2);
p = 10;
if (0 == D_total.a) D_total.a = 1;
if (0 == Dr_total.a) Dr_total.a = 1;
if (0 == Dw_total.a) Dw_total.a = 1;
percentify( D_total.m1 * 100 * p / D_total.a, p, l1+1, buf1);
percentify(Dr_total.m1 * 100 * p / Dr_total.a, p, l2+1, buf2);
percentify(Dw_total.m1 * 100 * p / Dw_total.a, p, l3+1, buf3);
VG_(message)(Vg_UserMsg, "D1 miss rate: %s (%s + %s )", buf1, buf2,buf3);
percentify( D_total.m2 * 100 * p / D_total.a, p, l1+1, buf1);
percentify(Dr_total.m2 * 100 * p / Dr_total.a, p, l2+1, buf2);
percentify(Dw_total.m2 * 100 * p / Dw_total.a, p, l3+1, buf3);
VG_(message)(Vg_UserMsg, "L2d miss rate: %s (%s + %s )", buf1, buf2,buf3);
VG_(message)(Vg_UserMsg, "");
/* L2 overall results */
L2_total = Dr_total.m1 + Dw_total.m1 + Ir_total.m1;
L2_total_r = Dr_total.m1 + Ir_total.m1;
L2_total_w = Dw_total.m1;
VG_(message)(Vg_UserMsg, fmt, "L2 refs: ",
L2_total, L2_total_r, L2_total_w);
L2_total_m = Dr_total.m2 + Dw_total.m2 + Ir_total.m2;
L2_total_mr = Dr_total.m2 + Ir_total.m2;
L2_total_mw = Dw_total.m2;
VG_(message)(Vg_UserMsg, fmt, "L2 misses: ",
L2_total_m, L2_total_mr, L2_total_mw);
percentify(L2_total_m * 100 * p / (Ir_total.a + D_total.a), p, l1+1, buf1);
percentify(L2_total_mr * 100 * p / (Ir_total.a + Dr_total.a), p, l2+1, buf2);
percentify(L2_total_mw * 100 * p / Dw_total.a, p, l3+1, buf3);
VG_(message)(Vg_UserMsg, "L2 miss rate: %s (%s + %s )", buf1, buf2,buf3);
// Various stats
if (VG_(clo_verbosity) > 1) {
int BB_lookups = full_debug_BBs + fn_debug_BBs +
file_line_debug_BBs + no_debug_BBs;
VG_(message)(Vg_DebugMsg, "");
VG_(message)(Vg_DebugMsg, "Distinct files: %d", distinct_files);
VG_(message)(Vg_DebugMsg, "Distinct fns: %d", distinct_fns);
VG_(message)(Vg_DebugMsg, "Distinct lines: %d", distinct_lines);
VG_(message)(Vg_DebugMsg, "Distinct instrs: %d", distinct_instrs);
VG_(message)(Vg_DebugMsg, "BB lookups: %d", BB_lookups);
VG_(message)(Vg_DebugMsg, "With full debug info:%3d%% (%d)",
full_debug_BBs * 100 / BB_lookups,
full_debug_BBs);
VG_(message)(Vg_DebugMsg, "With file/line debug info:%3d%% (%d)",
file_line_debug_BBs * 100 / BB_lookups,
file_line_debug_BBs);
VG_(message)(Vg_DebugMsg, "With fn name debug info:%3d%% (%d)",
fn_debug_BBs * 100 / BB_lookups,
fn_debug_BBs);
VG_(message)(Vg_DebugMsg, "With no debug info:%3d%% (%d)",
no_debug_BBs * 100 / BB_lookups,
no_debug_BBs);
VG_(message)(Vg_DebugMsg, "BBs Retranslated: %d", BB_retranslations);
}
VGP_POPCC(VgpCacheResults);
}
/*--------------------------------------------------------------------*/
/*--- Discarding BB info ---*/
/*--------------------------------------------------------------------*/
// Called when a translation is invalidated due to code unloading.
static void cg_discard_basic_block_info ( Addr a, SizeT size )
{
VgHashNode** prev_next_ptr;
VgHashNode* bbInfo;
if (0) VG_(printf)( "discard_basic_block_info: %p, %llu\n", a, (ULong)size);
// Get BB info, remove from table, free BB info. Simple!
bbInfo = VG_(HT_get_node)(instr_info_table, a, &prev_next_ptr);
tl_assert(NULL != bbInfo);
*prev_next_ptr = bbInfo->next;
VG_(free)(bbInfo);
}
/*--------------------------------------------------------------------*/
/*--- Command line processing ---*/
/*--------------------------------------------------------------------*/
static void parse_cache_opt ( cache_t* cache, char* opt )
{
int i = 0, i2, i3;
// Option argument looks like "65536,2,64".
// Find commas, replace with NULs to make three independent
// strings, then extract numbers, put NULs back. Yuck.
while (VG_(isdigit)(opt[i])) i++;
if (',' == opt[i]) {
opt[i++] = '\0';
i2 = i;
} else goto bad;
while (VG_(isdigit)(opt[i])) i++;
if (',' == opt[i]) {
opt[i++] = '\0';
i3 = i;
} else goto bad;
while (VG_(isdigit)(opt[i])) i++;
if ('\0' != opt[i]) goto bad;
cache->size = (Int)VG_(atoll)(opt);
cache->assoc = (Int)VG_(atoll)(opt + i2);
cache->line_size = (Int)VG_(atoll)(opt + i3);
opt[i2-1] = ',';
opt[i3-1] = ',';
return;
bad:
VG_(bad_option)(opt);
}
static Bool cg_process_cmd_line_option(Char* arg)
{
// 5 is length of "--I1="
if (VG_CLO_STREQN(5, arg, "--I1="))
parse_cache_opt(&clo_I1_cache, &arg[5]);
else if (VG_CLO_STREQN(5, arg, "--D1="))
parse_cache_opt(&clo_D1_cache, &arg[5]);
else if (VG_CLO_STREQN(5, arg, "--L2="))
parse_cache_opt(&clo_L2_cache, &arg[5]);
else
return False;
return True;
}
static void cg_print_usage(void)
{
VG_(printf)(
" --I1=<size>,<assoc>,<line_size> set I1 cache manually\n"
" --D1=<size>,<assoc>,<line_size> set D1 cache manually\n"
" --L2=<size>,<assoc>,<line_size> set L2 cache manually\n"
);
}
static void cg_print_debug_usage(void)
{
VG_(printf)(
" (none)\n"
);
}
/*--------------------------------------------------------------------*/
/*--- Setup ---*/
/*--------------------------------------------------------------------*/
static void cg_post_clo_init(void)
{
cache_t I1c, D1c, L2c;
configure_caches(&I1c, &D1c, &L2c);
cachesim_I1_initcache(I1c);
cachesim_D1_initcache(D1c);
cachesim_L2_initcache(L2c);
VG_(register_profile_event)(VgpGetLineCC, "get-lineCC");
VG_(register_profile_event)(VgpCacheSimulate, "cache-simulate");
VG_(register_profile_event)(VgpCacheResults, "cache-results");
}
static void cg_pre_clo_init(void)
{
Char* base_dir = NULL;
VG_(details_name) ("Cachegrind");
VG_(details_version) (NULL);
VG_(details_description) ("an I1/D1/L2 cache profiler");
VG_(details_copyright_author)(
"Copyright (C) 2002-2005, and GNU GPL'd, by Nicholas Nethercote et al.");
VG_(details_bug_reports_to) (VG_BUGS_TO);
VG_(details_avg_translation_sizeB) ( 155 );
VG_(basic_tool_funcs) (cg_post_clo_init,
cg_instrument,
cg_fini);
VG_(needs_basic_block_discards)(cg_discard_basic_block_info);
VG_(needs_command_line_options)(cg_process_cmd_line_option,
cg_print_usage,
cg_print_debug_usage);
/* Get working directory */
tl_assert( VG_(getcwd_alloc)(&base_dir) );
/* Block is big enough for dir name + cachegrind.out.<pid> */
cachegrind_out_file = VG_(malloc)((VG_(strlen)(base_dir) + 32)*sizeof(Char));
VG_(sprintf)(cachegrind_out_file, "%s/cachegrind.out.%d",
base_dir, VG_(getpid)());
VG_(free)(base_dir);
instr_info_table = VG_(HT_construct)();
}
VG_DETERMINE_INTERFACE_VERSION(cg_pre_clo_init, 0)
/*--------------------------------------------------------------------*/
/*--- end cg_main.c ---*/
/*--------------------------------------------------------------------*/