blob: 4d8e86358688a212bf9ce5b40ddff1f960045942 [file] [log] [blame]
/*--------------------------------------------------------------------*/
/*--- Management, printing, etc, of errors and suppressions. ---*/
/*--- mc_errors.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of MemCheck, a heavyweight Valgrind tool for
detecting memory errors.
Copyright (C) 2000-2013 Julian Seward
jseward@acm.org
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#include "pub_tool_basics.h"
#include "pub_tool_gdbserver.h"
#include "pub_tool_poolalloc.h" // For mc_include.h
#include "pub_tool_hashtable.h" // For mc_include.h
#include "pub_tool_libcbase.h"
#include "pub_tool_libcassert.h"
#include "pub_tool_libcprint.h"
#include "pub_tool_machine.h"
#include "pub_tool_mallocfree.h"
#include "pub_tool_options.h"
#include "pub_tool_replacemalloc.h"
#include "pub_tool_tooliface.h"
#include "pub_tool_threadstate.h"
#include "pub_tool_debuginfo.h" // VG_(get_dataname_and_offset)
#include "pub_tool_xarray.h"
#include "pub_tool_aspacemgr.h"
#include "pub_tool_addrinfo.h"
#include "mc_include.h"
/*------------------------------------------------------------*/
/*--- Error types ---*/
/*------------------------------------------------------------*/
/* See comment in mc_include.h */
Bool MC_(any_value_errors) = False;
/* ------------------ Errors ----------------------- */
/* What kind of error it is. */
typedef
enum {
Err_Value,
Err_Cond,
Err_CoreMem,
Err_Addr,
Err_Jump,
Err_RegParam,
Err_MemParam,
Err_User,
Err_Free,
Err_FreeMismatch,
Err_Overlap,
Err_Leak,
Err_IllegalMempool,
Err_FishyValue,
}
MC_ErrorTag;
typedef struct _MC_Error MC_Error;
struct _MC_Error {
// Nb: we don't need the tag here, as it's stored in the Error type! Yuk.
//MC_ErrorTag tag;
union {
// Use of an undefined value:
// - as a pointer in a load or store
// - as a jump target
struct {
SizeT szB; // size of value in bytes
// Origin info
UInt otag; // origin tag
ExeContext* origin_ec; // filled in later
} Value;
// Use of an undefined value in a conditional branch or move.
struct {
// Origin info
UInt otag; // origin tag
ExeContext* origin_ec; // filled in later
} Cond;
// Addressability error in core (signal-handling) operation.
// It would be good to get rid of this error kind, merge it with
// another one somehow.
struct {
} CoreMem;
// Use of an unaddressable memory location in a load or store.
struct {
Bool isWrite; // read or write?
SizeT szB; // not used for exec (jump) errors
Bool maybe_gcc; // True if just below %esp -- could be a gcc bug
AddrInfo ai;
} Addr;
// Jump to an unaddressable memory location.
struct {
AddrInfo ai;
} Jump;
// System call register input contains undefined bytes.
struct {
// Origin info
UInt otag; // origin tag
ExeContext* origin_ec; // filled in later
} RegParam;
// System call memory input contains undefined/unaddressable bytes
struct {
Bool isAddrErr; // Addressability or definedness error?
AddrInfo ai;
// Origin info
UInt otag; // origin tag
ExeContext* origin_ec; // filled in later
} MemParam;
// Problem found from a client request like CHECK_MEM_IS_ADDRESSABLE.
struct {
Bool isAddrErr; // Addressability or definedness error?
AddrInfo ai;
// Origin info
UInt otag; // origin tag
ExeContext* origin_ec; // filled in later
} User;
// Program tried to free() something that's not a heap block (this
// covers double-frees). */
struct {
AddrInfo ai;
} Free;
// Program allocates heap block with one function
// (malloc/new/new[]/custom) and deallocates with not the matching one.
struct {
AddrInfo ai;
} FreeMismatch;
// Call to strcpy, memcpy, etc, with overlapping blocks.
struct {
Addr src; // Source block
Addr dst; // Destination block
SizeT szB; // Size in bytes; 0 if unused.
} Overlap;
// A memory leak.
struct {
UInt n_this_record;
UInt n_total_records;
LossRecord* lr;
} Leak;
// A memory pool error.
struct {
AddrInfo ai;
} IllegalMempool;
// A fishy function argument value
// An argument value is considered fishy if the corresponding
// parameter has SizeT type and the value when interpreted as a
// signed number is negative.
struct {
const HChar *function_name;
const HChar *argument_name;
SizeT value;
} FishyValue;
} Err;
};
/*------------------------------------------------------------*/
/*--- Printing errors ---*/
/*------------------------------------------------------------*/
/* This is the "this error is due to be printed shortly; so have a
look at it any print any preamble you want" function. Which, in
Memcheck, we don't use. Hence a no-op.
*/
void MC_(before_pp_Error) ( const Error* err ) {
}
/* Do a printf-style operation on either the XML or normal output
channel, depending on the setting of VG_(clo_xml).
*/
static void emit_WRK ( const HChar* format, va_list vargs )
{
if (VG_(clo_xml)) {
VG_(vprintf_xml)(format, vargs);
} else {
VG_(vmessage)(Vg_UserMsg, format, vargs);
}
}
static void emit ( const HChar* format, ... ) PRINTF_CHECK(1, 2);
static void emit ( const HChar* format, ... )
{
va_list vargs;
va_start(vargs, format);
emit_WRK(format, vargs);
va_end(vargs);
}
static const HChar* str_leak_lossmode ( Reachedness lossmode )
{
const HChar *loss = "?";
switch (lossmode) {
case Unreached: loss = "definitely lost"; break;
case IndirectLeak: loss = "indirectly lost"; break;
case Possible: loss = "possibly lost"; break;
case Reachable: loss = "still reachable"; break;
}
return loss;
}
static const HChar* xml_leak_kind ( Reachedness lossmode )
{
const HChar *loss = "?";
switch (lossmode) {
case Unreached: loss = "Leak_DefinitelyLost"; break;
case IndirectLeak: loss = "Leak_IndirectlyLost"; break;
case Possible: loss = "Leak_PossiblyLost"; break;
case Reachable: loss = "Leak_StillReachable"; break;
}
return loss;
}
const HChar* MC_(parse_leak_kinds_tokens) =
"reachable,possible,indirect,definite";
UInt MC_(all_Reachedness)(void)
{
static UInt all;
if (all == 0) {
// Compute a set with all values by doing a parsing of the "all" keyword.
Bool parseok = VG_(parse_enum_set)(MC_(parse_leak_kinds_tokens),
True,/*allow_all*/
"all",
&all);
tl_assert (parseok && all);
}
return all;
}
static const HChar* pp_Reachedness_for_leak_kinds(Reachedness r)
{
switch(r) {
case Reachable: return "reachable";
case Possible: return "possible";
case IndirectLeak: return "indirect";
case Unreached: return "definite";
default: tl_assert(0);
}
}
static void mc_pp_origin ( ExeContext* ec, UInt okind )
{
const HChar* src = NULL;
tl_assert(ec);
switch (okind) {
case MC_OKIND_STACK: src = " by a stack allocation"; break;
case MC_OKIND_HEAP: src = " by a heap allocation"; break;
case MC_OKIND_USER: src = " by a client request"; break;
case MC_OKIND_UNKNOWN: src = ""; break;
}
tl_assert(src); /* guards against invalid 'okind' */
if (VG_(clo_xml)) {
emit( " <auxwhat>Uninitialised value was created%s</auxwhat>\n",
src);
VG_(pp_ExeContext)( ec );
} else {
emit( " Uninitialised value was created%s\n", src);
VG_(pp_ExeContext)( ec );
}
}
HChar * MC_(snprintf_delta) (HChar * buf, Int size,
SizeT current_val, SizeT old_val,
LeakCheckDeltaMode delta_mode)
{
// Make sure the buffer size is large enough. With old_val == 0 and
// current_val == ULLONG_MAX the delta including inserted commas is:
// 18,446,744,073,709,551,615
// whose length is 26. Therefore:
tl_assert(size >= 26 + 4 + 1);
if (delta_mode == LCD_Any)
buf[0] = '\0';
else if (current_val >= old_val)
VG_(snprintf) (buf, size, " (+%'lu)", current_val - old_val);
else
VG_(snprintf) (buf, size, " (-%'lu)", old_val - current_val);
return buf;
}
static void pp_LossRecord(UInt n_this_record, UInt n_total_records,
LossRecord* lr, Bool xml)
{
// char arrays to produce the indication of increase/decrease in case
// of delta_mode != LCD_Any
HChar d_bytes[31];
HChar d_direct_bytes[31];
HChar d_indirect_bytes[31];
HChar d_num_blocks[31];
MC_(snprintf_delta) (d_bytes, sizeof(d_bytes),
lr->szB + lr->indirect_szB,
lr->old_szB + lr->old_indirect_szB,
MC_(detect_memory_leaks_last_delta_mode));
MC_(snprintf_delta) (d_direct_bytes, sizeof(d_direct_bytes),
lr->szB,
lr->old_szB,
MC_(detect_memory_leaks_last_delta_mode));
MC_(snprintf_delta) (d_indirect_bytes, sizeof(d_indirect_bytes),
lr->indirect_szB,
lr->old_indirect_szB,
MC_(detect_memory_leaks_last_delta_mode));
MC_(snprintf_delta) (d_num_blocks, sizeof(d_num_blocks),
(SizeT) lr->num_blocks,
(SizeT) lr->old_num_blocks,
MC_(detect_memory_leaks_last_delta_mode));
if (xml) {
emit(" <kind>%s</kind>\n", xml_leak_kind(lr->key.state));
if (lr->indirect_szB > 0) {
emit( " <xwhat>\n" );
emit( " <text>%'lu%s (%'lu%s direct, %'lu%s indirect) bytes "
"in %'u%s blocks"
" are %s in loss record %'u of %'u</text>\n",
lr->szB + lr->indirect_szB, d_bytes,
lr->szB, d_direct_bytes,
lr->indirect_szB, d_indirect_bytes,
lr->num_blocks, d_num_blocks,
str_leak_lossmode(lr->key.state),
n_this_record, n_total_records );
// Nb: don't put commas in these XML numbers
emit( " <leakedbytes>%lu</leakedbytes>\n",
lr->szB + lr->indirect_szB );
emit( " <leakedblocks>%u</leakedblocks>\n", lr->num_blocks );
emit( " </xwhat>\n" );
} else {
emit( " <xwhat>\n" );
emit( " <text>%'lu%s bytes in %'u%s blocks"
" are %s in loss record %'u of %'u</text>\n",
lr->szB, d_direct_bytes,
lr->num_blocks, d_num_blocks,
str_leak_lossmode(lr->key.state),
n_this_record, n_total_records );
emit( " <leakedbytes>%ld</leakedbytes>\n", lr->szB);
emit( " <leakedblocks>%d</leakedblocks>\n", lr->num_blocks);
emit( " </xwhat>\n" );
}
VG_(pp_ExeContext)(lr->key.allocated_at);
} else { /* ! if (xml) */
if (lr->indirect_szB > 0) {
emit(
"%'lu%s (%'lu%s direct, %'lu%s indirect) bytes in %'u%s blocks"
" are %s in loss record %'u of %'u\n",
lr->szB + lr->indirect_szB, d_bytes,
lr->szB, d_direct_bytes,
lr->indirect_szB, d_indirect_bytes,
lr->num_blocks, d_num_blocks,
str_leak_lossmode(lr->key.state),
n_this_record, n_total_records
);
} else {
emit(
"%'lu%s bytes in %'u%s blocks are %s in loss record %'u of %'u\n",
lr->szB, d_direct_bytes,
lr->num_blocks, d_num_blocks,
str_leak_lossmode(lr->key.state),
n_this_record, n_total_records
);
}
VG_(pp_ExeContext)(lr->key.allocated_at);
} /* if (xml) */
}
void MC_(pp_LossRecord)(UInt n_this_record, UInt n_total_records,
LossRecord* l)
{
pp_LossRecord (n_this_record, n_total_records, l, /* xml */ False);
}
void MC_(pp_Error) ( const Error* err )
{
const Bool xml = VG_(clo_xml); /* a shorthand */
MC_Error* extra = VG_(get_error_extra)(err);
switch (VG_(get_error_kind)(err)) {
case Err_CoreMem:
/* What the hell *is* a CoreMemError? jrs 2005-May-18 */
/* As of 2006-Dec-14, it's caused by unaddressable bytes in a
signal handler frame. --njn */
// JRS 17 May 09: None of our regtests exercise this; hence AFAIK
// the following code is untested. Bad.
if (xml) {
emit( " <kind>CoreMemError</kind>\n" );
emit( " <what>%pS contains unaddressable byte(s)</what>\n",
VG_(get_error_string)(err));
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
} else {
emit( "%s contains unaddressable byte(s)\n",
VG_(get_error_string)(err));
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
}
break;
case Err_Value:
MC_(any_value_errors) = True;
if (xml) {
emit( " <kind>UninitValue</kind>\n" );
emit( " <what>Use of uninitialised value of size %ld</what>\n",
extra->Err.Value.szB );
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
if (extra->Err.Value.origin_ec)
mc_pp_origin( extra->Err.Value.origin_ec,
extra->Err.Value.otag & 3 );
} else {
/* Could also show extra->Err.Cond.otag if debugging origin
tracking */
emit( "Use of uninitialised value of size %ld\n",
extra->Err.Value.szB );
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
if (extra->Err.Value.origin_ec)
mc_pp_origin( extra->Err.Value.origin_ec,
extra->Err.Value.otag & 3 );
}
break;
case Err_Cond:
MC_(any_value_errors) = True;
if (xml) {
emit( " <kind>UninitCondition</kind>\n" );
emit( " <what>Conditional jump or move depends"
" on uninitialised value(s)</what>\n" );
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
if (extra->Err.Cond.origin_ec)
mc_pp_origin( extra->Err.Cond.origin_ec,
extra->Err.Cond.otag & 3 );
} else {
/* Could also show extra->Err.Cond.otag if debugging origin
tracking */
emit( "Conditional jump or move depends"
" on uninitialised value(s)\n" );
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
if (extra->Err.Cond.origin_ec)
mc_pp_origin( extra->Err.Cond.origin_ec,
extra->Err.Cond.otag & 3 );
}
break;
case Err_RegParam:
MC_(any_value_errors) = True;
if (xml) {
emit( " <kind>SyscallParam</kind>\n" );
emit( " <what>Syscall param %pS contains "
"uninitialised byte(s)</what>\n",
VG_(get_error_string)(err) );
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
if (extra->Err.RegParam.origin_ec)
mc_pp_origin( extra->Err.RegParam.origin_ec,
extra->Err.RegParam.otag & 3 );
} else {
emit( "Syscall param %s contains uninitialised byte(s)\n",
VG_(get_error_string)(err) );
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
if (extra->Err.RegParam.origin_ec)
mc_pp_origin( extra->Err.RegParam.origin_ec,
extra->Err.RegParam.otag & 3 );
}
break;
case Err_MemParam:
if (!extra->Err.MemParam.isAddrErr)
MC_(any_value_errors) = True;
if (xml) {
emit( " <kind>SyscallParam</kind>\n" );
emit( " <what>Syscall param %pS points to %s byte(s)</what>\n",
VG_(get_error_string)(err),
extra->Err.MemParam.isAddrErr
? "unaddressable" : "uninitialised" );
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
VG_(pp_addrinfo_mc)(VG_(get_error_address)(err),
&extra->Err.MemParam.ai, False);
if (extra->Err.MemParam.origin_ec
&& !extra->Err.MemParam.isAddrErr)
mc_pp_origin( extra->Err.MemParam.origin_ec,
extra->Err.MemParam.otag & 3 );
} else {
emit( "Syscall param %s points to %s byte(s)\n",
VG_(get_error_string)(err),
extra->Err.MemParam.isAddrErr
? "unaddressable" : "uninitialised" );
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
VG_(pp_addrinfo_mc)(VG_(get_error_address)(err),
&extra->Err.MemParam.ai, False);
if (extra->Err.MemParam.origin_ec
&& !extra->Err.MemParam.isAddrErr)
mc_pp_origin( extra->Err.MemParam.origin_ec,
extra->Err.MemParam.otag & 3 );
}
break;
case Err_User:
if (!extra->Err.User.isAddrErr)
MC_(any_value_errors) = True;
if (xml) {
emit( " <kind>ClientCheck</kind>\n" );
emit( " <what>%s byte(s) found "
"during client check request</what>\n",
extra->Err.User.isAddrErr
? "Unaddressable" : "Uninitialised" );
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
VG_(pp_addrinfo_mc)(VG_(get_error_address)(err), &extra->Err.User.ai,
False);
if (extra->Err.User.origin_ec && !extra->Err.User.isAddrErr)
mc_pp_origin( extra->Err.User.origin_ec,
extra->Err.User.otag & 3 );
} else {
emit( "%s byte(s) found during client check request\n",
extra->Err.User.isAddrErr
? "Unaddressable" : "Uninitialised" );
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
VG_(pp_addrinfo_mc)(VG_(get_error_address)(err), &extra->Err.User.ai,
False);
if (extra->Err.User.origin_ec && !extra->Err.User.isAddrErr)
mc_pp_origin( extra->Err.User.origin_ec,
extra->Err.User.otag & 3 );
}
break;
case Err_Free:
if (xml) {
emit( " <kind>InvalidFree</kind>\n" );
emit( " <what>Invalid free() / delete / delete[]"
" / realloc()</what>\n" );
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
VG_(pp_addrinfo_mc)( VG_(get_error_address)(err),
&extra->Err.Free.ai, False );
} else {
emit( "Invalid free() / delete / delete[] / realloc()\n" );
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
VG_(pp_addrinfo_mc)( VG_(get_error_address)(err),
&extra->Err.Free.ai, False );
}
break;
case Err_FreeMismatch:
if (xml) {
emit( " <kind>MismatchedFree</kind>\n" );
emit( " <what>Mismatched free() / delete / delete []</what>\n" );
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
VG_(pp_addrinfo_mc)(VG_(get_error_address)(err),
&extra->Err.FreeMismatch.ai, False);
} else {
emit( "Mismatched free() / delete / delete []\n" );
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
VG_(pp_addrinfo_mc)(VG_(get_error_address)(err),
&extra->Err.FreeMismatch.ai, False);
}
break;
case Err_Addr:
if (xml) {
emit( " <kind>Invalid%s</kind>\n",
extra->Err.Addr.isWrite ? "Write" : "Read" );
emit( " <what>Invalid %s of size %ld</what>\n",
extra->Err.Addr.isWrite ? "write" : "read",
extra->Err.Addr.szB );
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
VG_(pp_addrinfo_mc)( VG_(get_error_address)(err),
&extra->Err.Addr.ai,
extra->Err.Addr.maybe_gcc );
} else {
emit( "Invalid %s of size %ld\n",
extra->Err.Addr.isWrite ? "write" : "read",
extra->Err.Addr.szB );
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
VG_(pp_addrinfo_mc)( VG_(get_error_address)(err),
&extra->Err.Addr.ai,
extra->Err.Addr.maybe_gcc );
}
break;
case Err_Jump:
if (xml) {
emit( " <kind>InvalidJump</kind>\n" );
emit( " <what>Jump to the invalid address stated "
"on the next line</what>\n" );
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
VG_(pp_addrinfo_mc)( VG_(get_error_address)(err), &extra->Err.Jump.ai,
False );
} else {
emit( "Jump to the invalid address stated on the next line\n" );
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
VG_(pp_addrinfo_mc)( VG_(get_error_address)(err), &extra->Err.Jump.ai,
False );
}
break;
case Err_Overlap:
if (xml) {
emit( " <kind>Overlap</kind>\n" );
if (extra->Err.Overlap.szB == 0) {
emit( " <what>Source and destination overlap "
"in %pS(%#lx, %#lx)\n</what>\n",
VG_(get_error_string)(err),
extra->Err.Overlap.dst, extra->Err.Overlap.src );
} else {
emit( " <what>Source and destination overlap "
"in %pS(%#lx, %#lx, %lu)</what>\n",
VG_(get_error_string)(err),
extra->Err.Overlap.dst, extra->Err.Overlap.src,
extra->Err.Overlap.szB );
}
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
} else {
if (extra->Err.Overlap.szB == 0) {
emit( "Source and destination overlap in %s(%#lx, %#lx)\n",
VG_(get_error_string)(err),
extra->Err.Overlap.dst, extra->Err.Overlap.src );
} else {
emit( "Source and destination overlap in %s(%#lx, %#lx, %lu)\n",
VG_(get_error_string)(err),
extra->Err.Overlap.dst, extra->Err.Overlap.src,
extra->Err.Overlap.szB );
}
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
}
break;
case Err_IllegalMempool:
// JRS 17 May 09: None of our regtests exercise this; hence AFAIK
// the following code is untested. Bad.
if (xml) {
emit( " <kind>InvalidMemPool</kind>\n" );
emit( " <what>Illegal memory pool address</what>\n" );
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
VG_(pp_addrinfo_mc)( VG_(get_error_address)(err),
&extra->Err.IllegalMempool.ai, False );
} else {
emit( "Illegal memory pool address\n" );
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
VG_(pp_addrinfo_mc)( VG_(get_error_address)(err),
&extra->Err.IllegalMempool.ai, False );
}
break;
case Err_Leak: {
UInt n_this_record = extra->Err.Leak.n_this_record;
UInt n_total_records = extra->Err.Leak.n_total_records;
LossRecord* lr = extra->Err.Leak.lr;
pp_LossRecord (n_this_record, n_total_records, lr, xml);
break;
}
case Err_FishyValue:
if (xml) {
emit( " <kind>FishyValue</kind>\n" );
emit( " <what>");
emit( "Argument '%s' of function %s has a fishy "
"(possibly negative) value: %ld\n",
extra->Err.FishyValue.argument_name,
extra->Err.FishyValue.function_name,
(SSizeT)extra->Err.FishyValue.value);
emit( "</what>");
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
} else {
emit( "Argument '%s' of function %s has a fishy "
"(possibly negative) value: %ld\n",
extra->Err.FishyValue.argument_name,
extra->Err.FishyValue.function_name,
(SSizeT)extra->Err.FishyValue.value);
VG_(pp_ExeContext)( VG_(get_error_where)(err) );
}
break;
default:
VG_(printf)("Error:\n unknown Memcheck error code %d\n",
VG_(get_error_kind)(err));
VG_(tool_panic)("unknown error code in mc_pp_Error)");
}
}
/*------------------------------------------------------------*/
/*--- Recording errors ---*/
/*------------------------------------------------------------*/
/* These many bytes below %ESP are considered addressible if we're
doing the --workaround-gcc296-bugs hack. */
#define VG_GCC296_BUG_STACK_SLOP 1024
/* Is this address within some small distance below %ESP? Used only
for the --workaround-gcc296-bugs kludge. */
static Bool is_just_below_ESP( Addr esp, Addr aa )
{
esp -= VG_STACK_REDZONE_SZB;
if (esp > aa && (esp - aa) <= VG_GCC296_BUG_STACK_SLOP)
return True;
else
return False;
}
/* --- Called from generated and non-generated code --- */
void MC_(record_address_error) ( ThreadId tid, Addr a, Int szB,
Bool isWrite )
{
MC_Error extra;
Bool just_below_esp;
if (MC_(in_ignored_range)(a))
return;
if (VG_(is_watched)( (isWrite ? write_watchpoint : read_watchpoint), a, szB))
return;
just_below_esp = is_just_below_ESP( VG_(get_SP)(tid), a );
/* If this is caused by an access immediately below %ESP, and the
user asks nicely, we just ignore it. */
if (MC_(clo_workaround_gcc296_bugs) && just_below_esp)
return;
extra.Err.Addr.isWrite = isWrite;
extra.Err.Addr.szB = szB;
extra.Err.Addr.maybe_gcc = just_below_esp;
extra.Err.Addr.ai.tag = Addr_Undescribed;
VG_(maybe_record_error)( tid, Err_Addr, a, /*s*/NULL, &extra );
}
void MC_(record_value_error) ( ThreadId tid, Int szB, UInt otag )
{
MC_Error extra;
tl_assert( MC_(clo_mc_level) >= 2 );
if (otag > 0)
tl_assert( MC_(clo_mc_level) == 3 );
extra.Err.Value.szB = szB;
extra.Err.Value.otag = otag;
extra.Err.Value.origin_ec = NULL; /* Filled in later */
VG_(maybe_record_error)( tid, Err_Value, /*addr*/0, /*s*/NULL, &extra );
}
void MC_(record_cond_error) ( ThreadId tid, UInt otag )
{
MC_Error extra;
tl_assert( MC_(clo_mc_level) >= 2 );
if (otag > 0)
tl_assert( MC_(clo_mc_level) == 3 );
extra.Err.Cond.otag = otag;
extra.Err.Cond.origin_ec = NULL; /* Filled in later */
VG_(maybe_record_error)( tid, Err_Cond, /*addr*/0, /*s*/NULL, &extra );
}
/* --- Called from non-generated code --- */
/* This is for memory errors in signal-related memory. */
void MC_(record_core_mem_error) ( ThreadId tid, const HChar* msg )
{
VG_(maybe_record_error)( tid, Err_CoreMem, /*addr*/0, msg, /*extra*/NULL );
}
void MC_(record_regparam_error) ( ThreadId tid, const HChar* msg, UInt otag )
{
MC_Error extra;
tl_assert(VG_INVALID_THREADID != tid);
if (otag > 0)
tl_assert( MC_(clo_mc_level) == 3 );
extra.Err.RegParam.otag = otag;
extra.Err.RegParam.origin_ec = NULL; /* Filled in later */
VG_(maybe_record_error)( tid, Err_RegParam, /*addr*/0, msg, &extra );
}
void MC_(record_memparam_error) ( ThreadId tid, Addr a,
Bool isAddrErr, const HChar* msg, UInt otag )
{
MC_Error extra;
tl_assert(VG_INVALID_THREADID != tid);
if (!isAddrErr)
tl_assert( MC_(clo_mc_level) >= 2 );
if (otag != 0) {
tl_assert( MC_(clo_mc_level) == 3 );
tl_assert( !isAddrErr );
}
extra.Err.MemParam.isAddrErr = isAddrErr;
extra.Err.MemParam.ai.tag = Addr_Undescribed;
extra.Err.MemParam.otag = otag;
extra.Err.MemParam.origin_ec = NULL; /* Filled in later */
VG_(maybe_record_error)( tid, Err_MemParam, a, msg, &extra );
}
void MC_(record_jump_error) ( ThreadId tid, Addr a )
{
MC_Error extra;
tl_assert(VG_INVALID_THREADID != tid);
extra.Err.Jump.ai.tag = Addr_Undescribed;
VG_(maybe_record_error)( tid, Err_Jump, a, /*s*/NULL, &extra );
}
void MC_(record_free_error) ( ThreadId tid, Addr a )
{
MC_Error extra;
tl_assert(VG_INVALID_THREADID != tid);
extra.Err.Free.ai.tag = Addr_Undescribed;
VG_(maybe_record_error)( tid, Err_Free, a, /*s*/NULL, &extra );
}
void MC_(record_freemismatch_error) ( ThreadId tid, MC_Chunk* mc )
{
MC_Error extra;
AddrInfo* ai = &extra.Err.FreeMismatch.ai;
tl_assert(VG_INVALID_THREADID != tid);
ai->tag = Addr_Block;
ai->Addr.Block.block_kind = Block_Mallocd; // Nb: Not 'Block_Freed'
ai->Addr.Block.block_desc = "block";
ai->Addr.Block.block_szB = mc->szB;
ai->Addr.Block.rwoffset = 0;
ai->Addr.Block.allocated_at = MC_(allocated_at) (mc);
VG_(initThreadInfo) (&ai->Addr.Block.alloc_tinfo);
ai->Addr.Block.freed_at = MC_(freed_at) (mc);
VG_(maybe_record_error)( tid, Err_FreeMismatch, mc->data, /*s*/NULL,
&extra );
}
void MC_(record_illegal_mempool_error) ( ThreadId tid, Addr a )
{
MC_Error extra;
tl_assert(VG_INVALID_THREADID != tid);
extra.Err.IllegalMempool.ai.tag = Addr_Undescribed;
VG_(maybe_record_error)( tid, Err_IllegalMempool, a, /*s*/NULL, &extra );
}
void MC_(record_overlap_error) ( ThreadId tid, const HChar* function,
Addr src, Addr dst, SizeT szB )
{
MC_Error extra;
tl_assert(VG_INVALID_THREADID != tid);
extra.Err.Overlap.src = src;
extra.Err.Overlap.dst = dst;
extra.Err.Overlap.szB = szB;
VG_(maybe_record_error)(
tid, Err_Overlap, /*addr*/0, /*s*/function, &extra );
}
Bool MC_(record_leak_error) ( ThreadId tid, UInt n_this_record,
UInt n_total_records, LossRecord* lr,
Bool print_record, Bool count_error )
{
MC_Error extra;
extra.Err.Leak.n_this_record = n_this_record;
extra.Err.Leak.n_total_records = n_total_records;
extra.Err.Leak.lr = lr;
return
VG_(unique_error) ( tid, Err_Leak, /*Addr*/0, /*s*/NULL, &extra,
lr->key.allocated_at, print_record,
/*allow_GDB_attach*/False, count_error );
}
Bool MC_(record_fishy_value_error) ( ThreadId tid, const HChar *function_name,
const HChar *argument_name, SizeT value)
{
MC_Error extra;
tl_assert(VG_INVALID_THREADID != tid);
if ((SSizeT)value >= 0) return False; // not a fishy value
extra.Err.FishyValue.function_name = function_name;
extra.Err.FishyValue.argument_name = argument_name;
extra.Err.FishyValue.value = value;
VG_(maybe_record_error)(
tid, Err_FishyValue, /*addr*/0, /*s*/NULL, &extra );
return True;
}
void MC_(record_user_error) ( ThreadId tid, Addr a,
Bool isAddrErr, UInt otag )
{
MC_Error extra;
if (otag != 0) {
tl_assert(!isAddrErr);
tl_assert( MC_(clo_mc_level) == 3 );
}
if (!isAddrErr) {
tl_assert( MC_(clo_mc_level) >= 2 );
}
tl_assert(VG_INVALID_THREADID != tid);
extra.Err.User.isAddrErr = isAddrErr;
extra.Err.User.ai.tag = Addr_Undescribed;
extra.Err.User.otag = otag;
extra.Err.User.origin_ec = NULL; /* Filled in later */
VG_(maybe_record_error)( tid, Err_User, a, /*s*/NULL, &extra );
}
/*------------------------------------------------------------*/
/*--- Other error operations ---*/
/*------------------------------------------------------------*/
/* Compare error contexts, to detect duplicates. Note that if they
are otherwise the same, the faulting addrs and associated rwoffsets
are allowed to be different. */
Bool MC_(eq_Error) ( VgRes res, const Error* e1, const Error* e2 )
{
MC_Error* extra1 = VG_(get_error_extra)(e1);
MC_Error* extra2 = VG_(get_error_extra)(e2);
/* Guaranteed by calling function */
tl_assert(VG_(get_error_kind)(e1) == VG_(get_error_kind)(e2));
switch (VG_(get_error_kind)(e1)) {
case Err_CoreMem: {
const HChar *e1s, *e2s;
e1s = VG_(get_error_string)(e1);
e2s = VG_(get_error_string)(e2);
if (e1s == e2s) return True;
if (VG_STREQ(e1s, e2s)) return True;
return False;
}
case Err_RegParam:
return VG_STREQ(VG_(get_error_string)(e1), VG_(get_error_string)(e2));
// Perhaps we should also check the addrinfo.akinds for equality.
// That would result in more error reports, but only in cases where
// a register contains uninitialised bytes and points to memory
// containing uninitialised bytes. Currently, the 2nd of those to be
// detected won't be reported. That is (nearly?) always the memory
// error, which is good.
case Err_MemParam:
if (!VG_STREQ(VG_(get_error_string)(e1),
VG_(get_error_string)(e2))) return False;
// fall through
case Err_User:
return ( extra1->Err.User.isAddrErr == extra2->Err.User.isAddrErr
? True : False );
case Err_Free:
case Err_FreeMismatch:
case Err_Jump:
case Err_IllegalMempool:
case Err_Overlap:
case Err_Cond:
return True;
case Err_FishyValue:
return VG_STREQ(extra1->Err.FishyValue.function_name,
extra2->Err.FishyValue.function_name) &&
VG_STREQ(extra1->Err.FishyValue.argument_name,
extra2->Err.FishyValue.argument_name);
case Err_Addr:
return ( extra1->Err.Addr.szB == extra2->Err.Addr.szB
? True : False );
case Err_Value:
return ( extra1->Err.Value.szB == extra2->Err.Value.szB
? True : False );
case Err_Leak:
VG_(tool_panic)("Shouldn't get Err_Leak in mc_eq_Error,\n"
"since it's handled with VG_(unique_error)()!");
default:
VG_(printf)("Error:\n unknown error code %d\n",
VG_(get_error_kind)(e1));
VG_(tool_panic)("unknown error code in mc_eq_Error");
}
}
/* Functions used when searching MC_Chunk lists */
static
Bool addr_is_in_MC_Chunk_default_REDZONE_SZB(MC_Chunk* mc, Addr a)
{
return VG_(addr_is_in_block)( a, mc->data, mc->szB,
MC_(Malloc_Redzone_SzB) );
}
static
Bool addr_is_in_MC_Chunk_with_REDZONE_SZB(MC_Chunk* mc, Addr a, SizeT rzB)
{
return VG_(addr_is_in_block)( a, mc->data, mc->szB,
rzB );
}
// Forward declarations
static Bool client_block_maybe_describe( Addr a, AddrInfo* ai );
static Bool mempool_block_maybe_describe( Addr a, AddrInfo* ai );
/* Describe an address as best you can, for error messages,
putting the result in ai. */
static void describe_addr ( Addr a, /*OUT*/AddrInfo* ai )
{
MC_Chunk* mc;
tl_assert(Addr_Undescribed == ai->tag);
/* -- Perhaps it's a user-named block? -- */
if (client_block_maybe_describe( a, ai )) {
return;
}
/* -- Perhaps it's in mempool block? -- */
if (mempool_block_maybe_describe( a, ai )) {
return;
}
/* Blocks allocated by memcheck malloc functions are either
on the recently freed list or on the malloc-ed list.
Custom blocks can be on both : a recently freed block might
have been just re-allocated.
So, first search the malloc-ed block, as the most recent
block is the probable cause of error.
We however detect and report that this is a recently re-allocated
block. */
/* -- Search for a currently malloc'd block which might bracket it. -- */
VG_(HT_ResetIter)(MC_(malloc_list));
while ( (mc = VG_(HT_Next)(MC_(malloc_list))) ) {
if (addr_is_in_MC_Chunk_default_REDZONE_SZB(mc, a)) {
ai->tag = Addr_Block;
ai->Addr.Block.block_kind = Block_Mallocd;
if (MC_(get_freed_block_bracketting)( a ))
ai->Addr.Block.block_desc = "recently re-allocated block";
else
ai->Addr.Block.block_desc = "block";
ai->Addr.Block.block_szB = mc->szB;
ai->Addr.Block.rwoffset = (Word)a - (Word)mc->data;
ai->Addr.Block.allocated_at = MC_(allocated_at)(mc);
VG_(initThreadInfo) (&ai->Addr.Block.alloc_tinfo);
ai->Addr.Block.freed_at = MC_(freed_at)(mc);
return;
}
}
/* -- Search for a recently freed block which might bracket it. -- */
mc = MC_(get_freed_block_bracketting)( a );
if (mc) {
ai->tag = Addr_Block;
ai->Addr.Block.block_kind = Block_Freed;
ai->Addr.Block.block_desc = "block";
ai->Addr.Block.block_szB = mc->szB;
ai->Addr.Block.rwoffset = (Word)a - (Word)mc->data;
ai->Addr.Block.allocated_at = MC_(allocated_at)(mc);
VG_(initThreadInfo) (&ai->Addr.Block.alloc_tinfo);
ai->Addr.Block.freed_at = MC_(freed_at)(mc);
return;
}
/* No block found. Search a non-heap block description. */
VG_(describe_addr) (a, ai);
}
void MC_(pp_describe_addr) ( Addr a )
{
AddrInfo ai;
ai.tag = Addr_Undescribed;
describe_addr (a, &ai);
VG_(pp_addrinfo_mc) (a, &ai, /* maybe_gcc */ False);
VG_(clear_addrinfo) (&ai);
}
/* Fill in *origin_ec as specified by otag, or NULL it out if otag
does not refer to a known origin. */
static void update_origin ( /*OUT*/ExeContext** origin_ec,
UInt otag )
{
UInt ecu = otag & ~3;
*origin_ec = NULL;
if (VG_(is_plausible_ECU)(ecu)) {
*origin_ec = VG_(get_ExeContext_from_ECU)( ecu );
}
}
/* Updates the copy with address info if necessary (but not for all errors). */
UInt MC_(update_Error_extra)( const Error* err )
{
MC_Error* extra = VG_(get_error_extra)(err);
switch (VG_(get_error_kind)(err)) {
// These ones don't have addresses associated with them, and so don't
// need any updating.
case Err_CoreMem:
//case Err_Value:
//case Err_Cond:
case Err_Overlap:
case Err_FishyValue:
// For Err_Leaks the returned size does not matter -- they are always
// shown with VG_(unique_error)() so they 'extra' not copied. But
// we make it consistent with the others.
case Err_Leak:
return sizeof(MC_Error);
// For value errors, get the ExeContext corresponding to the
// origin tag. Note that it is a kludge to assume that
// a length-1 trace indicates a stack origin. FIXME.
case Err_Value:
update_origin( &extra->Err.Value.origin_ec,
extra->Err.Value.otag );
return sizeof(MC_Error);
case Err_Cond:
update_origin( &extra->Err.Cond.origin_ec,
extra->Err.Cond.otag );
return sizeof(MC_Error);
case Err_RegParam:
update_origin( &extra->Err.RegParam.origin_ec,
extra->Err.RegParam.otag );
return sizeof(MC_Error);
// These ones always involve a memory address.
case Err_Addr:
describe_addr ( VG_(get_error_address)(err),
&extra->Err.Addr.ai );
return sizeof(MC_Error);
case Err_MemParam:
describe_addr ( VG_(get_error_address)(err),
&extra->Err.MemParam.ai );
update_origin( &extra->Err.MemParam.origin_ec,
extra->Err.MemParam.otag );
return sizeof(MC_Error);
case Err_Jump:
describe_addr ( VG_(get_error_address)(err),
&extra->Err.Jump.ai );
return sizeof(MC_Error);
case Err_User:
describe_addr ( VG_(get_error_address)(err),
&extra->Err.User.ai );
update_origin( &extra->Err.User.origin_ec,
extra->Err.User.otag );
return sizeof(MC_Error);
case Err_Free:
describe_addr ( VG_(get_error_address)(err),
&extra->Err.Free.ai );
return sizeof(MC_Error);
case Err_IllegalMempool:
describe_addr ( VG_(get_error_address)(err),
&extra->Err.IllegalMempool.ai );
return sizeof(MC_Error);
// Err_FreeMismatches have already had their address described; this is
// possible because we have the MC_Chunk on hand when the error is
// detected. However, the address may be part of a user block, and if so
// we override the pre-determined description with a user block one.
case Err_FreeMismatch: {
tl_assert(extra && Block_Mallocd ==
extra->Err.FreeMismatch.ai.Addr.Block.block_kind);
(void)client_block_maybe_describe( VG_(get_error_address)(err),
&extra->Err.FreeMismatch.ai );
return sizeof(MC_Error);
}
default: VG_(tool_panic)("mc_update_extra: bad errkind");
}
}
static Bool client_block_maybe_describe( Addr a,
/*OUT*/AddrInfo* ai )
{
UWord i;
CGenBlock* cgbs = NULL;
UWord cgb_used = 0;
MC_(get_ClientBlock_array)( &cgbs, &cgb_used );
if (cgbs == NULL)
tl_assert(cgb_used == 0);
/* Perhaps it's a general block ? */
for (i = 0; i < cgb_used; i++) {
if (cgbs[i].start == 0 && cgbs[i].size == 0)
continue;
// Use zero as the redzone for client blocks.
if (VG_(addr_is_in_block)(a, cgbs[i].start, cgbs[i].size, 0)) {
ai->tag = Addr_Block;
ai->Addr.Block.block_kind = Block_UserG;
ai->Addr.Block.block_desc = cgbs[i].desc;
ai->Addr.Block.block_szB = cgbs[i].size;
ai->Addr.Block.rwoffset = (Word)(a) - (Word)(cgbs[i].start);
ai->Addr.Block.allocated_at = cgbs[i].where;
VG_(initThreadInfo) (&ai->Addr.Block.alloc_tinfo);
ai->Addr.Block.freed_at = VG_(null_ExeContext)();;
return True;
}
}
return False;
}
static Bool mempool_block_maybe_describe( Addr a,
/*OUT*/AddrInfo* ai )
{
MC_Mempool* mp;
tl_assert( MC_(mempool_list) );
VG_(HT_ResetIter)( MC_(mempool_list) );
while ( (mp = VG_(HT_Next)(MC_(mempool_list))) ) {
if (mp->chunks != NULL) {
MC_Chunk* mc;
VG_(HT_ResetIter)(mp->chunks);
while ( (mc = VG_(HT_Next)(mp->chunks)) ) {
if (addr_is_in_MC_Chunk_with_REDZONE_SZB(mc, a, mp->rzB)) {
ai->tag = Addr_Block;
ai->Addr.Block.block_kind = Block_MempoolChunk;
ai->Addr.Block.block_desc = "block";
ai->Addr.Block.block_szB = mc->szB;
ai->Addr.Block.rwoffset = (Word)a - (Word)mc->data;
ai->Addr.Block.allocated_at = MC_(allocated_at)(mc);
VG_(initThreadInfo) (&ai->Addr.Block.alloc_tinfo);
ai->Addr.Block.freed_at = MC_(freed_at)(mc);
return True;
}
}
}
}
return False;
}
/*------------------------------------------------------------*/
/*--- Suppressions ---*/
/*------------------------------------------------------------*/
typedef
enum {
ParamSupp, // Bad syscall params
UserSupp, // Errors arising from client-request checks
CoreMemSupp, // Memory errors in core (pthread ops, signal handling)
// Undefined value errors of given size
Value1Supp, Value2Supp, Value4Supp, Value8Supp, Value16Supp, Value32Supp,
// Undefined value error in conditional.
CondSupp,
// Unaddressable read/write attempt at given size
Addr1Supp, Addr2Supp, Addr4Supp, Addr8Supp, Addr16Supp, Addr32Supp,
JumpSupp, // Jump to unaddressable target
FreeSupp, // Invalid or mismatching free
OverlapSupp, // Overlapping blocks in memcpy(), strcpy(), etc
LeakSupp, // Something to be suppressed in a leak check.
MempoolSupp, // Memory pool suppression.
FishyValueSupp,// Fishy value suppression.
}
MC_SuppKind;
Bool MC_(is_recognised_suppression) ( const HChar* name, Supp* su )
{
SuppKind skind;
if (VG_STREQ(name, "Param")) skind = ParamSupp;
else if (VG_STREQ(name, "User")) skind = UserSupp;
else if (VG_STREQ(name, "CoreMem")) skind = CoreMemSupp;
else if (VG_STREQ(name, "Addr1")) skind = Addr1Supp;
else if (VG_STREQ(name, "Addr2")) skind = Addr2Supp;
else if (VG_STREQ(name, "Addr4")) skind = Addr4Supp;
else if (VG_STREQ(name, "Addr8")) skind = Addr8Supp;
else if (VG_STREQ(name, "Addr16")) skind = Addr16Supp;
else if (VG_STREQ(name, "Addr32")) skind = Addr32Supp;
else if (VG_STREQ(name, "Jump")) skind = JumpSupp;
else if (VG_STREQ(name, "Free")) skind = FreeSupp;
else if (VG_STREQ(name, "Leak")) skind = LeakSupp;
else if (VG_STREQ(name, "Overlap")) skind = OverlapSupp;
else if (VG_STREQ(name, "Mempool")) skind = MempoolSupp;
else if (VG_STREQ(name, "Cond")) skind = CondSupp;
else if (VG_STREQ(name, "Value0")) skind = CondSupp; /* backwards compat */
else if (VG_STREQ(name, "Value1")) skind = Value1Supp;
else if (VG_STREQ(name, "Value2")) skind = Value2Supp;
else if (VG_STREQ(name, "Value4")) skind = Value4Supp;
else if (VG_STREQ(name, "Value8")) skind = Value8Supp;
else if (VG_STREQ(name, "Value16")) skind = Value16Supp;
else if (VG_STREQ(name, "Value32")) skind = Value32Supp;
else if (VG_STREQ(name, "FishyValue")) skind = FishyValueSupp;
else
return False;
VG_(set_supp_kind)(su, skind);
return True;
}
typedef struct _MC_LeakSuppExtra MC_LeakSuppExtra;
struct _MC_LeakSuppExtra {
UInt match_leak_kinds;
/* Maintains nr of blocks and bytes suppressed with this suppression
during the leak search identified by leak_search_gen.
blocks_suppressed and bytes_suppressed are reset to 0 when
used the first time during a leak search. */
SizeT blocks_suppressed;
SizeT bytes_suppressed;
UInt leak_search_gen;
};
typedef struct {
const HChar *function_name;
const HChar *argument_name;
} MC_FishyValueExtra;
Bool MC_(read_extra_suppression_info) ( Int fd, HChar** bufpp,
SizeT* nBufp, Int* lineno, Supp *su )
{
Bool eof;
Int i;
if (VG_(get_supp_kind)(su) == ParamSupp) {
eof = VG_(get_line) ( fd, bufpp, nBufp, lineno );
if (eof) return False;
VG_(set_supp_string)(su, VG_(strdup)("mc.resi.1", *bufpp));
} else if (VG_(get_supp_kind)(su) == LeakSupp) {
// We might have the optional match-leak-kinds line
MC_LeakSuppExtra* lse;
lse = VG_(malloc)("mc.resi.2", sizeof(MC_LeakSuppExtra));
lse->match_leak_kinds = MC_(all_Reachedness)();
lse->blocks_suppressed = 0;
lse->bytes_suppressed = 0;
lse->leak_search_gen = 0;
VG_(set_supp_extra)(su, lse); // By default, all kinds will match.
eof = VG_(get_line) ( fd, bufpp, nBufp, lineno );
if (eof) return True; // old LeakSupp style, no match-leak-kinds line.
if (0 == VG_(strncmp)(*bufpp, "match-leak-kinds:", 17)) {
i = 17;
while ((*bufpp)[i] && VG_(isspace((*bufpp)[i])))
i++;
if (!VG_(parse_enum_set)(MC_(parse_leak_kinds_tokens),
True/*allow_all*/,
(*bufpp)+i, &lse->match_leak_kinds)) {
return False;
}
} else {
return False; // unknown extra line.
}
} else if (VG_(get_supp_kind)(su) == FishyValueSupp) {
MC_FishyValueExtra *extra;
HChar *p, *function_name, *argument_name = NULL;
eof = VG_(get_line) ( fd, bufpp, nBufp, lineno );
if (eof) return True;
// The suppression string is: function_name(argument_name)
function_name = VG_(strdup)("mv.resi.4", *bufpp);
p = VG_(strchr)(function_name, '(');
if (p != NULL) {
*p++ = '\0';
argument_name = p;
p = VG_(strchr)(p, ')');
if (p != NULL)
*p = '\0';
}
if (p == NULL) { // malformed suppression string
VG_(free)(function_name);
return False;
}
extra = VG_(malloc)("mc.resi.3", sizeof *extra);
extra->function_name = function_name;
extra->argument_name = argument_name;
VG_(set_supp_extra)(su, extra);
}
return True;
}
Bool MC_(error_matches_suppression) ( const Error* err, const Supp* su )
{
Int su_szB;
MC_Error* extra = VG_(get_error_extra)(err);
ErrorKind ekind = VG_(get_error_kind )(err);
switch (VG_(get_supp_kind)(su)) {
case ParamSupp:
return ((ekind == Err_RegParam || ekind == Err_MemParam)
&& VG_STREQ(VG_(get_error_string)(err),
VG_(get_supp_string)(su)));
case UserSupp:
return (ekind == Err_User);
case CoreMemSupp:
return (ekind == Err_CoreMem
&& VG_STREQ(VG_(get_error_string)(err),
VG_(get_supp_string)(su)));
case Value1Supp: su_szB = 1; goto value_case;
case Value2Supp: su_szB = 2; goto value_case;
case Value4Supp: su_szB = 4; goto value_case;
case Value8Supp: su_szB = 8; goto value_case;
case Value16Supp:su_szB =16; goto value_case;
case Value32Supp:su_szB =32; goto value_case;
value_case:
return (ekind == Err_Value && extra->Err.Value.szB == su_szB);
case CondSupp:
return (ekind == Err_Cond);
case Addr1Supp: su_szB = 1; goto addr_case;
case Addr2Supp: su_szB = 2; goto addr_case;
case Addr4Supp: su_szB = 4; goto addr_case;
case Addr8Supp: su_szB = 8; goto addr_case;
case Addr16Supp:su_szB =16; goto addr_case;
case Addr32Supp:su_szB =32; goto addr_case;
addr_case:
return (ekind == Err_Addr && extra->Err.Addr.szB == su_szB);
case JumpSupp:
return (ekind == Err_Jump);
case FreeSupp:
return (ekind == Err_Free || ekind == Err_FreeMismatch);
case OverlapSupp:
return (ekind == Err_Overlap);
case LeakSupp:
if (ekind == Err_Leak) {
MC_LeakSuppExtra* lse = (MC_LeakSuppExtra*) VG_(get_supp_extra)(su);
if (lse->leak_search_gen != MC_(leak_search_gen)) {
// First time we see this suppression during this leak search.
// => reset the counters to 0.
lse->blocks_suppressed = 0;
lse->bytes_suppressed = 0;
lse->leak_search_gen = MC_(leak_search_gen);
}
return RiS(extra->Err.Leak.lr->key.state, lse->match_leak_kinds);
} else
return False;
case MempoolSupp:
return (ekind == Err_IllegalMempool);
case FishyValueSupp: {
MC_FishyValueExtra *supp_extra = VG_(get_supp_extra)(su);
return (ekind == Err_FishyValue) &&
VG_STREQ(extra->Err.FishyValue.function_name,
supp_extra->function_name) &&
VG_STREQ(extra->Err.FishyValue.argument_name,
supp_extra->argument_name);
}
default:
VG_(printf)("Error:\n"
" unknown suppression type %d\n",
VG_(get_supp_kind)(su));
VG_(tool_panic)("unknown suppression type in "
"MC_(error_matches_suppression)");
}
}
const HChar* MC_(get_error_name) ( const Error* err )
{
switch (VG_(get_error_kind)(err)) {
case Err_RegParam: return "Param";
case Err_MemParam: return "Param";
case Err_User: return "User";
case Err_FreeMismatch: return "Free";
case Err_IllegalMempool: return "Mempool";
case Err_Free: return "Free";
case Err_Jump: return "Jump";
case Err_CoreMem: return "CoreMem";
case Err_Overlap: return "Overlap";
case Err_Leak: return "Leak";
case Err_Cond: return "Cond";
case Err_FishyValue: return "FishyValue";
case Err_Addr: {
MC_Error* extra = VG_(get_error_extra)(err);
switch ( extra->Err.Addr.szB ) {
case 1: return "Addr1";
case 2: return "Addr2";
case 4: return "Addr4";
case 8: return "Addr8";
case 16: return "Addr16";
case 32: return "Addr32";
default: VG_(tool_panic)("unexpected size for Addr");
}
}
case Err_Value: {
MC_Error* extra = VG_(get_error_extra)(err);
switch ( extra->Err.Value.szB ) {
case 1: return "Value1";
case 2: return "Value2";
case 4: return "Value4";
case 8: return "Value8";
case 16: return "Value16";
case 32: return "Value32";
default: VG_(tool_panic)("unexpected size for Value");
}
}
default: VG_(tool_panic)("get_error_name: unexpected type");
}
}
SizeT MC_(get_extra_suppression_info) ( const Error* err,
/*OUT*/HChar* buf, Int nBuf )
{
ErrorKind ekind = VG_(get_error_kind )(err);
tl_assert(buf);
tl_assert(nBuf >= 1);
if (Err_RegParam == ekind || Err_MemParam == ekind) {
const HChar* errstr = VG_(get_error_string)(err);
tl_assert(errstr);
return VG_(snprintf)(buf, nBuf, "%s", errstr);
} else if (Err_Leak == ekind) {
MC_Error* extra = VG_(get_error_extra)(err);
return VG_(snprintf) (buf, nBuf, "match-leak-kinds: %s",
pp_Reachedness_for_leak_kinds(extra->Err.Leak.lr->key.state));
} else if (Err_FishyValue == ekind) {
MC_Error* extra = VG_(get_error_extra)(err);
return VG_(snprintf) (buf, nBuf, "%s(%s)",
extra->Err.FishyValue.function_name,
extra->Err.FishyValue.argument_name);
} else {
buf[0] = '\0';
return 0;
}
}
SizeT MC_(print_extra_suppression_use) ( const Supp *su,
/*OUT*/HChar *buf, Int nBuf )
{
tl_assert(nBuf >= 1);
if (VG_(get_supp_kind)(su) == LeakSupp) {
MC_LeakSuppExtra *lse = (MC_LeakSuppExtra*) VG_(get_supp_extra) (su);
if (lse->leak_search_gen == MC_(leak_search_gen)
&& lse->blocks_suppressed > 0) {
return VG_(snprintf) (buf, nBuf,
"suppressed: %'lu bytes in %'lu blocks",
lse->bytes_suppressed,
lse->blocks_suppressed);
}
}
buf[0] = '\0';
return 0;
}
void MC_(update_extra_suppression_use) ( const Error* err, const Supp* su)
{
if (VG_(get_supp_kind)(su) == LeakSupp) {
MC_LeakSuppExtra *lse = (MC_LeakSuppExtra*) VG_(get_supp_extra) (su);
MC_Error* extra = VG_(get_error_extra)(err);
tl_assert (lse->leak_search_gen == MC_(leak_search_gen));
lse->blocks_suppressed += extra->Err.Leak.lr->num_blocks;
lse->bytes_suppressed
+= extra->Err.Leak.lr->szB + extra->Err.Leak.lr->indirect_szB;
}
}
/*--------------------------------------------------------------------*/
/*--- end mc_errors.c ---*/
/*--------------------------------------------------------------------*/