blob: 2c0cad23a9e2c59dcb0d06342a1101c19b355d0d [file] [log] [blame]
#! @PERL@
##--------------------------------------------------------------------##
##--- Massif's results printer ms_print.in ---##
##--------------------------------------------------------------------##
# This file is part of Massif, a Valgrind tool for profiling memory
# usage of programs.
#
# Copyright (C) 2007-2007 Nicholas Nethercote
# njn@valgrind.org
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation; either version 2 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
# 02111-1307, USA.
#
# The GNU General Public License is contained in the file COPYING.
use warnings;
use strict;
#----------------------------------------------------------------------------
# Global variables, main data structures
#----------------------------------------------------------------------------
# Command line of profiled program.
my $cmd;
# Time unit used in profile.
my $time_unit;
# Threshold dictating what percentage an entry must represent for us to
# bother showing it.
my $threshold = 1.0;
# Graph x and y dimensions.
my $graph_x = 72;
my $graph_y = 20;
# Input file name
my $input_file = undef;
# Tmp file name.
my $tmp_file = "ms_print.tmp.$$";
# Version number.
my $version = "@VERSION@";
# Args passed, for printing.
my $ms_print_args;
# Usage message.
my $usage = <<END
usage: ms_print [options] <file>
options for the user, with defaults in [ ], are:
-h --help show this message
-v --version show version
--threshold=<n.n> significance threshold, in percent [$threshold]
--x=<n> graph width, in columns; min=4, max=1000 [72]
--y=<n> graph height, in rows; min=4, max=1000 [20]
ms_print is Copyright (C) 2007-2007 Nicholas Nethercote.
and licensed under the GNU General Public License, version 2.
Bug reports, feedback, admiration, abuse, etc, to: njn\@valgrind.org.
END
;
# Used in various places of output.
my $fancy = '-' x 80;
my $fancy_nl = $fancy . "\n";
# Returns 0 if the denominator is 0.
sub safe_div_0($$)
{
my ($x, $y) = @_;
return ($y ? $x / $y : 0);
}
#-----------------------------------------------------------------------------
# Argument and option handling
#-----------------------------------------------------------------------------
sub process_cmd_line()
{
my @files;
# Grab a copy of the arguments, for printing later.
for my $arg (@ARGV) {
$ms_print_args .= " $arg"; # The arguments.
}
for my $arg (@ARGV) {
# Option handling
if ($arg =~ /^-/) {
# --version
if ($arg =~ /^-v$|^--version$/) {
die("ms_print-$version\n");
# --threshold=X (tolerates a trailing '%')
} elsif ($arg =~ /^--threshold=([\d\.]+)%?$/) {
$threshold = $1;
($1 >= 0 && $1 <= 100) or die($usage);
} elsif ($arg =~ /^--x=(\d+)$/) {
$graph_x = $1;
(4 <= $graph_x && $graph_x <= 1000) or die($usage);
} elsif ($arg =~ /^--y=(\d+)$/) {
$graph_y = $1;
(4 <= $graph_y && $graph_y <= 1000) or die($usage);
} else { # -h and --help fall under this case
die($usage);
}
} else {
# Not an option. Remember it as a filename.
push(@files, $arg);
}
}
# Must have chosen exactly one input file.
if (scalar @files) {
$input_file = $files[0];
} else {
die($usage);
}
}
#-----------------------------------------------------------------------------
# Reading the input file: auxiliary functions
#-----------------------------------------------------------------------------
# Gets the next line, stripping comments and skipping blanks.
# Returns undef at EOF.
sub get_line()
{
while (my $line = <INPUTFILE>) {
$line =~ s/#.*$//; # remove comments
if ($line !~ /^\s*$/) {
return $line; # return $line if non-empty
}
}
return undef; # EOF: return undef
}
sub equals_num_line($$)
{
my ($line, $fieldname) = @_;
defined($line)
or die("Line $.: expected \"$fieldname\" line, got end of file\n");
$line =~ s/^$fieldname=(.*)\s*$//
or die("Line $.: expected \"$fieldname\" line, got:\n$line");
return $1;
}
sub is_significant_XPt($$$)
{
my ($is_top_node, $xpt_szB, $total_szB) = @_;
($xpt_szB <= $total_szB) or die;
# Nb: we always consider the alloc-XPt significant, even if the size is
# zero.
return $is_top_node || 0 == $threshold ||
( $total_szB != 0 && $xpt_szB * 100 / $total_szB >= $threshold );
}
#-----------------------------------------------------------------------------
# Reading the input file: reading heap trees
#-----------------------------------------------------------------------------
# Forward declaration, because it's recursive.
sub read_heap_tree($$$$$);
# Return pair: if the tree was significant, both are zero. If it was
# insignificant, the first element is 1 and the second is the number of
# bytes.
sub read_heap_tree($$$$$)
{
# Read the line and determine if it is significant.
my ($is_top_node, $this_prefix, $child_midfix, $arrow, $mem_total_B) = @_;
my $line = get_line();
(defined $line and $line =~ /^\s*n(\d+):\s*(\d+)(.*)$/)
or die("Line $.: expected a tree node line, got:\n$line\n");
my $n_children = $1;
my $bytes = $2;
my $details = $3;
my $perc = safe_div_0(100 * $bytes, $mem_total_B);
# Nb: we always print the alloc-XPt, even if its size is zero.
my $is_significant = is_significant_XPt($is_top_node, $bytes, $mem_total_B);
# We precede this node's line with "$this_prefix.$arrow". We precede
# any children of this node with "$this_prefix$child_midfix$arrow".
if ($is_significant) {
# Nb: $details might have '%' in it, so don't embed directly in the
# format string.
printf(TMPFILE
"$this_prefix$arrow%05.2f%% (%sB)%s\n", $perc, commify($bytes),
$details);
}
# Now read all the children.
my $n_insig_children = 0;
my $total_insig_children_szB = 0;
my $this_prefix2 = $this_prefix . $child_midfix;
for (my $i = 0; $i < $n_children; $i++) {
# If child is the last sibling, the midfix is empty.
my $child_midfix2 = ( $i+1 == $n_children ? " " : "| " );
my ($is_child_insignificant, $child_insig_bytes) =
# '0' means it's not the top node of the tree.
read_heap_tree(0, $this_prefix2, $child_midfix2, "->",
$mem_total_B);
$n_insig_children += $is_child_insignificant;
$total_insig_children_szB += $child_insig_bytes;
}
if ($is_significant) {
# If this was significant but any children were insignificant, print
# the "in N places" line for them.
if ($n_insig_children > 0) {
$perc = safe_div_0(100 * $total_insig_children_szB, $mem_total_B);
printf(TMPFILE "%s->%05.2f%% (%sB) in %d+ places, all below "
. "ms_print's threshold (%05.2f%%)\n",
$this_prefix2, $perc, commify($total_insig_children_szB),
$n_insig_children, $threshold);
print(TMPFILE "$this_prefix2\n");
}
# If this node has no children, print an extra (mostly) empty line.
if (0 == $n_children) {
print(TMPFILE "$this_prefix2\n");
}
return (0, 0);
} else {
return (1, $bytes);
}
}
#-----------------------------------------------------------------------------
# Reading the input file: main
#-----------------------------------------------------------------------------
sub max_label_2($$)
{
my ($szB, $szB_scaled) = @_;
# For the label, if $szB is 999B or below, we print it as an integer.
# Otherwise, we print it as a float with 5 characters (including the '.').
# Examples (for bytes):
# 1 --> 1 B
# 999 --> 999 B
# 1000 --> 0.977 KB
# 1024 --> 1.000 KB
# 10240 --> 10.00 KB
# 102400 --> 100.0 KB
# 1024000 --> 0.977 MB
# 1048576 --> 1.000 MB
#
if ($szB < 1000) { return sprintf("%5d", $szB); }
elsif ($szB_scaled < 10) { return sprintf("%5.3f", $szB_scaled); }
elsif ($szB_scaled < 100) { return sprintf("%5.2f", $szB_scaled); }
else { return sprintf("%5.1f", $szB_scaled); }
}
# Work out the units for the max value, measured in instructions.
sub i_max_label($)
{
my ($nI) = @_;
# We repeat until the number is less than 1000.
my $nI_scaled = $nI;
my $unit = "i";
# Nb: 'k' is the "kilo" (1000) prefix.
if ($nI_scaled >= 1000) { $unit = "ki"; $nI_scaled /= 1024; }
if ($nI_scaled >= 1000) { $unit = "Mi"; $nI_scaled /= 1024; }
if ($nI_scaled >= 1000) { $unit = "Gi"; $nI_scaled /= 1024; }
if ($nI_scaled >= 1000) { $unit = "Ti"; $nI_scaled /= 1024; }
if ($nI_scaled >= 1000) { $unit = "Pi"; $nI_scaled /= 1024; }
if ($nI_scaled >= 1000) { $unit = "Ei"; $nI_scaled /= 1024; }
if ($nI_scaled >= 1000) { $unit = "Zi"; $nI_scaled /= 1024; }
if ($nI_scaled >= 1000) { $unit = "Yi"; $nI_scaled /= 1024; }
return (max_label_2($nI, $nI_scaled), $unit);
}
# Work out the units for the max value, measured in bytes.
sub B_max_label($)
{
my ($szB) = @_;
# We repeat until the number is less than 1000, but we divide by 1024 on
# each scaling.
my $szB_scaled = $szB;
my $unit = "B";
# Nb: 'K' or 'k' are acceptable as the "binary kilo" (1024) prefix.
# (Strictly speaking, should use "KiB" (kibibyte), "MiB" (mebibyte), etc,
# but they're not in common use.)
if ($szB_scaled >= 1000) { $unit = "KB"; $szB_scaled /= 1024; }
if ($szB_scaled >= 1000) { $unit = "MB"; $szB_scaled /= 1024; }
if ($szB_scaled >= 1000) { $unit = "GB"; $szB_scaled /= 1024; }
if ($szB_scaled >= 1000) { $unit = "TB"; $szB_scaled /= 1024; }
if ($szB_scaled >= 1000) { $unit = "PB"; $szB_scaled /= 1024; }
if ($szB_scaled >= 1000) { $unit = "EB"; $szB_scaled /= 1024; }
if ($szB_scaled >= 1000) { $unit = "ZB"; $szB_scaled /= 1024; }
if ($szB_scaled >= 1000) { $unit = "YB"; $szB_scaled /= 1024; }
return (max_label_2($szB, $szB_scaled), $unit);
}
# Work out the units for the max value, measured in ms/s/h.
sub t_max_label($)
{
my ($szB) = @_;
# We scale from millisecond to seconds to hours.
#
# XXX: this allows a number with 6 chars, eg. "3599.0 s"
my $szB_scaled = $szB;
my $unit = "ms";
if ($szB_scaled >= 1000) { $unit = "s"; $szB_scaled /= 1000; }
if ($szB_scaled >= 3600) { $unit = "h"; $szB_scaled /= 3600; }
return (max_label_2($szB, $szB_scaled), $unit);
}
# This prints four things:
# - the output header
# - the graph
# - the snapshot summaries (number, list of detailed ones)
# - the snapshots
#
# The first three parts can't be printed until we've read the whole input file;
# but the fourth part is much easier to print while we're reading the file. So
# we print the fourth part to a tmp file, and then dump the tmp file at the
# end.
#
sub read_input_file()
{
my $desc = ""; # Concatenated description lines.
my $peak_mem_total_szB = 0;
# Info about each snapshot.
my @snapshot_nums = ();
my @times = ();
my @mem_total_Bs = ();
my @is_detaileds = ();
my $peak_num = -1; # An initial value that will be ok if no peak
# entry is in the file.
#-------------------------------------------------------------------------
# Read start of input file.
#-------------------------------------------------------------------------
open(INPUTFILE, "< $input_file")
|| die "Cannot open $input_file for reading\n";
# Read "desc:" lines.
my $line;
while ($line = get_line()) {
if ($line =~ s/^desc://) {
$desc .= $line;
} else {
last;
}
}
# Read "cmd:" line (Nb: will already be in $line from "desc:" loop above).
($line =~ /^cmd:\s*(.*)$/) or die("Line $.: missing 'cmd' line\n");
$cmd = $1;
# Read "time_unit:" line.
$line = get_line();
($line =~ /^time_unit:\s*(.*)$/) or
die("Line $.: missing 'time_unit' line\n");
$time_unit = $1;
#-------------------------------------------------------------------------
# Print snapshot list header to $tmp_file.
#-------------------------------------------------------------------------
open(TMPFILE, "> $tmp_file")
|| die "Cannot open $tmp_file for reading\n";
my $time_column = sprintf("%14s", "time($time_unit)");
my $column_format = "%3s %14s %16s %16s %13s %12s\n";
my $header =
$fancy_nl .
sprintf($column_format
, "n"
, $time_column
, "total(B)"
, "useful-heap(B)"
, "extra-heap(B)"
, "stacks(B)"
) .
$fancy_nl;
print(TMPFILE $header);
#-------------------------------------------------------------------------
# Read body of input file.
#-------------------------------------------------------------------------
$line = get_line();
while (defined $line) {
my $snapshot_num = equals_num_line($line, "snapshot");
my $time = equals_num_line(get_line(), "time");
my $mem_heap_B = equals_num_line(get_line(), "mem_heap_B");
my $mem_heap_extra_B = equals_num_line(get_line(), "mem_heap_extra_B");
my $mem_stacks_B = equals_num_line(get_line(), "mem_stacks_B");
my $mem_total_B = $mem_heap_B + $mem_heap_extra_B + $mem_stacks_B;
my $heap_tree = equals_num_line(get_line(), "heap_tree");
# Print the snapshot data to $tmp_file.
printf(TMPFILE $column_format,
, $snapshot_num
, commify($time)
, commify($mem_total_B)
, commify($mem_heap_B)
, commify($mem_heap_extra_B)
, commify($mem_stacks_B)
);
# Remember the snapshot data.
push(@snapshot_nums, $snapshot_num);
push(@times, $time);
push(@mem_total_Bs, $mem_total_B);
push(@is_detaileds, ( $heap_tree eq "empty" ? 0 : 1 ));
$peak_mem_total_szB = $mem_total_B
if $mem_total_B > $peak_mem_total_szB;
# Read the heap tree, and if it's detailed, print it and a subsequent
# snapshot list header to $tmp_file.
if ($heap_tree eq "empty") {
$line = get_line();
} elsif ($heap_tree =~ "(detailed|peak)") {
# If "peak", remember the number.
if ($heap_tree eq "peak") {
$peak_num = $snapshot_num;
}
# '1' means it's the top node of the tree.
read_heap_tree(1, "", "", "", $mem_total_B);
# Print the header, unless there are no more snapshots.
$line = get_line();
if (defined $line) {
print(TMPFILE $header);
}
} else {
die("Line $.: expected 'empty' or '...' after 'heap_tree='\n");
}
}
close(INPUTFILE);
close(TMPFILE);
#-------------------------------------------------------------------------
# Print header.
#-------------------------------------------------------------------------
print($fancy_nl);
print("Command: $cmd\n");
print("Massif arguments: $desc");
print("ms_print arguments:$ms_print_args\n");
print($fancy_nl);
print("\n\n");
#-------------------------------------------------------------------------
# Setup for graph.
#-------------------------------------------------------------------------
# The ASCII graph.
# Row 0 ([0..graph_x][0]) is the X-axis.
# Column 0 ([0][0..graph_y]) is the Y-axis.
# The rest ([1][1]..[graph_x][graph_y]) is the usable graph area.
my @graph;
my $x;
my $y;
my $n_snapshots = scalar(@snapshot_nums);
($n_snapshots > 0) or die;
my $end_time = $times[$n_snapshots-1];
($end_time >= 0) or die;
# Setup graph[][].
$graph[0][0] = '+'; # axes join point
for ($x = 1; $x <= $graph_x; $x++) { $graph[$x][0] = '-'; } # X-axis
for ($y = 1; $y <= $graph_y; $y++) { $graph[0][$y] = '|'; } # Y-axis
$graph[$graph_x][0] = '>'; # X-axis arrow
$graph[0][$graph_y] = '^'; # Y-axis arrow
for ($x = 1; $x <= $graph_x; $x++) { # usable area
for ($y = 1; $y <= $graph_y; $y++) {
$graph[$x][$y] = ' ';
}
}
#-------------------------------------------------------------------------
# Write snapshot bars into graph[][].
#-------------------------------------------------------------------------
# Each row represents K bytes, which is 1/graph_y of the peak size
# (and K can be non-integral). When drawing the column for a snapshot,
# in order to fill the slot in row y (where the first row drawn on is
# row 1) with a half-char (eg. '.'), it must be >= (y - 1/2)*K. In
# order to fill a row/column spot with a full-char (eg. ':'), it must be
# >= y*K. For example, if K = 10 bytes, then the values 0, 4, 5, 9, 10,
# 14, 15, 19, 20, 24, 25, 29, 30 would be drawn like this (showing one
# per column):
#
# y (y - 1/2) * K y * K
# - ------------- -----------
# 30 | ..: 3 (3 - 1/2) * 10 = 25 3 * 10 = 30
# 20 | ..::::: 2 (2 - 1/2) * 10 = 15 2 * 10 = 20
# 10 | ..::::::::: 1 (1 - 1/2) * 10 = 5 1 * 10 = 10
# 0 +-------------
my $peak_full_char = '#';
my $detailed_full_char = '@';
my $normal_full_char = ':';
my $peak_half_char = ',';
my $detailed_half_char = ',';
my $normal_half_char = '.';
# Work out how many bytes each row represents. If the peak size was 0,
# make it 1 so that the Y-axis covers a non-zero range of values.
# Likewise for end_time.
if (0 == $peak_mem_total_szB) { $peak_mem_total_szB = 1; }
if (0 == $end_time ) { $end_time = 1; }
my $K = $peak_mem_total_szB / $graph_y;
for (my $i = 0; $i < $n_snapshots; $i++) {
# Work out which column this snapshot belongs to.
my $x_pos_frac = ($times[$i] / ($end_time)) * $graph_x;
$x = int($x_pos_frac) + 1; # +1 due to Y-axis
# The final snapshot will spill over into the n+1th column, which
# doesn't get shown. So we fudge that one and pull it back a
# column, as if the end_time was actually end_time+epsilon.
if ($times[$i] == $end_time) {
($x == $graph_x+1) or die;
$x = $graph_x;
}
# Draw the column if:
# - it's the peak column, or
# - it's a detailed column, and we won't overwrite the peak column, or
# - it's a normal column, and we won't overwrite the peak column or a
# detailed column.
my $should_draw_column =
(($i == $peak_num) or
($is_detaileds[$i] and $graph[$x][1] ne $peak_full_char) or
($graph[$x][1] ne $peak_full_char and
$graph[$x][1] ne $detailed_full_char));
if ($should_draw_column) {
# If it's detailed, mark the X-axis. Also choose the full-slot
# char.
my ($full_char, $half_char);
if ($i == $peak_num) {
$full_char = $peak_full_char;
$half_char = $peak_half_char;
} elsif ($is_detaileds[$i]) {
$full_char = $detailed_full_char;
$half_char = $detailed_half_char;
} else {
$full_char = $normal_full_char;
$half_char = $normal_half_char;
}
# Grow this snapshot bar from bottom to top.
for ($y = 1; $y <= $graph_y; $y++) {
if ($mem_total_Bs[$i] >= ($y - 1/2) * $K) {
$graph[$x][$y] = $half_char;
}
if ($mem_total_Bs[$i] >= $y * $K) {
$graph[$x][$y] = $full_char;
}
}
}
}
#-------------------------------------------------------------------------
# Print graph[][].
#-------------------------------------------------------------------------
my ($y_label, $y_unit) = B_max_label($peak_mem_total_szB);
my ($x_label, $x_unit);
if ($time_unit eq "i") { ($x_label, $x_unit) = i_max_label($end_time) }
elsif ($time_unit eq "ms") { ($x_label, $x_unit) = t_max_label($end_time) }
elsif ($time_unit eq "B") { ($x_label, $x_unit) = B_max_label($end_time) }
else { die "bad time_unit: $time_unit\n"; }
printf(" %2s\n", $y_unit);
for ($y = $graph_y; $y >= 0; $y--) {
if ($graph_y == $y) { # top row
print($y_label);
} elsif (0 == $y) { # bottom row
print(" 0 ");
} else { # anywhere else
print(" ");
}
# Axis and data for the row.
for ($x = 0; $x <= $graph_x; $x++) {
printf("%s", $graph[$x][$y]);
}
if (0 == $y) {
print("$x_unit\n");
} else {
print("\n");
}
}
printf(" 0%s%5s\n", ' ' x ($graph_x-5), $x_label);
#-------------------------------------------------------------------------
# Print snapshot numbers.
#-------------------------------------------------------------------------
print("\n");
print("Number of snapshots: $n_snapshots\n");
print(" Detailed snapshots: [");
my $first_detailed = 1;
for (my $i = 0; $i < $n_snapshots; $i++) {
if ($is_detaileds[$i]) {
if ($first_detailed) {
printf("$i");
$first_detailed = 0;
} else {
printf(", $i");
}
if ($i == $peak_num) {
print(" (peak)");
}
}
}
print("]\n\n");
#-------------------------------------------------------------------------
# Print snapshots, from $tmp_file.
#-------------------------------------------------------------------------
open(TMPFILE, "< $tmp_file")
|| die "Cannot open $tmp_file for reading\n";
while (my $line = <TMPFILE>) {
print($line);
}
unlink($tmp_file);
}
#-----------------------------------------------------------------------------
# Misc functions
#-----------------------------------------------------------------------------
sub commify ($) {
my ($val) = @_;
1 while ($val =~ s/^(\d+)(\d{3})/$1,$2/);
return $val;
}
#----------------------------------------------------------------------------
# "main()"
#----------------------------------------------------------------------------
process_cmd_line();
read_input_file();
##--------------------------------------------------------------------##
##--- end ms_print.in ---##
##--------------------------------------------------------------------##