blob: 7d14df253a914a7d62a8760190642f53867d5b92 [file] [log] [blame]
/*---------------------------------------------------------------*/
/*--- ---*/
/*--- This file (host-x86/isel.c) is ---*/
/*--- Copyright (c) 2004 OpenWorks LLP. All rights reserved. ---*/
/*--- ---*/
/*---------------------------------------------------------------*/
/*
This file is part of LibVEX, a library for dynamic binary
instrumentation and translation.
Copyright (C) 2004 OpenWorks, LLP.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; Version 2 dated June 1991 of the
license.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, or liability
for damages. See the GNU General Public License for more details.
Neither the names of the U.S. Department of Energy nor the
University of California nor the names of its contributors may be
used to endorse or promote products derived from this software
without prior written permission.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
*/
#include "libvex_basictypes.h"
#include "libvex_ir.h"
#include "libvex.h"
#include "main/vex_util.h"
#include "main/vex_globals.h"
#include "host-generic/h_generic_regs.h"
#include "host-x86/hdefs.h"
/*---------------------------------------------------------*/
/*--- Stuff for pattern matching on IR. This isn't ---*/
/*--- x86 specific, and should be moved elsewhere. ---*/
/*---------------------------------------------------------*/
#define DECLARE_PATTERN(_patt) \
static IRExpr* _patt = NULL
#define DEFINE_PATTERN(_patt,_expr) \
do { \
if (!(_patt)) { \
vassert(LibVEX_GetAllocMode() == AllocModeTEMPORARY); \
LibVEX_SetAllocMode(AllocModePERMANENT); \
_patt = (_expr); \
LibVEX_SetAllocMode(AllocModeTEMPORARY); \
vassert(LibVEX_GetAllocMode() == AllocModeTEMPORARY); \
} \
} while (0)
#define N_MATCH_BINDERS 4
typedef
struct {
IRExpr* bindee[N_MATCH_BINDERS];
}
MatchInfo;
static void setBindee ( MatchInfo* mi, Int n, IRExpr* bindee )
{
if (n < 0 || n >= N_MATCH_BINDERS)
vpanic("setBindee: out of range index");
if (mi->bindee[n] != NULL)
vpanic("setBindee: bindee already set");
mi->bindee[n] = bindee;
}
static Bool matchWrk ( MatchInfo* mi, IRExpr* p/*attern*/, IRExpr* e/*xpr*/ )
{
switch (p->tag) {
case Iex_Binder: /* aha, what we were looking for. */
setBindee(mi, p->Iex.Binder.binder, e);
return True;
#if 0
case Iex_GetI:
if (e->tag != Iex_GetI) return False;
if (p->Iex.GetI.ty != e->Iex.GetI.ty) return False;
/* we ignore the offset limit hints .. */
if (!matchWrk(mi, p->Iex.GetI.offset, e->Iex.GetI.offset))
return False;
return True;
#endif
case Iex_Unop:
if (e->tag != Iex_Unop) return False;
if (p->Iex.Unop.op != e->Iex.Unop.op) return False;
if (!matchWrk(mi, p->Iex.Unop.arg, e->Iex.Unop.arg))
return False;
return True;
case Iex_Binop:
if (e->tag != Iex_Binop) return False;
if (p->Iex.Binop.op != e->Iex.Binop.op) return False;
if (!matchWrk(mi, p->Iex.Binop.arg1, e->Iex.Binop.arg1))
return False;
if (!matchWrk(mi, p->Iex.Binop.arg2, e->Iex.Binop.arg2))
return False;
return True;
case Iex_LDle:
if (e->tag != Iex_LDle) return False;
if (p->Iex.LDle.ty != e->Iex.LDle.ty) return False;
if (!matchWrk(mi, p->Iex.LDle.addr, e->Iex.LDle.addr))
return False;
return True;
case Iex_Const:
if (e->tag != Iex_Const) return False;
return eqIRConst(p->Iex.Const.con, e->Iex.Const.con);
default:
ppIRExpr(p);
vpanic("match");
}
}
static Bool matchIRExpr ( MatchInfo* mi, IRExpr* p/*attern*/, IRExpr* e/*xpr*/ )
{
Int i;
for (i = 0; i < N_MATCH_BINDERS; i++)
mi->bindee[i] = NULL;
return matchWrk(mi, p, e);
}
/*-----*/
/* These are duplicated in x86toIR.c */
static IRExpr* unop ( IROp op, IRExpr* a )
{
return IRExpr_Unop(op, a);
}
static IRExpr* binop ( IROp op, IRExpr* a1, IRExpr* a2 )
{
return IRExpr_Binop(op, a1, a2);
}
static IRExpr* mkU64 ( ULong i )
{
return IRExpr_Const(IRConst_U64(i));
}
static IRExpr* mkU32 ( UInt i )
{
return IRExpr_Const(IRConst_U32(i));
}
static IRExpr* bind ( Int binder )
{
return IRExpr_Binder(binder);
}
/*---------------------------------------------------------*/
/*--- ISelEnv ---*/
/*---------------------------------------------------------*/
/* This carries around:
- A mapping from IRTemp to IRType, giving the type of any IRTemp we
might encounter. This is computed before insn selection starts,
and does not change.
- A mapping from IRTemp to HReg. This tells the insn selector
which virtual register(s) are associated with each IRTemp
temporary. This is computed before insn selection starts, and
does not change. We expect this mapping to map precisely the
same set of IRTemps as the type mapping does.
- vregmap holds the primary register for the IRTemp.
- vregmapHI is only used for 64-bit integer-typed
IRTemps. It holds the identity of a second
32-bit virtual HReg, which holds the high half
of the value.
- The code array, that is, the insns selected so far.
- A counter, for generating new virtual registers.
Note, this is all host-independent. */
typedef
struct {
IRTypeEnv* type_env;
HReg* vregmap;
HReg* vregmapHI;
Int n_vregmap;
HInstrArray* code;
Int vreg_ctr;
}
ISelEnv;
static HReg lookupIRTemp ( ISelEnv* env, IRTemp tmp )
{
vassert(tmp >= 0);
vassert(tmp < env->n_vregmap);
return env->vregmap[tmp];
}
static void lookupIRTemp64 ( HReg* vrHI, HReg* vrLO, ISelEnv* env, IRTemp tmp )
{
vassert(tmp >= 0);
vassert(tmp < env->n_vregmap);
vassert(env->vregmapHI[tmp] != INVALID_HREG);
*vrLO = env->vregmap[tmp];
*vrHI = env->vregmapHI[tmp];
}
static void addInstr ( ISelEnv* env, X86Instr* instr )
{
addHInstr(env->code, instr);
if (vex_traceflags & VEX_TRACE_VCODE) {
ppX86Instr(instr);
vex_printf("\n");
}
}
static HReg newVRegI ( ISelEnv* env )
{
HReg reg = mkHReg(env->vreg_ctr, HRcInt32, True/*virtual reg*/);
env->vreg_ctr++;
return reg;
}
static HReg newVRegF ( ISelEnv* env )
{
HReg reg = mkHReg(env->vreg_ctr, HRcFlt64, True/*virtual reg*/);
env->vreg_ctr++;
return reg;
}
static HReg newVRegV ( ISelEnv* env )
{
HReg reg = mkHReg(env->vreg_ctr, HRcVec128, True/*virtual reg*/);
env->vreg_ctr++;
return reg;
}
/*---------------------------------------------------------*/
/*--- ISEL: Forward declarations ---*/
/*---------------------------------------------------------*/
/* These are organised as iselXXX and iselXXX_wrk pairs. The
iselXXX_wrk do the real work, but are not to be called directly.
For each XXX, iselXXX calls its iselXXX_wrk counterpart, then
checks that all returned registers are virtual. You should not
call the _wrk version directly.
*/
static X86RMI* iselIntExpr_RMI_wrk ( ISelEnv* env, IRExpr* e );
static X86RMI* iselIntExpr_RMI ( ISelEnv* env, IRExpr* e );
static X86RI* iselIntExpr_RI_wrk ( ISelEnv* env, IRExpr* e );
static X86RI* iselIntExpr_RI ( ISelEnv* env, IRExpr* e );
static X86RM* iselIntExpr_RM_wrk ( ISelEnv* env, IRExpr* e );
static X86RM* iselIntExpr_RM ( ISelEnv* env, IRExpr* e );
static HReg iselIntExpr_R_wrk ( ISelEnv* env, IRExpr* e );
static HReg iselIntExpr_R ( ISelEnv* env, IRExpr* e );
static X86AMode* iselIntExpr_AMode_wrk ( ISelEnv* env, IRExpr* e );
static X86AMode* iselIntExpr_AMode ( ISelEnv* env, IRExpr* e );
static void iselInt64Expr_wrk ( HReg* rHi, HReg* rLo,
ISelEnv* env, IRExpr* e );
static void iselInt64Expr ( HReg* rHi, HReg* rLo,
ISelEnv* env, IRExpr* e );
static X86CondCode iselCondCode_wrk ( ISelEnv* env, IRExpr* e );
static X86CondCode iselCondCode ( ISelEnv* env, IRExpr* e );
static HReg iselDblExpr_wrk ( ISelEnv* env, IRExpr* e );
static HReg iselDblExpr ( ISelEnv* env, IRExpr* e );
static HReg iselFltExpr_wrk ( ISelEnv* env, IRExpr* e );
static HReg iselFltExpr ( ISelEnv* env, IRExpr* e );
static HReg iselVecExpr_wrk ( ISelEnv* env, IRExpr* e );
static HReg iselVecExpr ( ISelEnv* env, IRExpr* e );
/*---------------------------------------------------------*/
/*--- ISEL: Misc helpers ---*/
/*---------------------------------------------------------*/
/* Is this a 32-bit zero expression? */
static Bool isZero32 ( IRExpr* e )
{
return e->tag == Iex_Const
&& e->Iex.Const.con->tag == Ico_U32
&& e->Iex.Const.con->Ico.U32 == 0;
}
/* Make a int reg-reg move. */
static X86Instr* mk_iMOVsd_RR ( HReg src, HReg dst )
{
vassert(hregClass(src) == HRcInt32);
vassert(hregClass(dst) == HRcInt32);
return X86Instr_Alu32R(Xalu_MOV, X86RMI_Reg(src), dst);
}
/* Make a vector reg-reg move. */
static X86Instr* mk_vMOVsd_RR ( HReg src, HReg dst )
{
vassert(hregClass(src) == HRcVec128);
vassert(hregClass(dst) == HRcVec128);
return X86Instr_SseReRg(Xsse_MOV, src, dst);
}
/* Advance/retreat %esp by n. */
static void add_to_esp ( ISelEnv* env, Int n )
{
vassert(n > 0 && n < 256 && (n%4) == 0);
addInstr(env,
X86Instr_Alu32R(Xalu_ADD, X86RMI_Imm(n), hregX86_ESP()));
}
static void sub_from_esp ( ISelEnv* env, Int n )
{
vassert(n > 0 && n < 256 && (n%4) == 0);
addInstr(env,
X86Instr_Alu32R(Xalu_SUB, X86RMI_Imm(n), hregX86_ESP()));
}
/* Given an amode, return one which references 4 bytes further
along. */
static X86AMode* advance4 ( X86AMode* am )
{
X86AMode* am4 = dopyX86AMode(am);
switch (am4->tag) {
case Xam_IRRS:
am4->Xam.IRRS.imm += 4; break;
case Xam_IR:
am4->Xam.IR.imm += 4; break;
default:
vpanic("advance4(x86,host)");
}
return am4;
}
/* Push an arg onto the host stack, in preparation for a call to a
helper function of some kind. Returns the number of 32-bit words
pushed. */
static Int pushArg ( ISelEnv* env, IRExpr* arg )
{
IRType arg_ty = typeOfIRExpr(env->type_env, arg);
if (arg_ty == Ity_I32) {
addInstr(env, X86Instr_Push(iselIntExpr_RMI(env, arg)));
return 1;
} else
if (arg_ty == Ity_I64) {
HReg rHi, rLo;
iselInt64Expr(&rHi, &rLo, env, arg);
addInstr(env, X86Instr_Push(X86RMI_Reg(rHi)));
addInstr(env, X86Instr_Push(X86RMI_Reg(rLo)));
return 2;
}
ppIRExpr(arg);
vpanic("pushArg(x86): can't handle arg of this type");
}
/* Complete the call to a helper function, by calling the
helper and clearing the args off the stack. */
static
void callHelperAndClearArgs ( ISelEnv* env, X86CondCode cc,
IRCallee* cee, Int n_arg_ws )
{
/* Complication. Need to decide which reg to use as the fn address
pointer, in a way that doesn't trash regparm-passed
parameters. */
vassert(sizeof(void*) == 4);
addInstr(env, X86Instr_Call( cc, (UInt)cee->addr, cee->regparms));
if (n_arg_ws > 0)
add_to_esp(env, 4*n_arg_ws);
}
/* Used only in doHelperCall. See big comment in doHelperCall re
handling of regparm args. This function figures out whether
evaluation of an expression might require use of a fixed register.
If in doubt return True (safe but suboptimal).
*/
static
Bool mightRequireFixedRegs ( IRExpr* e )
{
switch (e->tag) {
case Iex_Tmp: case Iex_Const: case Iex_Get:
return False;
default:
return True;
}
}
/* Do a complete function call. guard is a Ity_Bit expression
indicating whether or not the call happens. If guard==NULL, the
call is unconditional. */
static
void doHelperCall ( ISelEnv* env,
Bool passBBP,
IRExpr* guard, IRCallee* cee, IRExpr** args )
{
X86CondCode cc;
HReg argregs[3];
HReg tmpregs[3];
Bool danger;
Int not_done_yet, n_args, n_arg_ws, stack_limit,
i, argreg, argregX;
/* Marshal args for a call, do the call, and clear the stack.
Complexities to consider:
* if passBBP is True, %ebp (the baseblock pointer) is to be
passed as the first arg.
* If the callee claims regparmness of 1, 2 or 3, we must pass the
first 1, 2 or 3 args in registers (EAX, EDX, and ECX
respectively). To keep things relatively simple, only args of
type I32 may be passed as regparms -- just bomb out if anything
else turns up. Clearly this depends on the front ends not
trying to pass any other types as regparms.
*/
/* 16 Nov 2004: the regparm handling is complicated by the
following problem.
Consider a call two a function with two regparm parameters:
f(e1,e2). We need to compute e1 into %eax and e2 into %edx.
Suppose code is first generated to compute e1 into %eax. Then,
code is generated to compute e2 into %edx. Unfortunately, if
the latter code sequence uses %eax, it will trash the value of
e1 computed by the former sequence. This could happen if (for
example) e2 itself involved a function call. In the code below,
args are evaluated right-to-left, not left-to-right, but the
principle and the problem are the same.
One solution is to compute all regparm-bound args into vregs
first, and once they are all done, move them to the relevant
real regs. This always gives correct code, but it also gives
a bunch of vreg-to-rreg moves which are usually redundant but
are hard for the register allocator to get rid of.
A compromise is to first examine all regparm'd argument
expressions. If they are all so simple that it is clear
they will be evaluated without use of any fixed registers,
use the old compute-directly-to-fixed-target scheme. If not,
be safe and use the via-vregs scheme.
Note this requires being able to examine an expression and
determine whether or not evaluation of it might use a fixed
register. That requires knowledge of how the rest of this
insn selector works. Currently just the following 3 are
regarded as safe -- hopefully they cover the majority of
arguments in practice: IRExpr_Tmp IRExpr_Const IRExpr_Get.
*/
vassert(cee->regparms >= 0 && cee->regparms <= 3);
n_args = n_arg_ws = 0;
while (args[n_args]) n_args++;
not_done_yet = n_args;
if (passBBP)
not_done_yet++;
stack_limit = cee->regparms;
if (cee->regparms > 0 && passBBP) stack_limit--;
/* ------ BEGIN marshall all arguments ------ */
/* Push (R to L) the stack-passed args, [n_args-1 .. stack_limit] */
for (i = n_args-1; i >= stack_limit; i--) {
n_arg_ws += pushArg(env, args[i]);
not_done_yet--;
}
/* args [stack_limit-1 .. 0] and possibly %ebp are to be passed in
registers. */
if (cee->regparms > 0) {
/* ------ BEGIN deal with regparms ------ */
/* deal with regparms, not forgetting %ebp if needed. */
argregs[0] = hregX86_EAX();
argregs[1] = hregX86_EDX();
argregs[2] = hregX86_ECX();
tmpregs[0] = tmpregs[1] = tmpregs[2] = INVALID_HREG;
argreg = cee->regparms;
/* In keeping with big comment above, detect potential danger
and use the via-vregs scheme if needed. */
danger = False;
for (i = stack_limit-1; i >= 0; i--) {
if (mightRequireFixedRegs(args[i])) {
danger = True;
break;
}
}
if (danger) {
/* Move via temporaries */
argregX = argreg;
for (i = stack_limit-1; i >= 0; i--) {
if (0) {
vex_printf("x86 host: register param is complex: ");
ppIRExpr(args[i]);
vex_printf("\n");
}
argreg--;
vassert(argreg >= 0);
vassert(typeOfIRExpr(env->type_env, args[i]) == Ity_I32);
tmpregs[argreg] = iselIntExpr_R(env, args[i]);
not_done_yet--;
}
for (i = stack_limit-1; i >= 0; i--) {
argregX--;
vassert(argregX >= 0);
addInstr( env, mk_iMOVsd_RR( tmpregs[argregX], argregs[argregX] ) );
}
} else {
/* It's safe to compute all regparm args directly into their
target registers. */
for (i = stack_limit-1; i >= 0; i--) {
argreg--;
vassert(argreg >= 0);
vassert(typeOfIRExpr(env->type_env, args[i]) == Ity_I32);
addInstr(env, X86Instr_Alu32R(Xalu_MOV,
iselIntExpr_RMI(env, args[i]),
argregs[argreg]));
not_done_yet--;
}
}
/* Not forgetting %ebp if needed. */
if (passBBP) {
vassert(argreg == 1);
addInstr(env, mk_iMOVsd_RR( hregX86_EBP(), argregs[0]));
not_done_yet--;
}
/* ------ END deal with regparms ------ */
} else {
/* No regparms. Heave %ebp on the stack if needed. */
if (passBBP) {
addInstr(env, X86Instr_Push(X86RMI_Reg(hregX86_EBP())));
n_arg_ws++;
not_done_yet--;
}
}
vassert(not_done_yet == 0);
/* ------ END marshall all arguments ------ */
/* Now we can compute the condition. We can't do it earlier
because the argument computations could trash the condition
codes. Be a bit clever to handle the common case where the
guard is 1:Bit. */
cc = Xcc_ALWAYS;
if (guard) {
if (guard->tag == Iex_Const
&& guard->Iex.Const.con->tag == Ico_U1
&& guard->Iex.Const.con->Ico.U1 == True) {
/* unconditional -- do nothing */
} else {
cc = iselCondCode( env, guard );
}
}
/* call the helper, and get the args off the stack afterwards. */
callHelperAndClearArgs( env, cc, cee, n_arg_ws );
}
/* Given a guest-state array descriptor, an index expression and a
bias, generate an X86AMode holding the relevant guest state
offset. */
static
X86AMode* genGuestArrayOffset ( ISelEnv* env, IRArray* descr,
IRExpr* off, Int bias )
{
HReg tmp, roff;
Int elemSz = sizeofIRType(descr->elemTy);
Int nElems = descr->nElems;
/* throw out any cases not generated by an x86 front end. In
theory there might be a day where we need to handle them -- if
we ever run non-x86-guest on x86 host. */
if (nElems != 8 || (elemSz != 1 && elemSz != 8))
vpanic("genGuestArrayOffset(x86 host)");
/* Compute off into a reg, %off. Then return:
movl %off, %tmp
addl $bias, %tmp (if bias != 0)
andl %tmp, 7
... base(%ebp, %tmp, shift) ...
*/
tmp = newVRegI(env);
roff = iselIntExpr_R(env, off);
addInstr(env, mk_iMOVsd_RR(roff, tmp));
if (bias != 0) {
addInstr(env,
X86Instr_Alu32R(Xalu_ADD, X86RMI_Imm(bias), tmp));
}
addInstr(env,
X86Instr_Alu32R(Xalu_AND, X86RMI_Imm(7), tmp));
vassert(elemSz == 1 || elemSz == 8);
return
X86AMode_IRRS( descr->base, hregX86_EBP(), tmp,
elemSz==8 ? 3 : 0);
}
/* Mess with the FPU's rounding mode: set to the default rounding mode
(0x037F). */
static
void set_FPU_rounding_default ( ISelEnv* env )
{
/* pushl $0x037F
fldcw 0(%esp)
addl $4, %esp
*/
X86AMode* zero_esp = X86AMode_IR(0, hregX86_ESP());
addInstr(env, X86Instr_Push(X86RMI_Imm(0x037F)));
addInstr(env, X86Instr_FpLdStCW(True/*load*/, zero_esp));
add_to_esp(env, 4);
}
/* Mess with the FPU's rounding mode: 'mode' is an I32-typed
expression denoting a value in the range 0 .. 3, indicating a round
mode encoded as per type IRRoundingMode. Set the x87 FPU to have
the same rounding.
*/
static
void set_FPU_rounding_mode ( ISelEnv* env, IRExpr* mode )
{
HReg rrm = iselIntExpr_R(env, mode);
HReg rrm2 = newVRegI(env);
X86AMode* zero_esp = X86AMode_IR(0, hregX86_ESP());
/* movl %rrm, %rrm2
andl $3, %rrm2 -- shouldn't be needed; paranoia
shll $10, %rrm2
orl $0x037F, %rrm2
pushl %rrm2
fldcw 0(%esp)
addl $4, %esp
*/
addInstr(env, mk_iMOVsd_RR(rrm, rrm2));
addInstr(env, X86Instr_Alu32R(Xalu_AND, X86RMI_Imm(3), rrm2));
addInstr(env, X86Instr_Sh32(Xsh_SHL, 10, X86RM_Reg(rrm2)));
addInstr(env, X86Instr_Alu32R(Xalu_OR, X86RMI_Imm(0x037F), rrm2));
addInstr(env, X86Instr_Push(X86RMI_Reg(rrm2)));
addInstr(env, X86Instr_FpLdStCW(True/*load*/, zero_esp));
add_to_esp(env, 4);
}
/*---------------------------------------------------------*/
/*--- ISEL: Integer expressions (32/16/8 bit) ---*/
/*---------------------------------------------------------*/
/* Select insns for an integer-typed expression, and add them to the
code list. Return a reg holding the result. This reg will be a
virtual register. THE RETURNED REG MUST NOT BE MODIFIED. If you
want to modify it, ask for a new vreg, copy it in there, and modify
the copy. The register allocator will do its best to map both
vregs to the same real register, so the copies will often disappear
later in the game.
This should handle expressions of 32, 16 and 8-bit type. All
results are returned in a 32-bit register. For 16- and 8-bit
expressions, the upper 16/24 bits are arbitrary, so you should mask
or sign extend partial values if necessary.
*/
static HReg iselIntExpr_R ( ISelEnv* env, IRExpr* e )
{
HReg r = iselIntExpr_R_wrk(env, e);
/* sanity checks ... */
# if 0
vex_printf("\n"); ppIRExpr(e); vex_printf("\n");
# endif
vassert(hregClass(r) == HRcInt32);
vassert(hregIsVirtual(r));
return r;
}
/* DO NOT CALL THIS DIRECTLY ! */
static HReg iselIntExpr_R_wrk ( ISelEnv* env, IRExpr* e )
{
MatchInfo mi;
DECLARE_PATTERN(p_32to1_then_1Uto8);
IRType ty = typeOfIRExpr(env->type_env,e);
vassert(ty == Ity_I32 || Ity_I16 || Ity_I8);
switch (e->tag) {
/* --------- TEMP --------- */
case Iex_Tmp: {
return lookupIRTemp(env, e->Iex.Tmp.tmp);
}
/* --------- LOAD --------- */
case Iex_LDle: {
HReg dst = newVRegI(env);
X86AMode* amode = iselIntExpr_AMode ( env, e->Iex.LDle.addr );
if (ty == Ity_I32) {
addInstr(env, X86Instr_Alu32R(Xalu_MOV,
X86RMI_Mem(amode), dst) );
return dst;
}
if (ty == Ity_I16) {
addInstr(env, X86Instr_LoadEX(2,False,amode,dst));
return dst;
}
if (ty == Ity_I8) {
addInstr(env, X86Instr_LoadEX(1,False,amode,dst));
return dst;
}
break;
}
/* --------- BINARY OP --------- */
case Iex_Binop: {
X86AluOp aluOp;
X86ShiftOp shOp;
/* Pattern: Sub32(0,x) */
if (e->Iex.Binop.op == Iop_Sub32 && isZero32(e->Iex.Binop.arg1)) {
HReg dst = newVRegI(env);
HReg reg = iselIntExpr_R(env, e->Iex.Binop.arg2);
addInstr(env, mk_iMOVsd_RR(reg,dst));
addInstr(env, X86Instr_Unary32(Xun_NEG,X86RM_Reg(dst)));
return dst;
}
/* Is it an addition or logical style op? */
switch (e->Iex.Binop.op) {
case Iop_Add8: case Iop_Add16: case Iop_Add32:
aluOp = Xalu_ADD; break;
case Iop_Sub8: case Iop_Sub16: case Iop_Sub32:
aluOp = Xalu_SUB; break;
case Iop_And8: case Iop_And16: case Iop_And32:
aluOp = Xalu_AND; break;
case Iop_Or8: case Iop_Or16: case Iop_Or32:
aluOp = Xalu_OR; break;
case Iop_Xor8: case Iop_Xor16: case Iop_Xor32:
aluOp = Xalu_XOR; break;
case Iop_Mul16: case Iop_Mul32:
aluOp = Xalu_MUL; break;
default:
aluOp = Xalu_INVALID; break;
}
/* For commutative ops we assume any literal
values are on the second operand. */
if (aluOp != Xalu_INVALID) {
HReg dst = newVRegI(env);
HReg reg = iselIntExpr_R(env, e->Iex.Binop.arg1);
X86RMI* rmi = iselIntExpr_RMI(env, e->Iex.Binop.arg2);
addInstr(env, mk_iMOVsd_RR(reg,dst));
addInstr(env, X86Instr_Alu32R(aluOp, rmi, dst));
return dst;
}
/* Could do better here; forcing the first arg into a reg
isn't always clever.
-- t70 = Xor32(And32(Xor32(LDle:I32(Add32(t41,0xFFFFFFA0:I32)),
LDle:I32(Add32(t41,0xFFFFFFA4:I32))),LDle:I32(Add32(
t41,0xFFFFFFA8:I32))),LDle:I32(Add32(t41,0xFFFFFFA0:I32)))
movl 0xFFFFFFA0(%vr41),%vr107
movl 0xFFFFFFA4(%vr41),%vr108
movl %vr107,%vr106
xorl %vr108,%vr106
movl 0xFFFFFFA8(%vr41),%vr109
movl %vr106,%vr105
andl %vr109,%vr105
movl 0xFFFFFFA0(%vr41),%vr110
movl %vr105,%vr104
xorl %vr110,%vr104
movl %vr104,%vr70
*/
/* Perhaps a shift op? */
switch (e->Iex.Binop.op) {
case Iop_Shl32: case Iop_Shl16: case Iop_Shl8:
shOp = Xsh_SHL; break;
case Iop_Shr32: case Iop_Shr16: case Iop_Shr8:
shOp = Xsh_SHR; break;
case Iop_Sar32: case Iop_Sar16: case Iop_Sar8:
shOp = Xsh_SAR; break;
default:
shOp = Xsh_INVALID; break;
}
if (shOp != Xsh_INVALID) {
HReg dst = newVRegI(env);
/* regL = the value to be shifted */
HReg regL = iselIntExpr_R(env, e->Iex.Binop.arg1);
addInstr(env, mk_iMOVsd_RR(regL,dst));
/* Do any necessary widening for 16/8 bit operands */
switch (e->Iex.Binop.op) {
case Iop_Shr8:
addInstr(env, X86Instr_Alu32R(
Xalu_AND, X86RMI_Imm(0xFF), dst));
break;
case Iop_Shr16:
addInstr(env, X86Instr_Alu32R(
Xalu_AND, X86RMI_Imm(0xFFFF), dst));
break;
case Iop_Sar8:
addInstr(env, X86Instr_Sh32(Xsh_SHL, 24, X86RM_Reg(dst)));
addInstr(env, X86Instr_Sh32(Xsh_SAR, 24, X86RM_Reg(dst)));
break;
case Iop_Sar16:
addInstr(env, X86Instr_Sh32(Xsh_SHL, 16, X86RM_Reg(dst)));
addInstr(env, X86Instr_Sh32(Xsh_SAR, 16, X86RM_Reg(dst)));
break;
default: break;
}
/* Now consider the shift amount. If it's a literal, we
can do a much better job than the general case. */
if (e->Iex.Binop.arg2->tag == Iex_Const) {
/* assert that the IR is well-typed */
Int nshift;
vassert(e->Iex.Binop.arg2->Iex.Const.con->tag == Ico_U8);
nshift = e->Iex.Binop.arg2->Iex.Const.con->Ico.U8;
vassert(nshift >= 0);
if (nshift > 0)
/* Can't allow nshift==0 since that means %cl */
addInstr(env, X86Instr_Sh32(
shOp,
nshift,
X86RM_Reg(dst)));
} else {
/* General case; we have to force the amount into %cl. */
HReg regR = iselIntExpr_R(env, e->Iex.Binop.arg2);
addInstr(env, mk_iMOVsd_RR(regR,hregX86_ECX()));
addInstr(env, X86Instr_Sh32(shOp, 0/* %cl */, X86RM_Reg(dst)));
}
return dst;
}
/* Handle misc other ops. */
if (e->Iex.Binop.op == Iop_8HLto16) {
HReg hi8 = newVRegI(env);
HReg lo8 = newVRegI(env);
HReg hi8s = iselIntExpr_R(env, e->Iex.Binop.arg1);
HReg lo8s = iselIntExpr_R(env, e->Iex.Binop.arg2);
addInstr(env, mk_iMOVsd_RR(hi8s, hi8));
addInstr(env, mk_iMOVsd_RR(lo8s, lo8));
addInstr(env, X86Instr_Sh32(Xsh_SHL, 8, X86RM_Reg(hi8)));
addInstr(env, X86Instr_Alu32R(Xalu_AND, X86RMI_Imm(0xFF), lo8));
addInstr(env, X86Instr_Alu32R(Xalu_OR, X86RMI_Reg(lo8), hi8));
return hi8;
}
if (e->Iex.Binop.op == Iop_16HLto32) {
HReg hi16 = newVRegI(env);
HReg lo16 = newVRegI(env);
HReg hi16s = iselIntExpr_R(env, e->Iex.Binop.arg1);
HReg lo16s = iselIntExpr_R(env, e->Iex.Binop.arg2);
addInstr(env, mk_iMOVsd_RR(hi16s, hi16));
addInstr(env, mk_iMOVsd_RR(lo16s, lo16));
addInstr(env, X86Instr_Sh32(Xsh_SHL, 16, X86RM_Reg(hi16)));
addInstr(env, X86Instr_Alu32R(Xalu_AND, X86RMI_Imm(0xFFFF), lo16));
addInstr(env, X86Instr_Alu32R(Xalu_OR, X86RMI_Reg(lo16), hi16));
return hi16;
}
if (e->Iex.Binop.op == Iop_MullS16 || e->Iex.Binop.op == Iop_MullS8
|| e->Iex.Binop.op == Iop_MullU16 || e->Iex.Binop.op == Iop_MullU8) {
HReg a16 = newVRegI(env);
HReg b16 = newVRegI(env);
HReg a16s = iselIntExpr_R(env, e->Iex.Binop.arg1);
HReg b16s = iselIntExpr_R(env, e->Iex.Binop.arg2);
Int shift = (e->Iex.Binop.op == Iop_MullS8
|| e->Iex.Binop.op == Iop_MullU8)
? 24 : 16;
X86ShiftOp shr_op = (e->Iex.Binop.op == Iop_MullS8
|| e->Iex.Binop.op == Iop_MullS16)
? Xsh_SAR : Xsh_SHR;
addInstr(env, mk_iMOVsd_RR(a16s, a16));
addInstr(env, mk_iMOVsd_RR(b16s, b16));
addInstr(env, X86Instr_Sh32(Xsh_SHL, shift, X86RM_Reg(a16)));
addInstr(env, X86Instr_Sh32(Xsh_SHL, shift, X86RM_Reg(b16)));
addInstr(env, X86Instr_Sh32(shr_op, shift, X86RM_Reg(a16)));
addInstr(env, X86Instr_Sh32(shr_op, shift, X86RM_Reg(b16)));
addInstr(env, X86Instr_Alu32R(Xalu_MUL, X86RMI_Reg(a16), b16));
return b16;
}
if (e->Iex.Binop.op == Iop_CmpF64) {
HReg fL = iselDblExpr(env, e->Iex.Binop.arg1);
HReg fR = iselDblExpr(env, e->Iex.Binop.arg2);
HReg dst = newVRegI(env);
addInstr(env, X86Instr_FpCmp(fL,fR,dst));
/* shift this right 8 bits so as to conform to CmpF64
definition. */
addInstr(env, X86Instr_Sh32(Xsh_SHR, 8, X86RM_Reg(dst)));
return dst;
}
if (e->Iex.Binop.op == Iop_F64toI32 || e->Iex.Binop.op == Iop_F64toI16) {
Int sz = e->Iex.Binop.op == Iop_F64toI16 ? 2 : 4;
HReg rf = iselDblExpr(env, e->Iex.Binop.arg2);
HReg dst = newVRegI(env);
/* Used several times ... */
X86AMode* zero_esp = X86AMode_IR(0, hregX86_ESP());
/* rf now holds the value to be converted, and rrm holds the
rounding mode value, encoded as per the IRRoundingMode
enum. The first thing to do is set the FPU's rounding
mode accordingly. */
/* Create a space for the format conversion. */
/* subl $4, %esp */
sub_from_esp(env, 4);
/* Set host rounding mode */
set_FPU_rounding_mode( env, e->Iex.Binop.arg1 );
/* gistw/l %rf, 0(%esp) */
addInstr(env, X86Instr_FpLdStI(False/*store*/, sz, rf, zero_esp));
if (sz == 2) {
/* movzwl 0(%esp), %dst */
addInstr(env, X86Instr_LoadEX(2,False,zero_esp,dst));
} else {
/* movl 0(%esp), %dst */
vassert(sz == 4);
addInstr(env, X86Instr_Alu32R(
Xalu_MOV, X86RMI_Mem(zero_esp), dst));
}
/* Restore default FPU rounding. */
set_FPU_rounding_default( env );
/* addl $4, %esp */
add_to_esp(env, 4);
return dst;
}
/* C3210 flags following FPU partial remainder (fprem), both
IEEE compliant (PREM1) and non-IEEE compliant (PREM). */
if (e->Iex.Binop.op == Iop_PRemC3210F64
|| e->Iex.Binop.op == Iop_PRem1C3210F64) {
HReg junk = newVRegF(env);
HReg dst = newVRegI(env);
HReg srcL = iselDblExpr(env, e->Iex.Binop.arg1);
HReg srcR = iselDblExpr(env, e->Iex.Binop.arg2);
addInstr(env, X86Instr_FpBinary(
e->Iex.Binop.op==Iop_PRemC3210F64
? Xfp_PREM : Xfp_PREM1,
srcL,srcR,junk
));
/* The previous pseudo-insn will have left the FPU's C3210
flags set correctly. So bag them. */
addInstr(env, X86Instr_FpStSW_AX());
addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), dst));
addInstr(env, X86Instr_Alu32R(Xalu_AND, X86RMI_Imm(0x4700), dst));
return dst;
}
break;
}
/* --------- UNARY OP --------- */
case Iex_Unop: {
/* 1Uto8(32to1(expr32)) */
DEFINE_PATTERN(p_32to1_then_1Uto8,
unop(Iop_1Uto8,unop(Iop_32to1,bind(0))));
if (matchIRExpr(&mi,p_32to1_then_1Uto8,e)) {
IRExpr* expr32 = mi.bindee[0];
HReg dst = newVRegI(env);
HReg src = iselIntExpr_R(env, expr32);
addInstr(env, mk_iMOVsd_RR(src,dst) );
addInstr(env, X86Instr_Alu32R(Xalu_AND,
X86RMI_Imm(1), dst));
return dst;
}
/* 16Uto32(LDle(expr32)) */
{
DECLARE_PATTERN(p_LDle16_then_16Uto32);
DEFINE_PATTERN(p_LDle16_then_16Uto32,
unop(Iop_16Uto32,IRExpr_LDle(Ity_I16,bind(0))) );
if (matchIRExpr(&mi,p_LDle16_then_16Uto32,e)) {
HReg dst = newVRegI(env);
X86AMode* amode = iselIntExpr_AMode ( env, mi.bindee[0] );
addInstr(env, X86Instr_LoadEX(2,False,amode,dst));
return dst;
}
}
switch (e->Iex.Unop.op) {
case Iop_8Uto16:
case Iop_8Uto32:
case Iop_16Uto32: {
HReg dst = newVRegI(env);
HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
UInt mask = e->Iex.Unop.op==Iop_16Uto32 ? 0xFFFF : 0xFF;
addInstr(env, mk_iMOVsd_RR(src,dst) );
addInstr(env, X86Instr_Alu32R(Xalu_AND,
X86RMI_Imm(mask), dst));
return dst;
}
case Iop_8Sto16:
case Iop_8Sto32:
case Iop_16Sto32: {
HReg dst = newVRegI(env);
HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
UInt amt = e->Iex.Unop.op==Iop_16Sto32 ? 16 : 24;
addInstr(env, mk_iMOVsd_RR(src,dst) );
addInstr(env, X86Instr_Sh32(Xsh_SHL, amt, X86RM_Reg(dst)));
addInstr(env, X86Instr_Sh32(Xsh_SAR, amt, X86RM_Reg(dst)));
return dst;
}
case Iop_Not8:
case Iop_Not16:
case Iop_Not32: {
HReg dst = newVRegI(env);
HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
addInstr(env, mk_iMOVsd_RR(src,dst) );
addInstr(env, X86Instr_Unary32(Xun_NOT,X86RM_Reg(dst)));
return dst;
}
case Iop_64HIto32: {
HReg rHi, rLo;
iselInt64Expr(&rHi,&rLo, env, e->Iex.Unop.arg);
return rHi; /* and abandon rLo .. poor wee thing :-) */
}
case Iop_64to32: {
HReg rHi, rLo;
iselInt64Expr(&rHi,&rLo, env, e->Iex.Unop.arg);
return rLo; /* similar stupid comment to the above ... */
}
case Iop_16HIto8:
case Iop_32HIto16: {
HReg dst = newVRegI(env);
HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
Int shift = e->Iex.Unop.op == Iop_16HIto8 ? 8 : 16;
addInstr(env, mk_iMOVsd_RR(src,dst) );
addInstr(env, X86Instr_Sh32(Xsh_SHR, shift, X86RM_Reg(dst)));
return dst;
}
case Iop_1Uto32:
case Iop_1Uto8: {
HReg dst = newVRegI(env);
X86CondCode cond = iselCondCode(env, e->Iex.Unop.arg);
addInstr(env, X86Instr_Set32(cond,dst));
return dst;
}
case Iop_1Sto8:
case Iop_1Sto16:
case Iop_1Sto32: {
/* could do better than this, but for now ... */
HReg dst = newVRegI(env);
X86CondCode cond = iselCondCode(env, e->Iex.Unop.arg);
addInstr(env, X86Instr_Set32(cond,dst));
addInstr(env, X86Instr_Sh32(Xsh_SHL, 31, X86RM_Reg(dst)));
addInstr(env, X86Instr_Sh32(Xsh_SAR, 31, X86RM_Reg(dst)));
return dst;
}
case Iop_Ctz32: {
/* Count trailing zeroes, implemented by x86 'bsfl' */
HReg dst = newVRegI(env);
HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
addInstr(env, X86Instr_Bsfr32(True,src,dst));
return dst;
}
case Iop_Clz32: {
/* Count leading zeroes. Do 'bsrl' to establish the index
of the highest set bit, and subtract that value from
31. */
HReg tmp = newVRegI(env);
HReg dst = newVRegI(env);
HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
addInstr(env, X86Instr_Bsfr32(False,src,tmp));
addInstr(env, X86Instr_Alu32R(Xalu_MOV,
X86RMI_Imm(31), dst));
addInstr(env, X86Instr_Alu32R(Xalu_SUB,
X86RMI_Reg(tmp), dst));
return dst;
}
case Iop_16to8:
case Iop_32to8:
case Iop_32to16:
/* These are no-ops. */
return iselIntExpr_R(env, e->Iex.Unop.arg);
default:
break;
}
break;
}
/* --------- GET --------- */
case Iex_Get: {
if (ty == Ity_I32) {
HReg dst = newVRegI(env);
addInstr(env, X86Instr_Alu32R(
Xalu_MOV,
X86RMI_Mem(X86AMode_IR(e->Iex.Get.offset,
hregX86_EBP())),
dst));
return dst;
}
if (ty == Ity_I8 || ty == Ity_I16) {
HReg dst = newVRegI(env);
addInstr(env, X86Instr_LoadEX(
ty==Ity_I8 ? 1 : 2,
False,
X86AMode_IR(e->Iex.Get.offset,hregX86_EBP()),
dst));
return dst;
}
break;
}
case Iex_GetI: {
X86AMode* am
= genGuestArrayOffset(
env, e->Iex.GetI.descr,
e->Iex.GetI.ix, e->Iex.GetI.bias );
HReg dst = newVRegI(env);
if (ty == Ity_I8) {
addInstr(env, X86Instr_LoadEX( 1, False, am, dst ));
return dst;
}
break;
}
/* --------- CCALL --------- */
case Iex_CCall: {
HReg dst = newVRegI(env);
vassert(ty == Ity_I32);
/* be very restrictive for now. Only 32/64-bit ints allowed
for args, and 32 bits for return type. */
if (e->Iex.CCall.retty != Ity_I32)
goto irreducible;
/* Marshal args, do the call, clear stack. */
doHelperCall( env, False, NULL, e->Iex.CCall.cee, e->Iex.CCall.args );
addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), dst));
return dst;
}
/* --------- LITERAL --------- */
/* 32/16/8-bit literals */
case Iex_Const: {
X86RMI* rmi = iselIntExpr_RMI ( env, e );
HReg r = newVRegI(env);
addInstr(env, X86Instr_Alu32R(Xalu_MOV, rmi, r));
return r;
}
/* --------- MULTIPLEX --------- */
case Iex_Mux0X: {
if ((ty == Ity_I32 || ty == Ity_I16 || ty == Ity_I8)
&& typeOfIRExpr(env->type_env,e->Iex.Mux0X.cond) == Ity_I8) {
HReg r8;
HReg rX = iselIntExpr_R(env, e->Iex.Mux0X.exprX);
X86RM* r0 = iselIntExpr_RM(env, e->Iex.Mux0X.expr0);
HReg dst = newVRegI(env);
addInstr(env, mk_iMOVsd_RR(rX,dst));
r8 = iselIntExpr_R(env, e->Iex.Mux0X.cond);
addInstr(env, X86Instr_Test32(X86RI_Imm(0xFF), X86RM_Reg(r8)));
addInstr(env, X86Instr_CMov32(Xcc_Z,r0,dst));
return dst;
}
break;
}
default:
break;
} /* switch (e->tag) */
/* We get here if no pattern matched. */
irreducible:
ppIRExpr(e);
vpanic("iselIntExpr_R: cannot reduce tree");
}
/*---------------------------------------------------------*/
/*--- ISEL: Integer expression auxiliaries ---*/
/*---------------------------------------------------------*/
/* --------------------- AMODEs --------------------- */
/* Return an AMode which computes the value of the specified
expression, possibly also adding insns to the code list as a
result. The expression may only be a 32-bit one.
*/
static Bool sane_AMode ( X86AMode* am )
{
switch (am->tag) {
case Xam_IR:
return hregClass(am->Xam.IR.reg) == HRcInt32
&& (hregIsVirtual(am->Xam.IR.reg)
|| am->Xam.IR.reg == hregX86_EBP());
case Xam_IRRS:
return hregClass(am->Xam.IRRS.base) == HRcInt32
&& hregIsVirtual(am->Xam.IRRS.base)
&& hregClass(am->Xam.IRRS.index) == HRcInt32
&& hregIsVirtual(am->Xam.IRRS.index);
default:
vpanic("sane_AMode: unknown x86 amode tag");
}
}
static X86AMode* iselIntExpr_AMode ( ISelEnv* env, IRExpr* e )
{
X86AMode* am = iselIntExpr_AMode_wrk(env, e);
vassert(sane_AMode(am));
return am;
}
/* DO NOT CALL THIS DIRECTLY ! */
static X86AMode* iselIntExpr_AMode_wrk ( ISelEnv* env, IRExpr* e )
{
IRType ty = typeOfIRExpr(env->type_env,e);
vassert(ty == Ity_I32);
/* Add32(expr1, Shl32(expr2, imm)) */
if (e->tag == Iex_Binop
&& e->Iex.Binop.op == Iop_Add32
&& e->Iex.Binop.arg2->tag == Iex_Binop
&& e->Iex.Binop.arg2->Iex.Binop.op == Iop_Shl32
&& e->Iex.Binop.arg2->Iex.Binop.arg2->tag == Iex_Const
&& e->Iex.Binop.arg2->Iex.Binop.arg2->Iex.Const.con->tag == Ico_U8) {
UInt shift = e->Iex.Binop.arg2->Iex.Binop.arg2->Iex.Const.con->Ico.U8;
if (shift == 1 || shift == 2 || shift == 3) {
HReg r1 = iselIntExpr_R(env, e->Iex.Binop.arg1);
HReg r2 = iselIntExpr_R(env, e->Iex.Binop.arg2->Iex.Binop.arg1 );
return X86AMode_IRRS(0, r1, r2, shift);
}
}
/* Add32(expr,i) */
if (e->tag == Iex_Binop
&& e->Iex.Binop.op == Iop_Add32
&& e->Iex.Binop.arg2->tag == Iex_Const
&& e->Iex.Binop.arg2->Iex.Const.con->tag == Ico_U32) {
HReg r1 = iselIntExpr_R(env, e->Iex.Binop.arg1);
return X86AMode_IR(e->Iex.Binop.arg2->Iex.Const.con->Ico.U32, r1);
}
/* Doesn't match anything in particular. Generate it into
a register and use that. */
{
HReg r1 = iselIntExpr_R(env, e);
return X86AMode_IR(0, r1);
}
}
/* --------------------- RMIs --------------------- */
/* Similarly, calculate an expression into an X86RMI operand. As with
iselIntExpr_R, the expression can have type 32, 16 or 8 bits. */
static X86RMI* iselIntExpr_RMI ( ISelEnv* env, IRExpr* e )
{
X86RMI* rmi = iselIntExpr_RMI_wrk(env, e);
/* sanity checks ... */
switch (rmi->tag) {
case Xrmi_Imm:
return rmi;
case Xrmi_Reg:
vassert(hregClass(rmi->Xrmi.Reg.reg) == HRcInt32);
vassert(hregIsVirtual(rmi->Xrmi.Reg.reg));
return rmi;
case Xrmi_Mem:
vassert(sane_AMode(rmi->Xrmi.Mem.am));
return rmi;
default:
vpanic("iselIntExpr_RMI: unknown x86 RMI tag");
}
}
/* DO NOT CALL THIS DIRECTLY ! */
static X86RMI* iselIntExpr_RMI_wrk ( ISelEnv* env, IRExpr* e )
{
IRType ty = typeOfIRExpr(env->type_env,e);
vassert(ty == Ity_I32 || ty == Ity_I16 || ty == Ity_I8);
/* special case: immediate */
if (e->tag == Iex_Const) {
UInt u;
switch (e->Iex.Const.con->tag) {
case Ico_U32: u = e->Iex.Const.con->Ico.U32; break;
case Ico_U16: u = 0xFFFF & (e->Iex.Const.con->Ico.U16); break;
case Ico_U8: u = 0xFF & (e->Iex.Const.con->Ico.U8); break;
default: vpanic("iselIntExpr_RMI.Iex_Const(x86h)");
}
return X86RMI_Imm(u);
}
/* special case: 32-bit GET */
if (e->tag == Iex_Get && ty == Ity_I32) {
return X86RMI_Mem(X86AMode_IR(e->Iex.Get.offset,
hregX86_EBP()));
}
/* special case: load from memory */
/* default case: calculate into a register and return that */
{
HReg r = iselIntExpr_R ( env, e );
return X86RMI_Reg(r);
}
}
/* --------------------- RIs --------------------- */
/* Calculate an expression into an X86RI operand. As with
iselIntExpr_R, the expression can have type 32, 16 or 8 bits. */
static X86RI* iselIntExpr_RI ( ISelEnv* env, IRExpr* e )
{
X86RI* ri = iselIntExpr_RI_wrk(env, e);
/* sanity checks ... */
switch (ri->tag) {
case Xri_Imm:
return ri;
case Xrmi_Reg:
vassert(hregClass(ri->Xri.Reg.reg) == HRcInt32);
vassert(hregIsVirtual(ri->Xri.Reg.reg));
return ri;
default:
vpanic("iselIntExpr_RI: unknown x86 RI tag");
}
}
/* DO NOT CALL THIS DIRECTLY ! */
static X86RI* iselIntExpr_RI_wrk ( ISelEnv* env, IRExpr* e )
{
IRType ty = typeOfIRExpr(env->type_env,e);
vassert(ty == Ity_I32 || ty == Ity_I16 || ty == Ity_I8);
/* special case: immediate */
if (e->tag == Iex_Const) {
UInt u;
switch (e->Iex.Const.con->tag) {
case Ico_U32: u = e->Iex.Const.con->Ico.U32; break;
case Ico_U16: u = 0xFFFF & (e->Iex.Const.con->Ico.U16); break;
case Ico_U8: u = 0xFF & (e->Iex.Const.con->Ico.U8); break;
default: vpanic("iselIntExpr_RMI.Iex_Const(x86h)");
}
return X86RI_Imm(u);
}
/* default case: calculate into a register and return that */
{
HReg r = iselIntExpr_R ( env, e );
return X86RI_Reg(r);
}
}
/* --------------------- RMs --------------------- */
/* Similarly, calculate an expression into an X86RM operand. As with
iselIntExpr_R, the expression can have type 32, 16 or 8 bits. */
static X86RM* iselIntExpr_RM ( ISelEnv* env, IRExpr* e )
{
X86RM* rm = iselIntExpr_RM_wrk(env, e);
/* sanity checks ... */
switch (rm->tag) {
case Xrm_Reg:
vassert(hregClass(rm->Xrm.Reg.reg) == HRcInt32);
vassert(hregIsVirtual(rm->Xrm.Reg.reg));
return rm;
case Xrm_Mem:
vassert(sane_AMode(rm->Xrm.Mem.am));
return rm;
default:
vpanic("iselIntExpr_RM: unknown x86 RM tag");
}
}
/* DO NOT CALL THIS DIRECTLY ! */
static X86RM* iselIntExpr_RM_wrk ( ISelEnv* env, IRExpr* e )
{
IRType ty = typeOfIRExpr(env->type_env,e);
vassert(ty == Ity_I32 || ty == Ity_I16 || ty == Ity_I8);
/* special case: 32-bit GET */
if (e->tag == Iex_Get && ty == Ity_I32) {
return X86RM_Mem(X86AMode_IR(e->Iex.Get.offset,
hregX86_EBP()));
}
/* special case: load from memory */
/* default case: calculate into a register and return that */
{
HReg r = iselIntExpr_R ( env, e );
return X86RM_Reg(r);
}
}
/* --------------------- CONDCODE --------------------- */
/* Generate code to evaluated a bit-typed expression, returning the
condition code which would correspond when the expression would
notionally have returned 1. */
static X86CondCode iselCondCode ( ISelEnv* env, IRExpr* e )
{
/* Uh, there's nothing we can sanity check here, unfortunately. */
return iselCondCode_wrk(env,e);
}
/* DO NOT CALL THIS DIRECTLY ! */
static X86CondCode iselCondCode_wrk ( ISelEnv* env, IRExpr* e )
{
MatchInfo mi;
DECLARE_PATTERN(p_32to1);
//DECLARE_PATTERN(p_eq32_literal);
//DECLARE_PATTERN(p_ne32_zero);
DECLARE_PATTERN(p_1Uto32_then_32to1);
vassert(e);
vassert(typeOfIRExpr(env->type_env,e) == Ity_I1);
/* Constant 1:Bit */
if (e->tag == Iex_Const && e->Iex.Const.con->Ico.U1 == True) {
HReg r;
vassert(e->Iex.Const.con->tag == Ico_U1);
r = newVRegI(env);
addInstr(env, X86Instr_Alu32R(Xalu_MOV,X86RMI_Imm(0),r));
addInstr(env, X86Instr_Alu32R(Xalu_XOR,X86RMI_Reg(r),r));
return Xcc_Z;
}
/* Not1(...) */
if (e->tag == Iex_Unop && e->Iex.Unop.op == Iop_Not1) {
/* Generate code for the arg, and negate the test condition */
return 1 ^ iselCondCode(env, e->Iex.Unop.arg);
}
/* 32to1(1Uto32(expr1)) -- the casts are pointless, ignore them */
DEFINE_PATTERN(p_1Uto32_then_32to1,
unop(Iop_32to1,unop(Iop_1Uto32,bind(0))));
if (matchIRExpr(&mi,p_1Uto32_then_32to1,e)) {
IRExpr* expr1 = mi.bindee[0];
return iselCondCode(env, expr1);
}
/* pattern: 32to1(expr32) */
DEFINE_PATTERN(p_32to1,
unop(Iop_32to1,bind(0))
);
if (matchIRExpr(&mi,p_32to1,e)) {
X86RM* rm = iselIntExpr_RM(env, mi.bindee[0]);
addInstr(env, X86Instr_Test32(X86RI_Imm(1),rm));
return Xcc_NZ;
}
/* CmpEQ8 / CmpNE8 */
if (e->tag == Iex_Binop
&& (e->Iex.Binop.op == Iop_CmpEQ8
|| e->Iex.Binop.op == Iop_CmpNE8)) {
HReg r1 = iselIntExpr_R(env, e->Iex.Binop.arg1);
X86RMI* rmi2 = iselIntExpr_RMI(env, e->Iex.Binop.arg2);
HReg r = newVRegI(env);
addInstr(env, mk_iMOVsd_RR(r1,r));
addInstr(env, X86Instr_Alu32R(Xalu_XOR,rmi2,r));
addInstr(env, X86Instr_Alu32R(Xalu_AND,X86RMI_Imm(0xFF),r));
switch (e->Iex.Binop.op) {
case Iop_CmpEQ8: return Xcc_Z;
case Iop_CmpNE8: return Xcc_NZ;
default: vpanic("iselCondCode(x86): CmpXX8");
}
}
/* CmpEQ16 / CmpNE16 */
if (e->tag == Iex_Binop
&& (e->Iex.Binop.op == Iop_CmpEQ16
|| e->Iex.Binop.op == Iop_CmpNE16)) {
HReg r1 = iselIntExpr_R(env, e->Iex.Binop.arg1);
X86RMI* rmi2 = iselIntExpr_RMI(env, e->Iex.Binop.arg2);
HReg r = newVRegI(env);
addInstr(env, mk_iMOVsd_RR(r1,r));
addInstr(env, X86Instr_Alu32R(Xalu_XOR,rmi2,r));
addInstr(env, X86Instr_Alu32R(Xalu_AND,X86RMI_Imm(0xFFFF),r));
switch (e->Iex.Binop.op) {
case Iop_CmpEQ16: return Xcc_Z;
case Iop_CmpNE16: return Xcc_NZ;
default: vpanic("iselCondCode(x86): CmpXX16");
}
}
/* CmpNE32(1Sto32(b), 0) ==> b */
{
DECLARE_PATTERN(p_CmpNE32_1Sto32);
DEFINE_PATTERN(
p_CmpNE32_1Sto32,
binop(Iop_CmpNE32, unop(Iop_1Sto32,bind(0)), mkU32(0)));
if (matchIRExpr(&mi, p_CmpNE32_1Sto32, e)) {
return iselCondCode(env, mi.bindee[0]);
}
}
/* Cmp*32*(x,y) */
if (e->tag == Iex_Binop
&& (e->Iex.Binop.op == Iop_CmpEQ32
|| e->Iex.Binop.op == Iop_CmpNE32
|| e->Iex.Binop.op == Iop_CmpLT32S
|| e->Iex.Binop.op == Iop_CmpLT32U
|| e->Iex.Binop.op == Iop_CmpLE32S
|| e->Iex.Binop.op == Iop_CmpLE32U)) {
HReg r1 = iselIntExpr_R(env, e->Iex.Binop.arg1);
X86RMI* rmi2 = iselIntExpr_RMI(env, e->Iex.Binop.arg2);
addInstr(env, X86Instr_Alu32R(Xalu_CMP,rmi2,r1));
switch (e->Iex.Binop.op) {
case Iop_CmpEQ32: return Xcc_Z;
case Iop_CmpNE32: return Xcc_NZ;
case Iop_CmpLT32S: return Xcc_L;
case Iop_CmpLT32U: return Xcc_B;
case Iop_CmpLE32S: return Xcc_LE;
case Iop_CmpLE32U: return Xcc_BE;
default: vpanic("iselCondCode(x86): CmpXX32");
}
}
/* CmpNE64(1Sto64(b), 0) ==> b */
{
DECLARE_PATTERN(p_CmpNE64_1Sto64);
DEFINE_PATTERN(
p_CmpNE64_1Sto64,
binop(Iop_CmpNE64, unop(Iop_1Sto64,bind(0)), mkU64(0)));
if (matchIRExpr(&mi, p_CmpNE64_1Sto64, e)) {
return iselCondCode(env, mi.bindee[0]);
}
}
/* CmpNE64 */
if (e->tag == Iex_Binop
&& e->Iex.Binop.op == Iop_CmpNE64) {
HReg hi1, hi2, lo1, lo2;
HReg tHi = newVRegI(env);
HReg tLo = newVRegI(env);
iselInt64Expr( &hi1, &lo1, env, e->Iex.Binop.arg1 );
iselInt64Expr( &hi2, &lo2, env, e->Iex.Binop.arg2 );
addInstr(env, mk_iMOVsd_RR(hi1, tHi));
addInstr(env, X86Instr_Alu32R(Xalu_XOR,X86RMI_Reg(hi2), tHi));
addInstr(env, mk_iMOVsd_RR(lo1, tLo));
addInstr(env, X86Instr_Alu32R(Xalu_XOR,X86RMI_Reg(lo2), tLo));
addInstr(env, X86Instr_Alu32R(Xalu_OR,X86RMI_Reg(tHi), tLo));
switch (e->Iex.Binop.op) {
case Iop_CmpNE64: return Xcc_NZ;
default: vpanic("iselCondCode(x86): CmpXX64");
}
}
/* var */
if (e->tag == Iex_Tmp) {
HReg r32 = lookupIRTemp(env, e->Iex.Tmp.tmp);
HReg dst = newVRegI(env);
addInstr(env, mk_iMOVsd_RR(r32,dst));
addInstr(env, X86Instr_Alu32R(Xalu_AND,X86RMI_Imm(1),dst));
return Xcc_NZ;
}
ppIRExpr(e);
vpanic("iselCondCode");
}
/*---------------------------------------------------------*/
/*--- ISEL: Integer expressions (64 bit) ---*/
/*---------------------------------------------------------*/
/* Compute a 64-bit value into a register pair, which is returned as
the first two parameters. As with iselIntExpr_R, these may be
either real or virtual regs; in any case they must not be changed
by subsequent code emitted by the caller. */
static void iselInt64Expr ( HReg* rHi, HReg* rLo, ISelEnv* env, IRExpr* e )
{
iselInt64Expr_wrk(rHi, rLo, env, e);
# if 0
vex_printf("\n"); ppIRExpr(e); vex_printf("\n");
# endif
vassert(hregClass(*rHi) == HRcInt32);
vassert(hregIsVirtual(*rHi));
vassert(hregClass(*rLo) == HRcInt32);
vassert(hregIsVirtual(*rLo));
}
/* DO NOT CALL THIS DIRECTLY ! */
static void iselInt64Expr_wrk ( HReg* rHi, HReg* rLo, ISelEnv* env, IRExpr* e )
{
vassert(e);
vassert(typeOfIRExpr(env->type_env,e) == Ity_I64);
if (e->tag == Iex_Const) {
ULong w64 = e->Iex.Const.con->Ico.U64;
UInt wHi = ((UInt)(w64 >> 32)) & 0xFFFFFFFF;
UInt wLo = ((UInt)w64) & 0xFFFFFFFF;
HReg tLo = newVRegI(env);
HReg tHi = newVRegI(env);
vassert(e->Iex.Const.con->tag == Ico_U64);
addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Imm(wHi), tHi));
addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Imm(wLo), tLo));
*rHi = tHi;
*rLo = tLo;
return;
}
/* read 64-bit IRTemp */
if (e->tag == Iex_Tmp) {
lookupIRTemp64( rHi, rLo, env, e->Iex.Tmp.tmp);
return;
}
/* 64-bit load */
if (e->tag == Iex_LDle) {
HReg tLo, tHi;
X86AMode *am0, *am4;
vassert(e->Iex.LDle.ty == Ity_I64);
tLo = newVRegI(env);
tHi = newVRegI(env);
am0 = iselIntExpr_AMode(env, e->Iex.LDle.addr);
am4 = advance4(am0);
addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(am0), tLo ));
addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(am4), tHi ));
*rHi = tHi;
*rLo = tLo;
return;
}
/* 64-bit GET */
if (e->tag == Iex_Get) {
X86AMode* am = X86AMode_IR(e->Iex.Get.offset, hregX86_EBP());
X86AMode* am4 = advance4(am);
HReg tLo = newVRegI(env);
HReg tHi = newVRegI(env);
addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(am), tLo ));
addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(am4), tHi ));
*rHi = tHi;
*rLo = tLo;
return;
}
/* 64-bit GETI */
if (e->tag == Iex_GetI) {
X86AMode* am
= genGuestArrayOffset( env, e->Iex.GetI.descr,
e->Iex.GetI.ix, e->Iex.GetI.bias );
X86AMode* am4 = advance4(am);
HReg tLo = newVRegI(env);
HReg tHi = newVRegI(env);
addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(am), tLo ));
addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(am4), tHi ));
*rHi = tHi;
*rLo = tLo;
return;
}
/* 64-bit Mux0X */
if (e->tag == Iex_Mux0X) {
HReg e0Lo, e0Hi, eXLo, eXHi, r8;
HReg tLo = newVRegI(env);
HReg tHi = newVRegI(env);
iselInt64Expr(&e0Hi, &e0Lo, env, e->Iex.Mux0X.expr0);
iselInt64Expr(&eXHi, &eXLo, env, e->Iex.Mux0X.exprX);
addInstr(env, mk_iMOVsd_RR(eXHi, tHi));
addInstr(env, mk_iMOVsd_RR(eXLo, tLo));
r8 = iselIntExpr_R(env, e->Iex.Mux0X.cond);
addInstr(env, X86Instr_Test32(X86RI_Imm(0xFF), X86RM_Reg(r8)));
/* This assumes the first cmov32 doesn't trash the condition
codes, so they are still available for the second cmov32 */
addInstr(env, X86Instr_CMov32(Xcc_Z,X86RM_Reg(e0Hi),tHi));
addInstr(env, X86Instr_CMov32(Xcc_Z,X86RM_Reg(e0Lo),tLo));
*rHi = tHi;
*rLo = tLo;
return;
}
/* 32 x 32 -> 64 multiply */
if (e->tag == Iex_Binop
&& (e->Iex.Binop.op == Iop_MullU32
|| e->Iex.Binop.op == Iop_MullS32)) {
/* get one operand into %eax, and the other into a R/M. Need to
make an educated guess about which is better in which. */
HReg tLo = newVRegI(env);
HReg tHi = newVRegI(env);
Bool syned = e->Iex.Binop.op == Iop_MullS32;
X86RM* rmLeft = iselIntExpr_RM(env, e->Iex.Binop.arg1);
HReg rRight = iselIntExpr_R(env, e->Iex.Binop.arg2);
addInstr(env, mk_iMOVsd_RR(rRight, hregX86_EAX()));
addInstr(env, X86Instr_MulL(syned, Xss_32, rmLeft));
/* Result is now in EDX:EAX. Tell the caller. */
addInstr(env, mk_iMOVsd_RR(hregX86_EDX(), tHi));
addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), tLo));
*rHi = tHi;
*rLo = tLo;
return;
}
/* 64 x 32 -> (32(rem),32(div)) division */
if (e->tag == Iex_Binop
&& (e->Iex.Binop.op == Iop_DivModU64to32
|| e->Iex.Binop.op == Iop_DivModS64to32)) {
/* Get the 64-bit operand into edx:eax, and the other
into any old R/M. */
HReg sHi, sLo;
HReg tLo = newVRegI(env);
HReg tHi = newVRegI(env);
Bool syned = e->Iex.Binop.op == Iop_DivModS64to32;
X86RM* rmRight = iselIntExpr_RM(env, e->Iex.Binop.arg2);
iselInt64Expr(&sHi,&sLo, env, e->Iex.Binop.arg1);
addInstr(env, mk_iMOVsd_RR(sHi, hregX86_EDX()));
addInstr(env, mk_iMOVsd_RR(sLo, hregX86_EAX()));
addInstr(env, X86Instr_Div(syned, Xss_32, rmRight));
addInstr(env, mk_iMOVsd_RR(hregX86_EDX(), tHi));
addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), tLo));
*rHi = tHi;
*rLo = tLo;
return;
}
/* Iop_Or64/And64/Xor64 */
if (e->tag == Iex_Binop
&& (e->Iex.Binop.op == Iop_Or64
|| e->Iex.Binop.op == Iop_And64
|| e->Iex.Binop.op == Iop_Xor64)) {
HReg xLo, xHi, yLo, yHi;
HReg tLo = newVRegI(env);
HReg tHi = newVRegI(env);
X86AluOp op = e->Iex.Binop.op==Iop_Or64 ? Xalu_OR
: e->Iex.Binop.op==Iop_And64 ? Xalu_AND
: Xalu_XOR;
iselInt64Expr(&xHi, &xLo, env, e->Iex.Binop.arg1);
addInstr(env, mk_iMOVsd_RR(xHi, tHi));
addInstr(env, mk_iMOVsd_RR(xLo, tLo));
iselInt64Expr(&yHi, &yLo, env, e->Iex.Binop.arg2);
addInstr(env, X86Instr_Alu32R(op, X86RMI_Reg(yHi), tHi));
addInstr(env, X86Instr_Alu32R(op, X86RMI_Reg(yLo), tLo));
*rHi = tHi;
*rLo = tLo;
return;
}
/* 32HLto64(e1,e2) */
if (e->tag == Iex_Binop
&& e->Iex.Binop.op == Iop_32HLto64) {
*rHi = iselIntExpr_R(env, e->Iex.Binop.arg1);
*rLo = iselIntExpr_R(env, e->Iex.Binop.arg2);
return;
}
/* 32Sto64(e) */
if (e->tag == Iex_Unop
&& e->Iex.Unop.op == Iop_32Sto64) {
HReg tLo = newVRegI(env);
HReg tHi = newVRegI(env);
HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
addInstr(env, mk_iMOVsd_RR(src,tHi));
addInstr(env, mk_iMOVsd_RR(src,tLo));
addInstr(env, X86Instr_Sh32(Xsh_SAR, 31, X86RM_Reg(tHi)));
*rHi = tHi;
*rLo = tLo;
return;
}
/* 128{HI}to64 */
if (e->tag == Iex_Unop
&& (e->Iex.Unop.op == Iop_128HIto64
|| e->Iex.Unop.op == Iop_128to64)) {
Int off = e->Iex.Unop.op==Iop_128HIto64 ? 8 : 0;
HReg tLo = newVRegI(env);
HReg tHi = newVRegI(env);
HReg vec = iselVecExpr(env, e->Iex.Unop.arg);
X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
X86AMode* espLO = X86AMode_IR(off, hregX86_ESP());
X86AMode* espHI = X86AMode_IR(off+4, hregX86_ESP());
sub_from_esp(env, 16);
addInstr(env, X86Instr_SseLdSt(False/*store*/, vec, esp0));
addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(espLO), tLo ));
addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(espHI), tHi ));
add_to_esp(env, 16);
*rHi = tHi;
*rLo = tLo;
return;
}
/* 32Uto64(e) */
if (e->tag == Iex_Unop
&& e->Iex.Unop.op == Iop_32Uto64) {
HReg tLo = newVRegI(env);
HReg tHi = newVRegI(env);
HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
addInstr(env, mk_iMOVsd_RR(src,tLo));
addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Imm(0), tHi));
*rHi = tHi;
*rLo = tLo;
return;
}
/* could do better than this, but for now ... */
if (e->tag == Iex_Unop
&& e->Iex.Unop.op == Iop_1Sto64) {
HReg tLo = newVRegI(env);
HReg tHi = newVRegI(env);
X86CondCode cond = iselCondCode(env, e->Iex.Unop.arg);
addInstr(env, X86Instr_Set32(cond,tLo));
addInstr(env, X86Instr_Sh32(Xsh_SHL, 31, X86RM_Reg(tLo)));
addInstr(env, X86Instr_Sh32(Xsh_SAR, 31, X86RM_Reg(tLo)));
addInstr(env, mk_iMOVsd_RR(tLo, tHi));
*rHi = tHi;
*rLo = tLo;
return;
}
/* Not64(e) */
if (e->tag == Iex_Unop
&& e->Iex.Unop.op == Iop_Not64) {
HReg tLo = newVRegI(env);
HReg tHi = newVRegI(env);
HReg sHi, sLo;
iselInt64Expr(&sHi, &sLo, env, e->Iex.Unop.arg);
addInstr(env, mk_iMOVsd_RR(sHi, tHi));
addInstr(env, mk_iMOVsd_RR(sLo, tLo));
addInstr(env, X86Instr_Unary32(Xun_NOT,X86RM_Reg(tHi)));
addInstr(env, X86Instr_Unary32(Xun_NOT,X86RM_Reg(tLo)));
*rHi = tHi;
*rLo = tLo;
return;
}
/* ReinterpF64asI64(e) */
/* Given an IEEE754 double, produce an I64 with the same bit
pattern. */
if (e->tag == Iex_Unop
&& e->Iex.Unop.op == Iop_ReinterpF64asI64) {
HReg rf = iselDblExpr(env, e->Iex.Unop.arg);
HReg tLo = newVRegI(env);
HReg tHi = newVRegI(env);
X86AMode* zero_esp = X86AMode_IR(0, hregX86_ESP());
X86AMode* four_esp = X86AMode_IR(4, hregX86_ESP());
/* paranoia */
set_FPU_rounding_default(env);
/* subl $8, %esp */
sub_from_esp(env, 8);
/* gstD %rf, 0(%esp) */
addInstr(env,
X86Instr_FpLdSt(False/*store*/, 8, rf, zero_esp));
/* movl 0(%esp), %tLo */
addInstr(env,
X86Instr_Alu32R(Xalu_MOV, X86RMI_Mem(zero_esp), tLo));
/* movl 4(%esp), %tHi */
addInstr(env,
X86Instr_Alu32R(Xalu_MOV, X86RMI_Mem(four_esp), tHi));
/* addl $8, %esp */
add_to_esp(env, 8);
*rHi = tHi;
*rLo = tLo;
return;
}
/* 64-bit shifts */
if (e->tag == Iex_Binop
&& e->Iex.Binop.op == Iop_Shl64) {
/* We use the same ingenious scheme as gcc. Put the value
to be shifted into %hi:%lo, and the shift amount into %cl.
Then (dsts on right, a la ATT syntax):
shldl %cl, %lo, %hi -- make %hi be right for the shift amt
-- %cl % 32
shll %cl, %lo -- make %lo be right for the shift amt
-- %cl % 32
Now, if (shift amount % 64) is in the range 32 .. 63, we have
to do a fixup, which puts the result low half into the result
high half, and zeroes the low half:
testl $32, %ecx
cmovnz %lo, %hi
movl $0, %tmp -- sigh; need yet another reg
cmovnz %tmp, %lo
*/
HReg rAmt, sHi, sLo, tHi, tLo, tTemp;
tLo = newVRegI(env);
tHi = newVRegI(env);
tTemp = newVRegI(env);
rAmt = iselIntExpr_R(env, e->Iex.Binop.arg2);
iselInt64Expr(&sHi,&sLo, env, e->Iex.Binop.arg1);
addInstr(env, mk_iMOVsd_RR(rAmt, hregX86_ECX()));
addInstr(env, mk_iMOVsd_RR(sHi, tHi));
addInstr(env, mk_iMOVsd_RR(sLo, tLo));
/* Ok. Now shift amt is in %ecx, and value is in tHi/tLo and
those regs are legitimately modifiable. */
addInstr(env, X86Instr_Sh3232(Xsh_SHL, 0/*%cl*/, tLo, tHi));
addInstr(env, X86Instr_Sh32(Xsh_SHL, 0/*%cl*/, X86RM_Reg(tLo)));
addInstr(env, X86Instr_Test32(X86RI_Imm(32), X86RM_Reg(hregX86_ECX())));
addInstr(env, X86Instr_CMov32(Xcc_NZ, X86RM_Reg(tLo), tHi));
addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Imm(0), tTemp));
addInstr(env, X86Instr_CMov32(Xcc_NZ, X86RM_Reg(tTemp), tLo));
*rHi = tHi;
*rLo = tLo;
return;
}
if (e->tag == Iex_Binop
&& e->Iex.Binop.op == Iop_Shr64) {
/* We use the same ingenious scheme as gcc. Put the value
to be shifted into %hi:%lo, and the shift amount into %cl.
Then:
shrdl %cl, %hi, %lo -- make %lo be right for the shift amt
-- %cl % 32
shrl %cl, %hi -- make %hi be right for the shift amt
-- %cl % 32
Now, if (shift amount % 64) is in the range 32 .. 63, we have
to do a fixup, which puts the result high half into the result
low half, and zeroes the high half:
testl $32, %ecx
cmovnz %hi, %lo
movl $0, %tmp -- sigh; need yet another reg
cmovnz %tmp, %hi
*/
HReg rAmt, sHi, sLo, tHi, tLo, tTemp;
tLo = newVRegI(env);
tHi = newVRegI(env);
tTemp = newVRegI(env);
rAmt = iselIntExpr_R(env, e->Iex.Binop.arg2);
iselInt64Expr(&sHi,&sLo, env, e->Iex.Binop.arg1);
addInstr(env, mk_iMOVsd_RR(rAmt, hregX86_ECX()));
addInstr(env, mk_iMOVsd_RR(sHi, tHi));
addInstr(env, mk_iMOVsd_RR(sLo, tLo));
/* Ok. Now shift amt is in %ecx, and value is in tHi/tLo and
those regs are legitimately modifiable. */
addInstr(env, X86Instr_Sh3232(Xsh_SHR, 0/*%cl*/, tHi, tLo));
addInstr(env, X86Instr_Sh32(Xsh_SHR, 0/*%cl*/, X86RM_Reg(tHi)));
addInstr(env, X86Instr_Test32(X86RI_Imm(32), X86RM_Reg(hregX86_ECX())));
addInstr(env, X86Instr_CMov32(Xcc_NZ, X86RM_Reg(tHi), tLo));
addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Imm(0), tTemp));
addInstr(env, X86Instr_CMov32(Xcc_NZ, X86RM_Reg(tTemp), tHi));
*rHi = tHi;
*rLo = tLo;
return;
}
/* F64 -> I64 */
/* Sigh, this is an almost exact copy of the F64 -> I32/I16 case.
Unfortunately I see no easy way to avoid the duplication. */
if (e->tag == Iex_Binop
&& e->Iex.Binop.op == Iop_F64toI64) {
HReg rf = iselDblExpr(env, e->Iex.Binop.arg2);
HReg tLo = newVRegI(env);
HReg tHi = newVRegI(env);
/* Used several times ... */
/* Careful ... this sharing is only safe because
zero_esp/four_esp do not hold any registers which the
register allocator could attempt to swizzle later. */
X86AMode* zero_esp = X86AMode_IR(0, hregX86_ESP());
X86AMode* four_esp = X86AMode_IR(4, hregX86_ESP());
/* rf now holds the value to be converted, and rrm holds the
rounding mode value, encoded as per the IRRoundingMode enum.
The first thing to do is set the FPU's rounding mode
accordingly. */
/* Create a space for the format conversion. */
/* subl $8, %esp */
sub_from_esp(env, 8);
/* Set host rounding mode */
set_FPU_rounding_mode( env, e->Iex.Binop.arg1 );
/* gistll %rf, 0(%esp) */
addInstr(env, X86Instr_FpLdStI(False/*store*/, 8, rf, zero_esp));
/* movl 0(%esp), %dstLo */
/* movl 4(%esp), %dstHi */
addInstr(env, X86Instr_Alu32R(
Xalu_MOV, X86RMI_Mem(zero_esp), tLo));
addInstr(env, X86Instr_Alu32R(
Xalu_MOV, X86RMI_Mem(four_esp), tHi));
/* Restore default FPU rounding. */
set_FPU_rounding_default( env );
/* addl $8, %esp */
add_to_esp(env, 8);
*rHi = tHi;
*rLo = tLo;
return;
}
/* --------- CCALL --------- */
if (e->tag == Iex_CCall) {
HReg tLo = newVRegI(env);
HReg tHi = newVRegI(env);
/* Marshal args, do the call, clear stack. */
doHelperCall( env, False, NULL, e->Iex.CCall.cee, e->Iex.CCall.args );
addInstr(env, mk_iMOVsd_RR(hregX86_EDX(), tHi));
addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), tLo));
*rHi = tHi;
*rLo = tLo;
return;
}
ppIRExpr(e);
vpanic("iselInt64Expr");
}
/*---------------------------------------------------------*/
/*--- ISEL: Floating point expressions (32 bit) ---*/
/*---------------------------------------------------------*/
/* Nothing interesting here; really just wrappers for
64-bit stuff. */
static HReg iselFltExpr ( ISelEnv* env, IRExpr* e )
{
HReg r = iselFltExpr_wrk( env, e );
# if 0
vex_printf("\n"); ppIRExpr(e); vex_printf("\n");
# endif
vassert(hregClass(r) == HRcFlt64); /* yes, really Flt64 */
vassert(hregIsVirtual(r));
return r;
}
/* DO NOT CALL THIS DIRECTLY */
static HReg iselFltExpr_wrk ( ISelEnv* env, IRExpr* e )
{
IRType ty = typeOfIRExpr(env->type_env,e);
vassert(ty == Ity_F32);
if (e->tag == Iex_Tmp) {
return lookupIRTemp(env, e->Iex.Tmp.tmp);
}
if (e->tag == Iex_LDle) {
X86AMode* am;
HReg res = newVRegF(env);
vassert(e->Iex.LDle.ty == Ity_F32);
am = iselIntExpr_AMode(env, e->Iex.LDle.addr);
addInstr(env, X86Instr_FpLdSt(True/*load*/, 4, res, am));
return res;
}
if (e->tag == Iex_Binop
&& e->Iex.Binop.op == Iop_F64toF32) {
/* Although the result is still held in a standard FPU register,
we need to round it to reflect the loss of accuracy/range
entailed in casting it to a 32-bit float. */
HReg dst = newVRegF(env);
HReg src = iselDblExpr(env, e->Iex.Binop.arg2);
set_FPU_rounding_mode( env, e->Iex.Binop.arg1 );
addInstr(env, X86Instr_Fp64to32(src,dst));
set_FPU_rounding_default( env );
return dst;
}
if (e->tag == Iex_Get) {
X86AMode* am = X86AMode_IR( e->Iex.Get.offset,
hregX86_EBP() );
HReg res = newVRegF(env);
addInstr(env, X86Instr_FpLdSt( True/*load*/, 4, res, am ));
return res;
}
if (e->tag == Iex_Unop
&& e->Iex.Unop.op == Iop_ReinterpI32asF32) {
/* Given an I32, produce an IEEE754 float with the same bit
pattern. */
HReg dst = newVRegF(env);
X86RMI* rmi = iselIntExpr_RMI(env, e->Iex.Unop.arg);
/* paranoia */
addInstr(env, X86Instr_Push(rmi));
addInstr(env, X86Instr_FpLdSt(
True/*load*/, 4, dst,
X86AMode_IR(0, hregX86_ESP())));
add_to_esp(env, 4);
return dst;
}
ppIRExpr(e);
vpanic("iselFltExpr_wrk");
}
/*---------------------------------------------------------*/
/*--- ISEL: Floating point expressions (64 bit) ---*/
/*---------------------------------------------------------*/
/* Compute a 64-bit floating point value into a register, the identity
of which is returned. As with iselIntExpr_R, the reg may be either
real or virtual; in any case it must not be changed by subsequent
code emitted by the caller. */
/* IEEE 754 formats. From http://www.freesoft.org/CIE/RFC/1832/32.htm:
Type S (1 bit) E (11 bits) F (52 bits)
---- --------- ----------- -----------
signalling NaN u 2047 (max) .0uuuuu---u
(with at least
one 1 bit)
quiet NaN u 2047 (max) .1uuuuu---u
negative infinity 1 2047 (max) .000000---0
positive infinity 0 2047 (max) .000000---0
negative zero 1 0 .000000---0
positive zero 0 0 .000000---0
*/
static HReg iselDblExpr ( ISelEnv* env, IRExpr* e )
{
HReg r = iselDblExpr_wrk( env, e );
# if 0
vex_printf("\n"); ppIRExpr(e); vex_printf("\n");
# endif
vassert(hregClass(r) == HRcFlt64);
vassert(hregIsVirtual(r));
return r;
}
/* DO NOT CALL THIS DIRECTLY */
static HReg iselDblExpr_wrk ( ISelEnv* env, IRExpr* e )
{
IRType ty = typeOfIRExpr(env->type_env,e);
vassert(e);
vassert(ty == Ity_F64);
if (e->tag == Iex_Tmp) {
return lookupIRTemp(env, e->Iex.Tmp.tmp);
}
if (e->tag == Iex_Const) {
union { UInt u32x2[2]; ULong u64; Double f64; } u;
HReg freg = newVRegF(env);
vassert(sizeof(u) == 8);
vassert(sizeof(u.u64) == 8);
vassert(sizeof(u.f64) == 8);
vassert(sizeof(u.u32x2) == 8);
if (e->Iex.Const.con->tag == Ico_F64) {
u.f64 = e->Iex.Const.con->Ico.F64;
}
else if (e->Iex.Const.con->tag == Ico_F64i) {
u.u64 = e->Iex.Const.con->Ico.F64i;
}
else
vpanic("iselDblExpr(x86): const");
addInstr(env, X86Instr_Push(X86RMI_Imm(u.u32x2[1])));
addInstr(env, X86Instr_Push(X86RMI_Imm(u.u32x2[0])));
addInstr(env, X86Instr_FpLdSt(True/*load*/, 8, freg,
X86AMode_IR(0, hregX86_ESP())));
add_to_esp(env, 8);
return freg;
}
if (e->tag == Iex_LDle) {
X86AMode* am;
HReg res = newVRegF(env);
vassert(e->Iex.LDle.ty == Ity_F64);
am = iselIntExpr_AMode(env, e->Iex.LDle.addr);
addInstr(env, X86Instr_FpLdSt(True/*load*/, 8, res, am));
return res;
}
if (e->tag == Iex_Get) {
X86AMode* am = X86AMode_IR( e->Iex.Get.offset,
hregX86_EBP() );
HReg res = newVRegF(env);
addInstr(env, X86Instr_FpLdSt( True/*load*/, 8, res, am ));
return res;
}
if (e->tag == Iex_GetI) {
X86AMode* am
= genGuestArrayOffset(
env, e->Iex.GetI.descr,
e->Iex.GetI.ix, e->Iex.GetI.bias );
HReg res = newVRegF(env);
addInstr(env, X86Instr_FpLdSt( True/*load*/, 8, res, am ));
return res;
}
if (e->tag == Iex_Binop) {
X86FpOp fpop = Xfp_INVALID;
switch (e->Iex.Binop.op) {
case Iop_AddF64: fpop = Xfp_ADD; break;
case Iop_SubF64: fpop = Xfp_SUB; break;
case Iop_MulF64: fpop = Xfp_MUL; break;
case Iop_DivF64: fpop = Xfp_DIV; break;
case Iop_ScaleF64: fpop = Xfp_SCALE; break;
case Iop_AtanF64: fpop = Xfp_ATAN; break;
case Iop_Yl2xF64: fpop = Xfp_YL2X; break;
case Iop_Yl2xp1F64: fpop = Xfp_YL2XP1; break;
case Iop_PRemF64: fpop = Xfp_PREM; break;
case Iop_PRem1F64: fpop = Xfp_PREM1; break;
default: break;
}
if (fpop != Xfp_INVALID) {
HReg res = newVRegF(env);
HReg srcL = iselDblExpr(env, e->Iex.Binop.arg1);
HReg srcR = iselDblExpr(env, e->Iex.Binop.arg2);
addInstr(env, X86Instr_FpBinary(fpop,srcL,srcR,res));
return res;
}
}
if (e->tag == Iex_Binop && e->Iex.Binop.op == Iop_RoundF64) {
HReg rf = iselDblExpr(env, e->Iex.Binop.arg2);
HReg dst = newVRegF(env);
/* rf now holds the value to be rounded. The first thing to do
is set the FPU's rounding mode accordingly. */
/* Set host rounding mode */
set_FPU_rounding_mode( env, e->Iex.Binop.arg1 );
/* grndint %rf, %dst */
addInstr(env, X86Instr_FpUnary(Xfp_ROUND, rf, dst));
/* Restore default FPU rounding. */
set_FPU_rounding_default( env );
return dst;
}
if (e->tag == Iex_Binop && e->Iex.Binop.op == Iop_I64toF64) {
HReg dst = newVRegF(env);
HReg rHi,rLo;
iselInt64Expr( &rHi, &rLo, env, e->Iex.Binop.arg2);
addInstr(env, X86Instr_Push(X86RMI_Reg(rHi)));
addInstr(env, X86Instr_Push(X86RMI_Reg(rLo)));
/* Set host rounding mode */
set_FPU_rounding_mode( env, e->Iex.Binop.arg1 );
addInstr(env, X86Instr_FpLdStI(
True/*load*/, 8, dst,
X86AMode_IR(0, hregX86_ESP())));
/* Restore default FPU rounding. */
set_FPU_rounding_default( env );
add_to_esp(env, 8);
return dst;
}
if (e->tag == Iex_Unop) {
X86FpOp fpop = Xfp_INVALID;
switch (e->Iex.Unop.op) {
case Iop_NegF64: fpop = Xfp_NEG; break;
case Iop_AbsF64: fpop = Xfp_ABS; break;
case Iop_SqrtF64: fpop = Xfp_SQRT; break;
case Iop_SinF64: fpop = Xfp_SIN; break;
case Iop_CosF64: fpop = Xfp_COS; break;
case Iop_TanF64: fpop = Xfp_TAN; break;
case Iop_2xm1F64: fpop = Xfp_2XM1; break;
default: break;
}
if (fpop != Xfp_INVALID) {
HReg res = newVRegF(env);
HReg src = iselDblExpr(env, e->Iex.Unop.arg);
addInstr(env, X86Instr_FpUnary(fpop,src,res));
return res;
}
}
if (e->tag == Iex_Unop) {
switch (e->Iex.Unop.op) {
case Iop_I32toF64: {
HReg dst = newVRegF(env);
HReg ri = iselIntExpr_R(env, e->Iex.Unop.arg);
addInstr(env, X86Instr_Push(X86RMI_Reg(ri)));
set_FPU_rounding_default(env);
addInstr(env, X86Instr_FpLdStI(
True/*load*/, 4, dst,
X86AMode_IR(0, hregX86_ESP())));
add_to_esp(env, 4);
return dst;
}
case Iop_ReinterpI64asF64: {
/* Given an I64, produce an IEEE754 double with the same
bit pattern. */
HReg dst = newVRegF(env);
HReg rHi, rLo;
iselInt64Expr( &rHi, &rLo, env, e->Iex.Unop.arg);
/* paranoia */
set_FPU_rounding_default(env);
addInstr(env, X86Instr_Push(X86RMI_Reg(rHi)));
addInstr(env, X86Instr_Push(X86RMI_Reg(rLo)));
addInstr(env, X86Instr_FpLdSt(
True/*load*/, 8, dst,
X86AMode_IR(0, hregX86_ESP())));
add_to_esp(env, 8);
return dst;
}
case Iop_F32toF64:
/* this is a no-op */
return iselFltExpr(env, e->Iex.Unop.arg);
default:
break;
}
}
/* --------- MULTIPLEX --------- */
if (e->tag == Iex_Mux0X) {
if (ty == Ity_F64
&& typeOfIRExpr(env->type_env,e->Iex.Mux0X.cond) == Ity_I8) {
HReg r8 = iselIntExpr_R(env, e->Iex.Mux0X.cond);
HReg rX = iselDblExpr(env, e->Iex.Mux0X.exprX);
HReg r0 = iselDblExpr(env, e->Iex.Mux0X.expr0);
HReg dst = newVRegF(env);
addInstr(env, X86Instr_FpUnary(Xfp_MOV,rX,dst));
addInstr(env, X86Instr_Test32(X86RI_Imm(0xFF), X86RM_Reg(r8)));
addInstr(env, X86Instr_FpCMov(Xcc_Z,r0,dst));
return dst;
}
}
ppIRExpr(e);
vpanic("iselDblExpr_wrk");
}
/*---------------------------------------------------------*/
/*--- ISEL: SIMD (Vector) expressions, 128 bit. ---*/
/*---------------------------------------------------------*/
static HReg iselVecExpr ( ISelEnv* env, IRExpr* e )
{
HReg r = iselVecExpr_wrk( env, e );
# if 0
vex_printf("\n"); ppIRExpr(e); vex_printf("\n");
# endif
vassert(hregClass(r) == HRcVec128);
vassert(hregIsVirtual(r));
return r;
}
/* DO NOT CALL THIS DIRECTLY */
static HReg iselVecExpr_wrk ( ISelEnv* env, IRExpr* e )
{
Bool arg1isEReg = False;
X86SseOp op = Xsse_INVALID;
IRType ty = typeOfIRExpr(env->type_env,e);
vassert(e);
vassert(ty == Ity_V128);
if (e->tag == Iex_Tmp) {
return lookupIRTemp(env, e->Iex.Tmp.tmp);
}
if (e->tag == Iex_Get) {
HReg dst = newVRegV(env);
addInstr(env, X86Instr_SseLdSt(
True/*load*/,
dst,
X86AMode_IR(e->Iex.Get.offset, hregX86_EBP())
)
);
return dst;
}
if (e->tag == Iex_LDle) {
HReg dst = newVRegV(env);
X86AMode* am = iselIntExpr_AMode(env, e->Iex.LDle.addr);
addInstr(env, X86Instr_SseLdSt( True/*load*/, dst, am ));
return dst;
}
if (e->tag == Iex_Const) {
HReg dst = newVRegV(env);
vassert(e->Iex.Const.con->tag == Ico_V128);
addInstr(env, X86Instr_SseConst(e->Iex.Const.con->Ico.V128, dst));
return dst;
}
if (e->tag == Iex_Unop) {
switch (e->Iex.Unop.op) {
case Iop_CmpNEZ32x4: {
/* sigh, we have to generate crappy code for SSE1 */
/* basically, the idea is: for each lane:
movl lane, %r ; negl %r (now CF = lane==0 ? 0 : 1)
sbbl %r, %r (now %r = 1Sto32(CF))
movl %r, lane
*/
Int i;
X86AMode* am;
X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
HReg arg = iselVecExpr(env, e->Iex.Unop.arg);
HReg dst = newVRegV(env);
HReg r32 = newVRegI(env);
sub_from_esp(env, 16);
addInstr(env, X86Instr_SseLdSt(False/*store*/, arg, esp0));
for (i = 0; i < 4; i++) {
am = X86AMode_IR(i*4, hregX86_ESP());
addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Mem(am), r32));
addInstr(env, X86Instr_Unary32(Xun_NEG, X86RM_Reg(r32)));
addInstr(env, X86Instr_Alu32R(Xalu_SBB, X86RMI_Reg(r32), r32));
addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(r32), am));
}
addInstr(env, X86Instr_SseLdSt(True/*load*/, dst, esp0));
add_to_esp(env, 16);
return dst;
}
case Iop_Recip32Fx4: op = Xsse_RCPF; goto do_32Fx4_unary;
case Iop_RSqrt32Fx4: op = Xsse_RSQRTF; goto do_32Fx4_unary;
case Iop_Sqrt32Fx4: op = Xsse_SQRTF; goto do_32Fx4_unary;
do_32Fx4_unary:
{
HReg arg = iselVecExpr(env, e->Iex.Unop.arg);
HReg dst = newVRegV(env);
addInstr(env, X86Instr_Sse32Fx4(op, arg, dst));
return dst;
}
case Iop_Recip64Fx2: op = Xsse_RCPF; goto do_64Fx2_unary;
case Iop_RSqrt64Fx2: op = Xsse_RSQRTF; goto do_64Fx2_unary;
case Iop_Sqrt64Fx2: op = Xsse_SQRTF; goto do_64Fx2_unary;
do_64Fx2_unary:
{
HReg arg = iselVecExpr(env, e->Iex.Unop.arg);
HReg dst = newVRegV(env);
addInstr(env, X86Instr_Sse64Fx2(op, arg, dst));
return dst;
}
case Iop_Recip32F0x4: op = Xsse_RCPF; goto do_32F0x4_unary;
case Iop_RSqrt32F0x4: op = Xsse_RSQRTF; goto do_32F0x4_unary;
case Iop_Sqrt32F0x4: op = Xsse_SQRTF; goto do_32F0x4_unary;
do_32F0x4_unary:
{
/* A bit subtle. We have to copy the arg to the result
register first, because actually doing the SSE scalar insn
leaves the upper 3/4 of the destination register
unchanged. Whereas the required semantics of these
primops is that the upper 3/4 is simply copied in from the
argument. */
HReg arg = iselVecExpr(env, e->Iex.Unop.arg);
HReg dst = newVRegV(env);
addInstr(env, mk_vMOVsd_RR(arg, dst));
addInstr(env, X86Instr_Sse32FLo(op, arg, dst));
return dst;
}
case Iop_Recip64F0x2: op = Xsse_RCPF; goto do_64F0x2_unary;
case Iop_RSqrt64F0x2: op = Xsse_RSQRTF; goto do_64F0x2_unary;
case Iop_Sqrt64F0x2: op = Xsse_SQRTF; goto do_64F0x2_unary;
do_64F0x2_unary:
{
/* A bit subtle. We have to copy the arg to the result
register first, because actually doing the SSE scalar insn
leaves the upper half of the destination register
unchanged. Whereas the required semantics of these
primops is that the upper half is simply copied in from the
argument. */
HReg arg = iselVecExpr(env, e->Iex.Unop.arg);
HReg dst = newVRegV(env);
addInstr(env, mk_vMOVsd_RR(arg, dst));
addInstr(env, X86Instr_Sse64FLo(op, arg, dst));
return dst;
}
case Iop_32Uto128: {
HReg dst = newVRegV(env);
X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
X86RMI* rmi = iselIntExpr_RMI(env, e->Iex.Unop.arg);
addInstr(env, X86Instr_Push(rmi));
addInstr(env, X86Instr_SseLdzLO(4, dst, esp0));
add_to_esp(env, 4);
return dst;
}
case Iop_64Uto128: {
HReg rHi, rLo;
HReg dst = newVRegV(env);
X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
iselInt64Expr(&rHi, &rLo, env, e->Iex.Unop.arg);
addInstr(env, X86Instr_Push(X86RMI_Reg(rHi)));
addInstr(env, X86Instr_Push(X86RMI_Reg(rLo)));
addInstr(env, X86Instr_SseLdzLO(8, dst, esp0));
add_to_esp(env, 8);
return dst;
}
default:
break;
} /* switch (e->Iex.Unop.op) */
} /* if (e->tag == Iex_Unop) */
if (e->tag == Iex_Binop) {
switch (e->Iex.Binop.op) {
case Iop_Set128lo32: {
HReg dst = newVRegV(env);
HReg srcV = iselVecExpr(env, e->Iex.Binop.arg1);
HReg srcI = iselIntExpr_R(env, e->Iex.Binop.arg2);
X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
sub_from_esp(env, 16);
addInstr(env, X86Instr_SseLdSt(False/*store*/, srcV, esp0));
addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(srcI), esp0));
addInstr(env, X86Instr_SseLdSt(True/*load*/, dst, esp0));
add_to_esp(env, 16);
return dst;
}
case Iop_Set128lo64: {
HReg dst = newVRegV(env);
HReg srcV = iselVecExpr(env, e->Iex.Binop.arg1);
HReg srcIhi, srcIlo;
X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
X86AMode* esp4 = advance4(esp0);
iselInt64Expr(&srcIhi, &srcIlo, env, e->Iex.Binop.arg2);
sub_from_esp(env, 16);
addInstr(env, X86Instr_SseLdSt(False/*store*/, srcV, esp0));
addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(srcIlo), esp0));
addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(srcIhi), esp4));
addInstr(env, X86Instr_SseLdSt(True/*load*/, dst, esp0));
add_to_esp(env, 16);
return dst;
}
case Iop_64HLto128: {
HReg r3, r2, r1, r0;
X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
X86AMode* esp4 = advance4(esp0);
X86AMode* esp8 = advance4(esp4);
X86AMode* esp12 = advance4(esp8);
HReg dst = newVRegV(env);
/* do this via the stack (easy, convenient, etc) */
sub_from_esp(env, 16);
/* Do the less significant 64 bits */
iselInt64Expr(&r1, &r0, env, e->Iex.Binop.arg2);
addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(r0), esp0));
addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(r1), esp4));
/* Do the more significant 64 bits */
iselInt64Expr(&r3, &r2, env, e->Iex.Binop.arg1);
addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(r2), esp8));
addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(r3), esp12));
/* Fetch result back from stack. */
addInstr(env, X86Instr_SseLdSt(True/*load*/, dst, esp0));
add_to_esp(env, 16);
return dst;
}
case Iop_CmpEQ32Fx4: op = Xsse_CMPEQF; goto do_32Fx4;
case Iop_CmpLT32Fx4: op = Xsse_CMPLTF; goto do_32Fx4;
case Iop_CmpLE32Fx4: op = Xsse_CMPLEF; goto do_32Fx4;
case Iop_Add32Fx4: op = Xsse_ADDF; goto do_32Fx4;
case Iop_Div32Fx4: op = Xsse_DIVF; goto do_32Fx4;
case Iop_Max32Fx4: op = Xsse_MAXF; goto do_32Fx4;
case Iop_Min32Fx4: op = Xsse_MINF; goto do_32Fx4;
case Iop_Mul32Fx4: op = Xsse_MULF; goto do_32Fx4;
case Iop_Sub32Fx4: op = Xsse_SUBF; goto do_32Fx4;
do_32Fx4:
{
HReg argL = iselVecExpr(env, e->Iex.Binop.arg1);
HReg argR = iselVecExpr(env, e->Iex.Binop.arg2);
HReg dst = newVRegV(env);
addInstr(env, mk_vMOVsd_RR(argL, dst));
addInstr(env, X86Instr_Sse32Fx4(op, argR, dst));
return dst;
}
case Iop_CmpEQ64Fx2: op = Xsse_CMPEQF; goto do_64Fx2;
case Iop_CmpLT64Fx2: op = Xsse_CMPLTF; goto do_64Fx2;
case Iop_CmpLE64Fx2: op = Xsse_CMPLEF; goto do_64Fx2;
case Iop_Add64Fx2: op = Xsse_ADDF; goto do_64Fx2;
case Iop_Div64Fx2: op = Xsse_DIVF; goto do_64Fx2;
case Iop_Max64Fx2: op = Xsse_MAXF; goto do_64Fx2;
case Iop_Min64Fx2: op = Xsse_MINF; goto do_64Fx2;
case Iop_Mul64Fx2: op = Xsse_MULF; goto do_64Fx2;
case Iop_Sub64Fx2: op = Xsse_SUBF; goto do_64Fx2;
do_64Fx2:
{
HReg argL = iselVecExpr(env, e->Iex.Binop.arg1);
HReg argR = iselVecExpr(env, e->Iex.Binop.arg2);
HReg dst = newVRegV(env);
addInstr(env, mk_vMOVsd_RR(argL, dst));
addInstr(env, X86Instr_Sse64Fx2(op, argR, dst));
return dst;
}
case Iop_CmpEQ32F0x4: op = Xsse_CMPEQF; goto do_32F0x4;
case Iop_CmpLT32F0x4: op = Xsse_CMPLTF; goto do_32F0x4;
case Iop_CmpLE32F0x4: op = Xsse_CMPLEF; goto do_32F0x4;
case Iop_Add32F0x4: op = Xsse_ADDF; goto do_32F0x4;
case Iop_Div32F0x4: op = Xsse_DIVF; goto do_32F0x4;
case Iop_Max32F0x4: op = Xsse_MAXF; goto do_32F0x4;
case Iop_Min32F0x4: op = Xsse_MINF; goto do_32F0x4;
case Iop_Mul32F0x4: op = Xsse_MULF; goto do_32F0x4;
case Iop_Sub32F0x4: op = Xsse_SUBF; goto do_32F0x4;
do_32F0x4: {
HReg argL = iselVecExpr(env, e->Iex.Binop.arg1);
HReg argR = iselVecExpr(env, e->Iex.Binop.arg2);
HReg dst = newVRegV(env);
addInstr(env, mk_vMOVsd_RR(argL, dst));
addInstr(env, X86Instr_Sse32FLo(op, argR, dst));
return dst;
}
case Iop_CmpEQ64F0x2: op = Xsse_CMPEQF; goto do_64F0x2;
case Iop_CmpLT64F0x2: op = Xsse_CMPLTF; goto do_64F0x2;
case Iop_CmpLE64F0x2: op = Xsse_CMPLEF; goto do_64F0x2;
case Iop_Add64F0x2: op = Xsse_ADDF; goto do_64F0x2;
case Iop_Div64F0x2: op = Xsse_DIVF; goto do_64F0x2;
case Iop_Max64F0x2: op = Xsse_MAXF; goto do_64F0x2;
case Iop_Min64F0x2: op = Xsse_MINF; goto do_64F0x2;
case Iop_Mul64F0x2: op = Xsse_MULF; goto do_64F0x2;
case Iop_Sub64F0x2: op = Xsse_SUBF; goto do_64F0x2;
do_64F0x2: {
HReg argL = iselVecExpr(env, e->Iex.Binop.arg1);
HReg argR = iselVecExpr(env, e->Iex.Binop.arg2);
HReg dst = newVRegV(env);
addInstr(env, mk_vMOVsd_RR(argL, dst));
addInstr(env, X86Instr_Sse64FLo(op, argR, dst));
return dst;
}
case Iop_QNarrow32Sx4:
op = Xsse_PACKSSD; arg1isEReg = True; goto do_SseReRg;
case Iop_QNarrow16Sx8:
op = Xsse_PACKSSW; arg1isEReg = True; goto do_SseReRg;
case Iop_QNarrow16Ux8:
op = Xsse_PACKUSW; arg1isEReg = True; goto do_SseReRg;
case Iop_InterleaveHI8x16:
op = Xsse_UNPCKHB; arg1isEReg = True; goto do_SseReRg;
case Iop_InterleaveHI16x8:
op = Xsse_UNPCKHW; arg1isEReg = True; goto do_SseReRg;
case Iop_InterleaveHI32x4:
op = Xsse_UNPCKHD; arg1isEReg = True; goto do_SseReRg;
case Iop_InterleaveHI64x2:
op = Xsse_UNPCKHQ; arg1isEReg = True; goto do_SseReRg;
case Iop_InterleaveLO8x16:
op = Xsse_UNPCKLB; arg1isEReg = True; goto do_SseReRg;
case Iop_InterleaveLO16x8:
op = Xsse_UNPCKLW; arg1isEReg = True; goto do_SseReRg;
case Iop_InterleaveLO32x4:
op = Xsse_UNPCKLD; arg1isEReg = True; goto do_SseReRg;
case Iop_InterleaveLO64x2:
op = Xsse_UNPCKLQ; arg1isEReg = True; goto do_SseReRg;
case Iop_And128: op = Xsse_AND; goto do_SseReRg;
case Iop_Or128: op = Xsse_OR; goto do_SseReRg;
case Iop_Xor128: op = Xsse_XOR; goto do_SseReRg;
case Iop_Add8x16: op = Xsse_ADD8; goto do_SseReRg;
case Iop_Add16x8: op = Xsse_ADD16; goto do_SseReRg;
case Iop_Add32x4: op = Xsse_ADD32; goto do_SseReRg;
case Iop_Add64x2: op = Xsse_ADD64; goto do_SseReRg;
case Iop_QAdd8Sx16: op = Xsse_QADD8S; goto do_SseReRg;
case Iop_QAdd16Sx8: op = Xsse_QADD16S; goto do_SseReRg;
case Iop_QAdd8Ux16: op = Xsse_QADD8U; goto do_SseReRg;
case Iop_QAdd16Ux8: op = Xsse_QADD16U; goto do_SseReRg;
case Iop_Avg8Ux16: op = Xsse_AVG8U; goto do_SseReRg;
case Iop_Avg16Ux8: op = Xsse_AVG16U; goto do_SseReRg;
case Iop_CmpEQ8x16: op = Xsse_CMPEQ8; goto do_SseReRg;
case Iop_CmpEQ16x8: op = Xsse_CMPEQ16; goto do_SseReRg;
case Iop_CmpEQ32x4: op = Xsse_CMPEQ32; goto do_SseReRg;
case Iop_CmpGT8Sx16: op = Xsse_CMPGT8S; goto do_SseReRg;
case Iop_CmpGT16Sx8: op = Xsse_CMPGT16S; goto do_SseReRg;
case Iop_CmpGT32Sx4: op = Xsse_CMPGT32S; goto do_SseReRg;
case Iop_Max16Sx8: op = Xsse_MAX16S; goto do_SseReRg;
case Iop_Max8Ux16: op = Xsse_MAX8U; goto do_SseReRg;
case Iop_Min16Sx8: op = Xsse_MIN16S; goto do_SseReRg;
case Iop_Min8Ux16: op = Xsse_MIN8U; goto do_SseReRg;
case Iop_MulHi16Ux8: op = Xsse_MULHI16U; goto do_SseReRg;
case Iop_MulHi16Sx8: op = Xsse_MULHI16S; goto do_SseReRg;
case Iop_Mul16x8: op = Xsse_MUL16; goto do_SseReRg;
case Iop_Sub8x16: op = Xsse_SUB8; goto do_SseReRg;
case Iop_Sub16x8: op = Xsse_SUB16; goto do_SseReRg;
case Iop_Sub32x4: op = Xsse_SUB32; goto do_SseReRg;
case Iop_Sub64x2: op = Xsse_SUB64; goto do_SseReRg;
case Iop_QSub8Sx16: op = Xsse_QSUB8S; goto do_SseReRg;
case Iop_QSub16Sx8: op = Xsse_QSUB16S; goto do_SseReRg;
case Iop_QSub8Ux16: op = Xsse_QSUB8U; goto do_SseReRg;
case Iop_QSub16Ux8: op = Xsse_QSUB16U; goto do_SseReRg;
do_SseReRg: {
HReg arg1 = iselVecExpr(env, e->Iex.Binop.arg1);
HReg arg2 = iselVecExpr(env, e->Iex.Binop.arg2);
HReg dst = newVRegV(env);
if (arg1isEReg) {
addInstr(env, mk_vMOVsd_RR(arg2, dst));
addInstr(env, X86Instr_SseReRg(op, arg1, dst));
} else {
addInstr(env, mk_vMOVsd_RR(arg1, dst));
addInstr(env, X86Instr_SseReRg(op, arg2, dst));
}
return dst;
}
case Iop_ShlN16x8: op = Xsse_SHL16; goto do_SseShift;
case Iop_ShlN32x4: op = Xsse_SHL32; goto do_SseShift;
case Iop_ShlN64x2: op = Xsse_SHL64; goto do_SseShift;
case Iop_SarN16x8: op = Xsse_SAR16; goto do_SseShift;
case Iop_SarN32x4: op = Xsse_SAR32; goto do_SseShift;
case Iop_ShrN16x8: op = Xsse_SHR16; goto do_SseShift;
case Iop_ShrN32x4: op = Xsse_SHR32; goto do_SseShift;
case Iop_ShrN64x2: op = Xsse_SHR64; goto do_SseShift;
do_SseShift: {
HReg greg = iselVecExpr(env, e->Iex.Binop.arg1);
X86RMI* rmi = iselIntExpr_RMI(env, e->Iex.Binop.arg2);
X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
HReg ereg = newVRegV(env);
HReg dst = newVRegV(env);
addInstr(env, X86Instr_Push(X86RMI_Imm(0)));
addInstr(env, X86Instr_Push(X86RMI_Imm(0)));
addInstr(env, X86Instr_Push(X86RMI_Imm(0)));
addInstr(env, X86Instr_Push(rmi));
addInstr(env, X86Instr_SseLdSt(True/*load*/, ereg, esp0));
addInstr(env, mk_vMOVsd_RR(greg, dst));
addInstr(env, X86Instr_SseReRg(op, ereg, dst));
add_to_esp(env, 16);
return dst;
}
default:
break;
} /* switch (e->Iex.Binop.op) */
} /* if (e->tag == Iex_Binop) */
if (e->tag == Iex_Mux0X) {
HReg r8 = iselIntExpr_R(env, e->Iex.Mux0X.cond);
HReg rX = iselVecExpr(env, e->Iex.Mux0X.exprX);
HReg r0 = iselVecExpr(env, e->Iex.Mux0X.expr0);
HReg dst = newVRegV(env);
addInstr(env, mk_vMOVsd_RR(rX,dst));
addInstr(env, X86Instr_Test32(X86RI_Imm(0xFF), X86RM_Reg(r8)));
addInstr(env, X86Instr_SseCMov(Xcc_Z,r0,dst));
return dst;
}
ppIRExpr(e);
vpanic("iselVecExpr_wrk");
}
/*---------------------------------------------------------*/
/*--- ISEL: Statements ---*/
/*---------------------------------------------------------*/
static void iselStmt ( ISelEnv* env, IRStmt* stmt )
{
if (vex_traceflags & VEX_TRACE_VCODE) {
vex_printf("\n-- ");
ppIRStmt(stmt);
vex_printf("\n");
}
switch (stmt->tag) {
/* --------- STORE --------- */
case Ist_STle: {
X86AMode* am;
IRType tya = typeOfIRExpr(env->type_env, stmt->Ist.STle.addr);
IRType tyd = typeOfIRExpr(env->type_env, stmt->Ist.STle.data);
vassert(tya == Ity_I32);
am = iselIntExpr_AMode(env, stmt->Ist.STle.addr);
if (tyd == Ity_I32) {
X86RI* ri = iselIntExpr_RI(env, stmt->Ist.STle.data);
addInstr(env, X86Instr_Alu32M(Xalu_MOV,ri,am));
return;
}
if (tyd == Ity_I8 || tyd == Ity_I16) {
HReg r = iselIntExpr_R(env, stmt->Ist.STle.data);
addInstr(env, X86Instr_Store(tyd==Ity_I8 ? 1 : 2,
r,am));
return;
}
if (tyd == Ity_F64) {
HReg r = iselDblExpr(env, stmt->Ist.STle.data);
addInstr(env, X86Instr_FpLdSt(False/*store*/, 8, r, am));
return;
}
if (tyd == Ity_F32) {
HReg r = iselFltExpr(env, stmt->Ist.STle.data);
addInstr(env, X86Instr_FpLdSt(False/*store*/, 4, r, am));
return;
}
if (tyd == Ity_I64) {
HReg vHi, vLo, rA;
iselInt64Expr(&vHi, &vLo, env, stmt->Ist.STle.data);
rA = iselIntExpr_R(env, stmt->Ist.STle.addr);
addInstr(env, X86Instr_Alu32M(
Xalu_MOV, X86RI_Reg(vLo), X86AMode_IR(0, rA)));
addInstr(env, X86Instr_Alu32M(
Xalu_MOV, X86RI_Reg(vHi), X86AMode_IR(4, rA)));
return;
}
if (tyd == Ity_V128) {
HReg r = iselVecExpr(env, stmt->Ist.STle.data);
addInstr(env, X86Instr_SseLdSt(False/*store*/, r, am));
return;
}
break;
}
/* --------- PUT --------- */
case Ist_Put: {
IRType ty = typeOfIRExpr(env->type_env, stmt->Ist.Put.data);
if (ty == Ity_I32) {
/* We're going to write to memory, so compute the RHS into an
X86RI. */
X86RI* ri = iselIntExpr_RI(env, stmt->Ist.Put.data);
addInstr(env,
X86Instr_Alu32M(
Xalu_MOV,
ri,
X86AMode_IR(stmt->Ist.Put.offset,hregX86_EBP())
));
return;
}
if (ty == Ity_I8 || ty == Ity_I16) {
HReg r = iselIntExpr_R(env, stmt->Ist.Put.data);
addInstr(env, X86Instr_Store(
ty==Ity_I8 ? 1 : 2,
r,
X86AMode_IR(stmt->Ist.Put.offset,
hregX86_EBP())));
return;
}
if (ty == Ity_I64) {
HReg vHi, vLo;
X86AMode* am = X86AMode_IR(stmt->Ist.Put.offset, hregX86_EBP());
X86AMode* am4 = advance4(am);
iselInt64Expr(&vHi, &vLo, env, stmt->Ist.Put.data);
addInstr(env, X86Instr_Alu32M( Xalu_MOV, X86RI_Reg(vLo), am ));
addInstr(env, X86Instr_Alu32M( Xalu_MOV, X86RI_Reg(vHi), am4 ));
return;
}
if (ty == Ity_V128) {
HReg vec = iselVecExpr(env, stmt->Ist.Put.data);
X86AMode* am = X86AMode_IR(stmt->Ist.Put.offset, hregX86_EBP());
addInstr(env, X86Instr_SseLdSt(False/*store*/, vec, am));
return;
}
if (ty == Ity_F32) {
HReg f32 = iselFltExpr(env, stmt->Ist.Put.data);
X86AMode* am = X86AMode_IR(stmt->Ist.Put.offset, hregX86_EBP());
set_FPU_rounding_default(env); /* paranoia */
addInstr(env, X86Instr_FpLdSt( False/*store*/, 4, f32, am ));
return;
}
if (ty == Ity_F64) {
HReg f64 = iselDblExpr(env, stmt->Ist.Put.data);
X86AMode* am = X86AMode_IR(stmt->Ist.Put.offset, hregX86_EBP());
set_FPU_rounding_default(env); /* paranoia */
addInstr(env, X86Instr_FpLdSt( False/*store*/, 8, f64, am ));
return;
}
break;
}
/* --------- Indexed PUT --------- */
case Ist_PutI: {
X86AMode* am
= genGuestArrayOffset(
env, stmt->Ist.PutI.descr,
stmt->Ist.PutI.ix, stmt->Ist.PutI.bias );
IRType ty = typeOfIRExpr(env->type_env, stmt->Ist.PutI.data);
if (ty == Ity_F64) {
HReg val = iselDblExpr(env, stmt->Ist.PutI.data);
addInstr(env, X86Instr_FpLdSt( False/*store*/, 8, val, am ));
return;
}
if (ty == Ity_I8) {
HReg r = iselIntExpr_R(env, stmt->Ist.PutI.data);
addInstr(env, X86Instr_Store( 1, r, am ));
return;
}
if (ty == Ity_I64) {
HReg rHi, rLo;
X86AMode* am4 = advance4(am);
iselInt64Expr(&rHi, &rLo, env, stmt->Ist.PutI.data);
addInstr(env, X86Instr_Alu32M( Xalu_MOV, X86RI_Reg(rLo), am ));
addInstr(env, X86Instr_Alu32M( Xalu_MOV, X86RI_Reg(rHi), am4 ));
return;
}
break;
}
/* --------- TMP --------- */
case Ist_Tmp: {
IRTemp tmp = stmt->Ist.Tmp.tmp;
IRType ty = typeOfIRTemp(env->type_env, tmp);
if (ty == Ity_I32 || ty == Ity_I16 || ty == Ity_I8) {
X86RMI* rmi = iselIntExpr_RMI(env, stmt->Ist.Tmp.data);
HReg dst = lookupIRTemp(env, tmp);
addInstr(env, X86Instr_Alu32R(Xalu_MOV,rmi,dst));
return;
}
if (ty == Ity_I64) {
HReg rHi, rLo, dstHi, dstLo;
iselInt64Expr(&rHi,&rLo, env, stmt->Ist.Tmp.data);
lookupIRTemp64( &dstHi, &dstLo, env, tmp);
addInstr(env, mk_iMOVsd_RR(rHi,dstHi) );
addInstr(env, mk_iMOVsd_RR(rLo,dstLo) );
return;
}
if (ty == Ity_I1) {
X86CondCode cond = iselCondCode(env, stmt->Ist.Tmp.data);
HReg dst = lookupIRTemp(env, tmp);
addInstr(env, X86Instr_Set32(cond, dst));
return;
}
if (ty == Ity_F64) {
HReg dst = lookupIRTemp(env, tmp);
HReg src = iselDblExpr(env, stmt->Ist.Tmp.data);
addInstr(env, X86Instr_FpUnary(Xfp_MOV,src,dst));
return;
}
if (ty == Ity_F32) {
HReg dst = lookupIRTemp(env, tmp);
HReg src = iselFltExpr(env, stmt->Ist.Tmp.data);
addInstr(env, X86Instr_FpUnary(Xfp_MOV,src,dst));
return;
}
if (ty == Ity_V128) {
HReg dst = lookupIRTemp(env, tmp);
HReg src = iselVecExpr(env, stmt->Ist.Tmp.data);
addInstr(env, mk_vMOVsd_RR(src,dst));
return;
}
break;
}
/* --------- Call to DIRTY helper --------- */
case Ist_Dirty: {
IRType retty;
IRDirty* d = stmt->Ist.Dirty.details;
Bool passBBP = False;
if (d->nFxState == 0)
vassert(!d->needsBBP);
passBBP = d->nFxState > 0 && d->needsBBP;
/* Marshal args, do the call, clear stack. */
doHelperCall( env, passBBP, d->guard, d->cee, d->args );
/* Now figure out what to do with the returned value, if any. */
if (d->tmp == IRTemp_INVALID)
/* No return value. Nothing to do. */
return;
retty = typeOfIRTemp(env->type_env, d->tmp);
if (retty == Ity_I64) {
HReg dstHi, dstLo;
/* The returned value is in %edx:%eax. Park it in the
register-pair associated with tmp. */
lookupIRTemp64( &dstHi, &dstLo, env, d->tmp);
addInstr(env, mk_iMOVsd_RR(hregX86_EDX(),dstHi) );
addInstr(env, mk_iMOVsd_RR(hregX86_EAX(),dstLo) );
return;
}
if (retty == Ity_I32 || retty == Ity_I16 || retty == Ity_I8) {
/* The returned value is in %eax. Park it in the register
associated with tmp. */
HReg dst = lookupIRTemp(env, d->tmp);
addInstr(env, mk_iMOVsd_RR(hregX86_EAX(),dst) );
return;
}
break;
}
/* --------- EXIT --------- */
case Ist_Exit: {
X86RI* dst;
X86CondCode cc;
if (stmt->Ist.Exit.dst->tag != Ico_U32)
vpanic("isel_x86: Ist_Exit: dst is not a 32-bit value");
dst = iselIntExpr_RI(env, IRExpr_Const(stmt->Ist.Exit.dst));
cc = iselCondCode(env,stmt->Ist.Exit.guard);
addInstr(env, X86Instr_Goto(stmt->Ist.Exit.jk, cc, dst));
return;
}
default: break;
}
ppIRStmt(stmt);
vpanic("iselStmt");
}
/*---------------------------------------------------------*/
/*--- ISEL: Basic block terminators (Nexts) ---*/
/*---------------------------------------------------------*/
static void iselNext ( ISelEnv* env, IRExpr* next, IRJumpKind jk )
{
X86RI* ri;
if (vex_traceflags & VEX_TRACE_VCODE) {
vex_printf("\n-- goto {");
ppIRJumpKind(jk);
vex_printf("} ");
ppIRExpr(next);
vex_printf("\n");
}
ri = iselIntExpr_RI(env, next);
addInstr(env, X86Instr_Goto(jk, Xcc_ALWAYS,ri));
}
/*---------------------------------------------------------*/
/*--- Insn selector top-level ---*/
/*---------------------------------------------------------*/
/* Translate an entire BB to x86 code. */
HInstrArray* iselBB_X86 ( IRBB* bb )
{
Int i, j;
HReg hreg, hregHI;
/* Make up an initial environment to use. */
ISelEnv* env = LibVEX_Alloc(sizeof(ISelEnv));
env->vreg_ctr = 0;
/* Set up output code array. */
env->code = newHInstrArray();
/* Copy BB's type env. */
env->type_env = bb->tyenv;
/* Make up an IRTemp -> virtual HReg mapping. This doesn't
change as we go along. */
env->n_vregmap = bb->tyenv->types_used;
env->vregmap = LibVEX_Alloc(env->n_vregmap * sizeof(HReg));
env->vregmapHI = LibVEX_Alloc(env->n_vregmap * sizeof(HReg));
/* For each IR temporary, allocate a suitably-kinded virtual
register. */
j = 0;
for (i = 0; i < env->n_vregmap; i++) {
hregHI = hreg = INVALID_HREG;
switch (bb->tyenv->types[i]) {
case Ity_I1:
case Ity_I8:
case Ity_I16:
case Ity_I32: hreg = mkHReg(j++, HRcInt32, True); break;
case Ity_I64: hreg = mkHReg(j++, HRcInt32, True);
hregHI = mkHReg(j++, HRcInt32, True); break;
case Ity_F32:
case Ity_F64: hreg = mkHReg(j++, HRcFlt64, True); break;
case Ity_V128: hreg = mkHReg(j++, HRcVec128, True); break;
default: ppIRType(bb->tyenv->types[i]);
vpanic("iselBB: IRTemp type");
}
env->vregmap[i] = hreg;
env->vregmapHI[i] = hregHI;
}
env->vreg_ctr = j;
/* Ok, finally we can iterate over the statements. */
for (i = 0; i < bb->stmts_used; i++)
if (bb->stmts[i])
iselStmt(env,bb->stmts[i]);
iselNext(env,bb->next,bb->jumpkind);
/* record the number of vregs we used. */
env->code->n_vregs = env->vreg_ctr;
return env->code;
}
/*---------------------------------------------------------------*/
/*--- end host-x86/isel.c ---*/
/*---------------------------------------------------------------*/